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cancer and is frequently silenced by promoter
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Abstract

Background: We have previously reported significant downregulation of ubiquitin carboxyl-terminal hydrolase 1
(UCHLTY) in prostate cancer (PCa) compared to the surrounding benign tissue. UCHLT plays an important role in
ubiquitin system and different cellular processes such as cell proliferation and differentiation. We now show that the
underlying mechanism of UCHL1T downregulation in PCa is linked to its promoter hypermethylation. Furthermore, we
present evidences that UCHL1 expression can affect the behavior of prostate cancer cells in different ways.

Results: Methylation specific PCR analysis results showed a highly methylated promoter region for UCHL1 in 90% (18/
20) of tumor tissue compared to 15% (3/20) of normal tissues from PCa patients. Pyrosequencing results confirmed a
mean methylation of 41.4% in PCa whereas only 8.6% in normal tissues. To conduct functional analysis of UCHLT in
PCa, UCHLT1 is overexpressed in LNCaP cells whose UCHL1 expression is normally suppressed by promoter methylation
and found that UCHL1 has the ability to decrease the rate of cell proliferation and suppresses anchorage-independent
growth of these cells. In further analysis, we found evidence that exogenous expression of UCHLT suppress LNCaP cells
growth probably via p53-mediated inhibition of Akt/PKB phosphorylation and also via accumulation of p27kip1 a cyclin
dependant kinase inhibitor of cell cycle regulating proteins. Notably, we also observed that exogenous expression of
UCHLT induced a senescent phenotype that was detected by using the SA-B-gal assay and might be due to increased
p14ARF, p53, p27kip1 and decreased MDM2.

Conclusion: From these results, we propose that UCHL1 downregulation via promoter hypermethylation plays an
important role in various molecular aspects of PCa biology, such as morphological diversification and regulation of
proliferation.
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1 Background

Prostate cancer (PCa) is the most common type of can-
cer found in men and is among the leading causes of
cancer death in the western world [1]. The specific
causes of prostate cancer remain poorly understood [2].
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Recently, our group identified differentially expressed
proteins which are significantly deregulated in PCa pre-
dicting their role in initiation and progression of PCa
[3]. Among those proteins several members of the ubi-
quitin system have shown an altered expression. Ubiqui-
tination of proteins has emerged as one of the most
versatile post-translational modifications, regulating a
diverse arrays of cellular processes [4]. Ubiquitination
plays a central role in degradation of proteins both
through proteasomal targeting and by lysosomal
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degradation. In recent years, it became clear that deubi-
quitination is a crucial process in multiple intracellular
signaling pathways, resulting in putative oncogenic or
tumor suppressive functions [5]. Deubiquitination of
proteins is catalyzed by a set of enzymes known as deu-
biquitinases (DUBs). In the human genome approxi-
mately one hundred human DUBs are known so far
classified into five categories: ubiquitin specific proteases
(USP), ubiquitin C-terminal hydrolases (UCH), ovarian
tumour proteases (OTU), Josephins and the Jabl/MPN/
MOV34 metalloenzymes [5,6].

Ubiquitin C-terminal hydrolase L1 (UCHL1), a mem-
ber of the UCH class of DUBs, is one of the most well
studied DUBs, and was identified in our prostate cancer
protein profiling study [3,5,7]. Although, previous data
demonstrate a putative role of UCHLI in different
tumor types, the exact oncogenic mechanism remains
unclear. Deregulation of UCHLI1 has been observed in
solid tumors such as pancreatic cancer [8], non-small
cell lung cancer [9], colorectal cancer [10], osteosarcoma
[11], and oesophageal cancer [12]. Furthermore, it has
been reported that UCHL1 overexpression is associated
with tumour progression, size and invasiveness [10]. In
gallbladder cancer UCHLI is overexpressed due to
hypomethylation of its promoter and the enhanced
activity of the gene correlates with metastasis [13]. In
contrary, promoter hypermethylation leading to silen-
cing of UCHL1 has been reported in progression of
squamous cell carcinoma as well as gastric cancer and
in pancreatic cancer cell lines [14-16]. Recent reports
demonstrated that UCHLI plays a key role in dissemi-
nation of non-small cell lung cancer [17] and an asso-
ciation of UCHLI with B-catenin signaling pathway [18].
Functional genomics studies revealed that siRNA
mediated downregulation of UCHL1 regulates expres-
sion of several genes which are involved in multiple cel-
lular processes such as apoptosis, cell proliferation and
migration [19]. Mutations in the UCHL1 gene have
been shown to be associated with Parkinson’s disease
rather than cancer, for which differential expression
appears to be more common. Expression profiling data
from various tumour types reported that UCHLI is
either up- or downregulated due to promoter hypo- or
hypermethylation depending on the type of malignant
tissue. Li et al. showed that UCHL1 promotes tumour
suppressor p53 signaling and is silenced due to its pro-
moter methylation in nasopharyngeal carcinoma [20].

In our previous proteomic profiling study, we have
identified a list of differentially expressed proteins in
cancer containing several proteins that are known to be
dysregulated in prostate cancer [3]. Among them we
identified UCHL1 as being downregulated in PCa com-
pared to surrounding histological normal tissue or
benign prostate epithelium. It has been reported that
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UCHLL is deregulated in multiple types of tumours and
the precise mechanism of the downregulation and func-
tion of UCHLI in prostate cancer progression have not
been investigated before. Therefore, the main objective
of the present study was the functional characterization
of UCHLI in prostate cancer progression. The methyla-
tion status of UCHL1 promoter in tissue samples and
the effect of altered UCHL1 expression on different cel-
lular events were examined to determine the role of
UCHL1 expression in PCa. We found that UCHL1 is
downregulated in PCa due to promoter hypermethyla-
tion and demonstrated that UCHL1 has tumour sup-
pressor activity in LNCaP cells.

2 Methods

Clinical samples, ethics statement and protein extraction
Prostate tissue samples were obtained from the Univer-
sity Medical Center Hamburg Eppendorf after informed
consent. The study was approved by the local ethics
committee of the University Hospital Eppendorf, Ham-
burg. For expression profiling whole prostates were col-
lected after radical prostatectomy from patients with
elevated PSA values and preoperative pathological exam-
ination performed at Martini Clinics, Hamburg, Ger-
many. Patients received no preoperative therapy. After
radical prostatectomy samples were frozen in liquid
nitrogen until use. Tumor and benign areas were
marked on the sections. We employed manual micro
dissection method to obtain pathologically characterized
materials for gene and protein expression profiling. The
corresponding areas on the remaining blocks were sliced
out with sharp knife, embedded in Tissue-tek® and
stored at -80°C until use for total protein extraction.
Protein preparation has been described previously [3].

RNA and DNA extraction from tissue sections

After surgical removal of the prostate, tissue samples
were immediately taken with a 6 mm punch biopsy
instrument (Stiefel, Wachtersburg, Germany) from areas
that were suspected to contain tumor foci based on
information obtained from the preoperative systematic
biopsies. Tissue biopsy was immediately immersed in
RNAlater (Qiagen, Hilden, Germany), stored overnight
at ambient temperature and frozen at -20°C until use.
For nucleic acid isolation, the specimen was thawed at
room temperature and immediately washed two times
each of 5 minutes in 10 ml ice-cold sterile PBS-buffer to
elute most of the RNAlater from the tissue. Cryo sec-
tions were taken by fixing the tissue using Tissue-Tek®
(Sakura, Netherlands) followed by freezing in a cryo-
microtome and stained with haematoxylin and eosin
(H&E) and analyzed by pathologists. Tissues were only
enrolled into the study if at least 70% of cells were
epithelial prostate tumor cells. Then, 10-15 subsequent



Ummanni et al. Molecular Cancer 2011, 10:129
http://www.molecular-cancer.com/content/10/1/129

unstained sections were transferred to a cryo tube for
RNA and DNA isolation and the final section was again
H&E stained and analyzed by pathologists. In parallel,
normal prostate tissues were collected from tumor free
areas and processed in the same way as tumor samples.
Adjacent cryo sections were used for DNA and RNA
extraction from the same prostate tissue specimens.
Total RNA and DNA were extracted using the All Prep
DNA/RNA Mini kit (Qiagen) according to the manufac-
turer’s instructions. The quantity of the DNA and total
RNA was checked using the Nanodrop and RNA quality
by Bioanalyzer. Samples with low RNA quality (RIN <
6) were excluded from further analysis.

Cell culture

The PCa cell lines LNCaP and DU145 were purchased
from DSMZ (Braunschweig, Germany) and cultivated in
RPMI1640 (Invitrogen) supplemented with 10% fetal
bovine serum, 100 units/mL) penicillin and streptomy-
cin as recommended by suppliers Phoenix amphotrophic
packaging cells were grown in DMEM with 10% fetal
bovine serum (FBS) and penicillin/streptomycin. Cells
were regularly tested for mycoplasma contamination
using the MycoAlert Kit (Cambrex Bio Science Rock-
land, Inc., Rockland, ME, USA).

Bisulfite treatment and methylation specific PCR (MSP)
DNA isolation from prostate tissues was performed
using Qiagen all prep kit according to supplier’s proto-
col. The DNA concentration was measured by nanodrop
spectrophotometer (Peqlab, Germany). Approximately 1
pg DNA was sodium bisulfite-modified and subjected to
MSP with primers specifically recognizing the unmethy-
lated or the methylated sequence of UCHL1. MSP pri-
mers for the UCHL1 gene were adapted from previous
publication [21]. Primers used for MSP are mentioned
in additional files (Additional file 1). The PCR was run
for 35 cycles with an annealing temperature of 56°C.
Normal DNA from peripheral blood was treated in vitro
with SssI methyltransferase (New England Biolabs, Bev-
erly, MA) in order to generate in vitro methylated DNA
(IVD) that served as a positive control for methylated
alleles. PCR products were separated on 2.5% agarose
gels and visualized by ethidium bromide staining.

Bisulfite pyrosequencing

For quantitative analysis of regional DNA methylation,
pyrosequencing was used. Following PCR amplification
of bisulfite-converted DNA using primer sequences (see
Additional file 1) the final biotin-labeled PCR products
were captured by Streptavidin Sepharose HP (Amer-
sham Biosciences). PCR products bound on the beads
were purified and made single-stranded in a Pyrose-
quencing Vacuum Prep Tool (Pyrosequencing Inc.). The
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forward sequencing primers were annealed to single-
stranded PCR products and pyrosequencing was per-
formed using the PSQ HS 96 Pyrosequencing system
(Biotage AB). Quantification of cytosine methylation was
performed using the PSQ HS96A 1.2 software package.

RNA isolation and quantitative real time PCR
Quantitative real time PCR for analysis of transcriptional
levels of UCHL1 was performed in 48 benign and 45
tumour samples using SYBR Green. RNA isolation and
c¢DNA synthesis carried out according to standard pro-
tocols. Quanti Tect primers for UCHL1, p53, MDM2
and p27Kipl and GAPDH (housekeeping gene) were
purchased directly from Qiagen, Germany. Quantitative
real time PCR was performed in thermal cycler (Strata-
gene, Germany) using Dynamo Flash SYBR Green qPCR
kit (Finnzymes, Finland) under optimized cycling condi-
tions. PCRs for the target and housekeeping genes were
performed in triplicates and mean relative expression
levels were reported. To obtain statistical significance
data obtained were analyzed by unpaired student ¢-test
and p value < 0.05 was considered as significant. For
semiquantitative UCHL1 RTPCR we used the cloning
primers and for RPLPO primers refer additional files
(Additional file 1).

Cloning strategy for UCHL1 overexpression

An UCHLI protein expressing recombinant vector was
generated by cloning the coding region of the human
UCHL1 (Accession number NM_004181) ¢cDNA derived
from prostate tissue into the pMSCV-Puro vector (Clon-
tech, Palo Alto, CA, USA). UCHL1 coding sequence
(CDS) was amplified from total cDNA by PCR using
Phusion DNA Polymerase (Finnzymes Oy, Finland).
After digestion of the PCR product and pMSCV vector
with Bglll/Xhol enzymes (Fermentas GmbH, Germany),
ligation of the PCR product with linear vector resulted
in recombinant pMSCV-UCHL1 construct. The
sequence of the cloned PCR fragment was confirmed by
DNA sequencing (MWG Operon).

Virus production and infection of target cells

Phoenix amphotrophic packaging cells were transfected
with either empty or pMSCV-UCHLI1 vector using
CaCl, transfection method. The transfection mixture
was prepared by mixing 15 pg of plasmid DNA and 125
mM Cacl, in 1 ml of HBS. The DNA precipitate was
added drop wise into the cell culture medium contain-
ing 25 pm of chloroquine. After 12 h of transfection,
medium was replaced with fresh medium and further
incubated for 12 h. The virus containing medium was
collected, filtered by 0.45 um sterile filters directly on
the target cells at around 50% of confluence. The cells
were fed with fresh medium to continue another round
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of virus collection. Both target and packaging cells were
continued to grow. 12 h later, two more infection cycles
were repeated. After three cycles of infection, the target
cells were grown in normal cultivation medium for 24
hrs and selected for integration of the target gene and/
or puromycin at a concentration of 2 pug/ml until all
cells died in control dishes. The colonies appeared with
resistance to puromycin were propagated further and
verified for overexpression of UCHL1 in LNCaP cells.

Cell proliferation assay

For cell proliferation assays, cells were plated at a den-
sity of 1.5 x 10° cells/well in 6-well format in complete
growth medium. Cells were allowed to grow under opti-
mal culture conditions over a period of 0 to 8 days.
Cells were harvested by trypsinization and counted
using Vi-Cell Cell counter (Beckaman Coulter GmbH,
Germany). The growth rate was shown by plotting the
mean total number of cells from triplicate experiments
vs. growth time in days. Each experiment was performed
in triplicate wells and repeated 3 times. The significance
of difference in growth between UCHLI positive and
mock LNCaP cells was calculated using student t-test.

SA-B-gal-staining

Detection for SA-f3-galactosidase was performed as
described elsewhere [22]. Briefly, LNCaP cells were har-
vested at sub confluent density and fixed with 2% PFA
and 0.25% glutaraldehyde in PBS supplemented with 1
mM MgCI2 (pH 6.0) and incubated in a staining solu-
tion containing potassium cyanide/X-gal in PBS/MgCl2
(pH 6.0) at 37°C over night. Slides were analyzed using
an Axioplan microscope (10 x magnifications) (Carl
Zeiss AG, Germany). 200 cells/triplicate were analysed
for a positive staining.

Colony formation assay

Effect of UCHLI expression on anchorage-independent
LNCaP cell growth was analyzed by soft agar assays. In
soft agar assay, bottom agar was prepared by mixing 1%
of agarose (Bacto Agar: Becton, Dickinson, Sparks, MD)
with 2 x RPMI 1640 with 10% FBS in 6-well plates at
37°C to achieve final concentration of 0.5% of agar.
After solidifying the bottom agar, 1 x 10* cells were
mixed with cultivation medium and agar solution to
obtain a final concentration of 0.35% agar. The mixture
was spread on the surface of pre prepared base agar
plates immediately. The culture medium was replen-
ished every 3 days with fresh medium. After 14 days of
incubation, plates were stained with 0.005% crystal violet
solution until colonies turned purple color. After wash-
ing excess stain solution colonies were photographed
and counted under a light microscope. Each experiment
was performed in triplicates and repeated 3 times.
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Proteasomal activity assay

Cells were lysed in M-PER buffer with complete protease
inhibitor cocktail without EDTA (Roche, Germany). Pro-
tein concentration was measured by BCA method
(Thermo Fischer Scientific, Germany) according to suppli-
er’s protocol. For proteasomal activity assay, 10 pg of total
protein diluted to final volume of 50 ul with incubation
buffer (5 mM DTT, 0.5 mMEDTA, 20 mM HEPES, 0.1
mg/ml ovalbumin in ddH,O, pH 7.8). Protein lysate pre-
pared in incubation buffer were pre incubated for 2 h at 4°
C. For blank control, incubation buffer alone was included
in each assay. After incubation, the substrate suc-LLVY-
AMC (Calbiochem) was added to the incubation mixtures
to achieve final of concentration of 60 uM in final volume
of 100 pl. The assay plate was incubated at 37°C for 1 h in
the dark before measuring the proteasomal activity in
fluorescent spectrophotometer (Mitras LB 940, Berchthold
Technology, TN, US) at 355 and 460 nm. Each experiment
was performed in triplicates and repeated 3 times.

Western blotting

Commercially available antibodies against protein targets
of interest were purchased. Protein extracts prepared in
M-PER (Pierce) with protease and phosphatase inhibitors
were separated by 4-12% Bis-Tris-NuPAGE in Nupage
running buffer and electrophoretically transferred onto
PVDF membrane (Millipore). Blocking was carried out in
1 x Rotiblock solution (Roth Chemicals) followed by incu-
bating the membrane with primary antibodies purchased
all from cell signaling except anti UCHLI1 from Millipore
diluted at 1:1000 in 3% BSA in TBST overnight at 4°C.
Excess antibodies were removed by washing with NaCl-
Tris-Tween 20. Incubation with secondary antibody con-
jugated to horseradish peroxidase [anti-(mouse IgG) or
anti-(rabbit IgG) from cell signaling, diluted 1:5000 in 1 x
Rotiblock] was performed for 1 h at room temperature.
After three washes, the reaction was developed by the
addition of LumiGLO substrate (Thermo). The emitted
light was captured on X-ray film (GE Healthcare).

Statistics

Cell culture experiments were carried out in triplicates
and repeated three times. Data points were expressed as
mean of triplicates and median of repeated experiments.
Graph Pad PRISM Version 5.0 statistics program was
used to test significance of the results with Mann-Whit-
ney test or t-test and p values less than 0.05 with 95%
confidence interval were considered as significant.

3 Results

UCHL1 expression and promoter DNA methylation status
in PCa patients

We have recently demonstrated proteomic profiling on
pathologically characterized prostate tissue sections with
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a list of differentially regulated proteins in tumour com-
pared to surrounding histological normal tissue. Protein
profiling revealed significant downregulation of UCHL1
in prostate cancer patients. Further validation of UCHL1
protein expression in a new independent set of samples
confirmed that 32 out of 40 patients with lower UCHL1
levels in tumour tissue than in the surrounding benign
prostate epithelium. The representative western blot is
shown in Figure 1A. In analogy, the measurement of
UCHL1 mRNA levels using quantitative real time PCR
confirmed significant downregulation of UCHL1 at tran-
scriptional level (Figure 1B) in prostate cancer. Based on
the fact that the UCHL1 expression is regulated via pro-
moter methylation in different types of cancer, we inves-
tigated the methylation status of the UCHL1 promoter
regions in 20 samples of normal prostate tissue and 20
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tissue samples of prostate cancer by MSP. The MSP
analysis of normal prostate tissue showed 11 samples
without methylation signal, 6 with very weak methyla-
tion and 2 samples with a weak methylation and 1 sam-
ple with a high methylation. Of the 20 prostate cancer
tissue samples, 1 was unmethylated, 1 showed a very
weak methylation, 3 samples were detected with a weak
and 15 samples with a highly methylated promoter
region (Figure 2A). Due to the high sensitivity of MSP
with a low specificity, we made complementary evalua-
tion of DNA methylation with pyrosequencing. Using
pyrosequencing with 2 different sequencing primers, we
quantified the methylation of 15 CpG sites in the pro-
moter region of UCHLI1 (Figure 2B). The mean methy-
lation of all normal prostate tissue samples was 8.6%
(5.5% - 16%). In contrast, the prostate cancer tissue

A

T N T NT N T N

UCHLA1
GAPDH

— .

‘\o

151
- . p=0.022 .
(m] I 1
<
O 10 ——
N
I
(&]
- |
5 5- R
<
N
| ﬁ
0 T T
N S
é‘{b O

~

Figure 1 UCHL1 protein and mRNA expression in prostate cancer. (A) UCHL1 is downregulated in 32 out of 40 PCa patients. A
representative Western blot was shown here. GAPDH is used as an internal loading control. (B) Quantitative RT-PCR of UCHL1 transcripts from
prostate cancer tissue and normal prostate tissues. The ratio of UCHL1 expression was normalized against GAPDH expression and is graphically
presented as box plots (t-test was used to analyze statistical significance).




Ummanni et al. Molecular Cancer 2011, 10:129 Page 6 of 13
http://www.molecular-cancer.com/content/10/1/129

M U
44 45 48 49 51 control control H20

uUumMUMUMUMUMUMUM U M ladder

e [ T

B
a7%| 55w S| sow EEE] aw|  5aw| aee| as%| 52| sim|  saw)
50
ES GTCTGTCGCTATGATTCAGTCGTAGTCGTCGATC GTCETACTATAGTCTGTCGEGTATCAGTCTG TCGETG
~
58 TO qrormrmmmmommmmm oo
8
S L
]
e B0 - S ERREEEEEE
E |
o "
|
a 50 - Bomommoee-
-
- n
I N -
o 40 H
=
Y
O 30 - CSREREEREEE
=
o L]
=
820 p-
==
5 : :
A Y . S
=
(]
m ':' T T
E .
normal prostate tumortissue

Figure 2 UCHL1 expression is regulated by promoter methylation in PCa. (A) MSP results show highly (44, 45, 48 and 51) and weakly (49)
methylated tumour samples as well as positive (M) and negative (U) controls. The M lane shows amplification with primers specific for
methylated CpG sites and the U lane with primers specific for unmethylated CpG sites. The positive control is obtained from in vitro methylated
DNA and the negative control from peripheral blood of a healthy donor. (B) The pyrogramm of one sample covers 12 CpG sites (grey bars) in
the promoter region of UCHLT with a methylation rate between 35 and 55% (mean 48%). Nucleotides confirming complete bisulfite conversion
are shown in yellow bars. (C) The pyrosequencing of 20 normal and 20 prostate cancer samples revealed a significant higher rate of methylation
for the cancer tissue. 18 tumour samples show a methylation density in the promoter region of UCHL1 clearly higher than the normal prostate
tissue.

showed a mean methylation of 41.4% (10% - 69%) (Fig- samples revealed a methylation below the highest
ure 2C). The methylation rate was constant for the 15  methylation of normal prostate tissue. According to the
CpG sites analyzed without significant differences high sensitivity with a low specificity of MSP, we consid-
between single CpG sites. Only 2 prostate cancer tissue ered pyrosequencing with quantification of the
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methylation rate as the method of choice for the distinc-
tion between normal and tumour tissue.

Expression of UCHL1 in PCa cell lines

To analyze expression of UCHLI in PCa cell lines, we
performed semi-quantitative RT-PCR and Western blot-
ting on LNCaP and DU145 cells to investigate the role of
expression of UCHLI in prostate cancer initiation and
progression. RT-PCR and Western blotting showed
abundant expression of both UCHL1 mRNA and protein
in DU145 cells, but absent expression in LNCaP cells. As
a house keeping gene RPLPO levels were measured in
RTPCR for normalization of cDNA prepared from
mRNA and anti-GAPDH antibody were used as a loading
control for western blotting (Figure 3). This result is in
line with published literature by Leiblich et al. [23]
showed that UCHLL is silenced by promoter methylation
in LNCaP cells. Therefore we used LNCaP as model to
study function of UCHL1 in PCa development.

To assess the physiological effects of UCHL1 expres-
sion on prostate cancer cells, UCHL1 protein producing
constructs were generated and the target gene was
transferred into LNCaP cells by retroviral transduction.
The expression of UCHL1 mRNA and protein in
LNCaP cells were verified by RTPCR and western blot-
ting (Figure 3) using an anti-UCHL1 antibody for wes-
tern blotting. The UCHLI transduced cells showed clear
overexpression of UCHL1 mRNA and protein.

UCHL1 activity on LNCaP cell proliferation, cellular
senescence and anchorage-independent growth

Since downregulation of UCHL1 is a prominent feature
of primary prostate cancer cells, we assumed a crucial
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role for UCHL1 as a potential tumour suppressor.
Indeed, exogenous overexpression of UCHL1 in LNCaP
cells had a significant impact on in vitro growth capacity
(Figure 4A) and reduced proliferation of these cells
compared to corresponding mock transduced control
cells. More strikingly, UCHL1 overexpression sup-
pressed anchorage-independent proliferation in a soft
agar assay (Figure 4B-C). Whereas LNCaP cells trans-
duced with the mock vector only gave rise to numerous
colonies, UCHL1 overexpression significantly suppressed
anchorage-independent growth and reduces the trans-
formed phenotype of LNCaP cells. To unveil the puta-
tive mechanisms that impacted on proliferation and
transformation capacity, we investigated apoptosis and
senescence in UCHL1 overexpressing cells. An increased
rate of apoptosis could not be observed (data not
shown). Therefore, we assessed the endogenous level of
3-galactosidase as an indicator for senescence in LNCaP
UCHL1 expressing cells. Indeed, we could observe more
cells with an increased level of SA-f3-gal in cells overex-
pressing UCHL1 compared to the respective mock con-
trol cells, suggesting that the overexpression of UCHL1
leads to the induction of cellular senescence in LNCaP
prostate cancer cells (Figure 4D-E). These results sup-
port the hypothesis of UCHL1 as a tumour suppressor
in the pathogenesis of prostate cancer, in parts by indu-
cing senescence as a permanent cell cycle arrest.

UCHL1 overexpression leads to K63 specific de
ubiquitination in LNCaP cells

In order to evaluate, whether UCHLI activity regulates
addition and/or removal of ubiquitin to proteins in
LNCaP cells, ubiquitination of proteins in UCHL1

RT-PCR

WB

LNCaP LNCaP

LNCaP DU-145 Puro UCHLA1
_ “—— | UCHL1
A PO s | G APDH

panel) and Western blotting (lower panel) were performed respectively.

Figure 3 UCHL1 expression in wild type and stably transfected prostate cancer cell lines. UCHLT mRNA (upper panel) and protein (lower
panel) are abundantly expressed in DU145, while LNCaP cells show an absence of UCHL1 expression. The housekeeping gene RPLPO for RT-PCR
and GAPDH for Western blotting confirm equivalent loading of samples. Exogenous stable expression of UCHL1 is obtained in androgen
dependant prostate cancer cells (LNCaP) by retroviral transduction. For confirmation of expression of UCHLT mRNA and protein, RT-PCR (upper
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positive LNCaP and LNCaP puro cells was tested with
anti-Ubiquitin antibodies. Stable overexpression of
UCHL1 in LNCaP cells did not show any change in the
pattern of ubiquitination of proteins by Western blot
(Figure 5A). Furthermore, to investigate the role of
UCHLI1 on proteasomal activity; we measured chymo-
trypsin-like activity in UCHL1 positive LNCaP and
mock control cells. Chymotrypsin-like activity did not
significantly change with overexpression of UCHLI in
LNCaP cells (Figure 5B). These data indicate that
UCHL1 does not alter ubiquitin levels and proteasomal
activity in LNCaP under baseline conditions. In ubiqui-
tin-proteasome pathway, ubiquitin molecules are linked
together in chains to a protein, are covalently coupled
via an isopeptide bond utilizing the lysine residues of
each ubiquitin. Substrate proteins and are linked to ubi-
quitin using distinct ubiquitin lysine residues at 6, 11,
29, 48 and 63 positions in ubiquitin and influence dis-
tinct cellular events. K48-linked polyubiquitin chains
mainly target proteins for proteasomal degradation,

while K63-linked polyubiquitin regulates protein func-
tion, sub cellular localization, or protein-protein interac-
tions. UCHLLI is described to possess K63 ligase activity
in vitro upon dimerization. Therefore we used anti-
lysine 63-linkage (K63) specific antibodies, to see
whether UCHL1 had any influence on K63 ubiquitin
linkage in LNCaP cells. Interestingly, Western blot
results showed consistent loss of K63 ubiquitylated pro-
teins (Figure 5C). These results together indicate that in
LNCaP cells UCHLI activity may be associated with
regulation of localization, function and interaction of
proteins to control various cellular events, rather than
regulation of ubiquitin levels.

UCHL1 suppress anchorage- independent growth and cell
proliferation via AKT phosphorylation and stabilizing p53
levels

We therefore further investigated how UCHL1 regulates
LNCaP cell growth in-vitro. As we observed in soft agar
assays, UCHL1 significantly suppressed anchorage
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Figure 5 In LNCaP cells exogenous expression of UCHL1 influences K63 ubiquitylation. (A) Representative Western blots against mono-
and polyubiquitin from LNCaP cells stably expressing UCHLT or empty vector as control. GAPDH is used as an internal housekeeping protein to
ensure equal loading of samples. (B) Measurement of chymotrypsin like activity of the proteasome in UCHL1 positive or mock LNCaP cells
served as control. The results are expressed as the mean + SD from 3 independent experiments each in triplicates. (C) UCHL1 overexpression in
LNCaP cells reduces the level of K63 chain specific ubiquitylated proteins detected by Western blotting with anti K63 linked polyubiquitin

independent growth. The ability of anchorage indepen-
dent growth of tumour cells has been linked to the PI3
kinase/AKT pathway and is associated with the meta-
static potential of cancer cells [24]. Our results show
significant reduction in the phosphorylation of AKT at
S473 in UCHL1 positive LNCaP cells compared to the
mock control cell line (Figure 6A). However, the key
mechanism involved in UCHL1 mediated growth sup-
pression needs to be investigated. p53 is an upstream
regulator of the PI3 kinase/AKT pathway via PTEN in
various cancers. Western blots again indicated that
UCHL1 overexpression in LNCaP cells induces accumu-
lation of p53 whereas MDM2 protein is decreased com-
pared to mock control cell line (Figure 6A). This
observation is not correlated positively with real time
PCR results showing no significant changes in p53 (P-
value = 0.82) and MDM2 (P-value = 0.78) mRNA levels
in UCHL1 positive cells (Figure 6B-C). Together, these
results indicated that the UCHLI play a key role in reg-
ulation of stability of p53 and MDM2 by deubiquitina-
tion but not at transcriptional level expression.
Interestingly, from the known p53 network, p14ARF is
also significantly upregulated in UCHLI positive cells.
These results are consistent with the previous findings
that the tumour suppressor p14ARF inhibits p53 degra-
dation via inhibition of E3 ligase activity of MDM2
which directs MDM2 for degradation by proteasome. As
reported previously, increase in p53 protein levels in
UCHLI1 positive LNCaP cells may regulate cyclin depen-
dant kinase inhibitor p21. Exogenous expression of
UCHL1 in LNCaP cells showed no effect on the expres-
sion of p21, which indicates that the regulation of p53
has no effect on p21 stability (Figure 6A). Taken
together, it appears that UCHL1 suppresses the growth

of LNCaP cells via stabilization of tumour suppressor
protein such as p53 and by inactivating AKT/PKB
pathway.

Exogenous expression of UCHL1 results in accumulation
of p27Kip1 and suppressed Cyclin A expression
Previously it has been shown that UCHLI interacts with
p27Kip1, a cyclin dependant kinase inhibitor. P27Kip1
mediates cell cycle arrest at G1 results in senescence of
Cells. To understand whether LNCaP growth arrest and
senescence was mediated over an effect of UCHL1 on
p27Kipl stability, we have measured p27Kip1 levels
using anti- p27Kipl antibody in UCHLI positive cells.
Immunoblotting with whole cell lysate revealed that
p27Kipl protein levels were significantly elevated in
consequence of UCHL1 overexpression in LNCaP pros-
tate cancer cells lines where as the amount of p27Kipl
mRNA was not significantly correlated with protein
levels (Figure 7A-B). To investigate the consequences of
elevated p27Kipl by UCHL1 protein in LNCaP cells, we
extended our analysis by measuring cell cycle proteins.
As described before, p27Kip1 blocks Cyclin E dependant
transactivation of Cyclin A. We have measured the
expression of Cyclin A in UCHL1 positive cells and our
results clearly demonstrate that elevated levels of
p27Kipl in LNCaP cells due to overexpression of
UCHLI significantly reduced Cyclin A expression on
protein level (Figure 7A). mRNA was not significantly
changed in UCHLI expression LNCaP cells (Figure 7C).
To understand the impact of UCHL1 accumulation on
cell cycle control of LNCaP cells, we examined the
expression and phosphorylation of retinoblastoma pro-
teins (Rb) predominantly regulated by p21 as well as
Cyclin E and Cyclin D1 proteins associated with
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p27Kipl. Notably, we found no change in levels of
either total or phosphorylated Rb in cells with a
p27Kipl accumulation. Interestingly, Cyclin D1 which
promotes Cyclin A expression is significantly reduced
on protein level due to high p27Kipl activity in UCHL1
overexpressing LNCaP cells where as Cyclin E remains
unchanged (Figure 7D). In line with Cyclin A the
mRNA of Cyclin D was not significantly regulated in
UCHLI overexpressing cells. (Figure 7E).

These results together suggest that the accumulation
of p27Kipl as a result of UCHL1 overexpression might
interfere with cell cycle progression and thus influence
cell growth.

4 Discussion

UCHL1 downregulation in PCa is associated with
epigenetic modifications

In the present study, we analyzed the mechanism of
UCHLI downregulation in PCa and the role of UCHL1
as tumour suppressor in LNCaP prostate cancer cells.
Our proteomic analysis of prostate tissue samples high-
lighted significant downregulation of UCHL1 in cancer
compared to the surrounding benign tissue [3]. In the
current study, we analyzed whether downregulation of
UCHLLI in PCa is due to promoter hypermethylation.
Methylation specific PCR and pyrosequencing results
demonstrated that UCHL1 suppression in primary

prostate tumour tissues is linked to its promoter DNA
methylation. This hypermethylation is correlated with
low UCHLI transcripts and protein levels in cancer
compared to adjacent benign prostate epithelium.

UCHL1 has tumour suppressor role PCa via p53
accumulation

Our results have shown that UCHL1 inhibited LNCaP
cell growth. Furthermore, UCHLI significantly sup-
pressed anchorage independent growth in soft agar. In
cancer cells, anchorage independent growth and the
metastatic potential have been linked to the AKT/PI3
kinase pathway [24], that the tumor suppressor p53 as
an upstream regulator of AKT/PI3 kinase pathway
directly suppress PTEN a tumour suppressor and nega-
tive regulator of AKT pathway [25-27]. In our results
we found that there was a significant increase in p53 in
UCHLI1 positive cells, but no influence of UCHL1 on
PTEN expression (data not shown). It is therefore intri-
guing to speculate that the observed suppression of
tumorigenesis by UCHL1 is due an effect of p53 on acti-
vated Akt/PI3 kinase pathway regardless of PTEN
expression. In p53 signaling pathway, the tumor sup-
pressor pl4ARF inhibits the E3 ligase MDM2 activity,
which in turn inhibits p53 degradation. Furthermore
P53 can act as a transcription factor attenuates MDM?2
function by suppressing transcription of MDM2 [28,29].
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Figure 7 Effects of overexpression of UCHL1 on the expression of cell cycle related proteins. (A) Representative Western blots against
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B-actin were detected by Western blotting analyses using corresponding antibodies in UCHL1 overexpressing LNCaP cells. (E) Quantitative RTPCR
revealed no statistically significant change of Cyclin D mRNA level in UCHL1 positive cells. The results are indicated as mean + SD of 3

Our results also show that p14ARF is upregulated in
UCHLI1 positive cells possibly explaining the observed
suppression of MDM expression.

Therefore we would speculate that UCHL1 controls
p53 activity indirectly via multiple mechanisms.
Together, these finding are in line with the results of
Tokumaru et al. describing tumor suppressor function
of UCHL1 in head and neck squamous cell carcinoma
[30]. The cyclin dependent kinase inhibitor p21 is the
major transcriptional target of p53 and is required for
p53 dependant cell cycle arrest [31-33]. p21 regulates
cell cycle progression at the S phase by direct inhibition
of cyclin E/CDK2 and cyclin D/CDK4 complexes activ-
ity. We could not demonstrate an influence of p53 on
the expression of p21 in UCHL1 positive LNCaP cells.
We therefore suppose that the accumulated p53 targets
AKT phosphorylation and thereby cell survival, rather
than p21 in LNCaP cells. Consistent with our observa-
tion that p53 and pl4ARF are upregulated in UCHL1

overexpressing cells, we detected a p27Kipl upregula-
tion and a senescent phenotype by using the SA-3-gal
assay. The importance of p27kipl stabilisation for
induction of a senescent phenotype in murine prostatic
intraepithelial neoplasia has been shown by Majumder
et al [34]. Furthermore, p53 seems to be involved in
radiation-induced senescence [35]. Therefore, we pro-
pose that UCHL1 might represent a regulator of senes-
cence induction in prostate carcinogenesis.

UCHL1 exhibits influence on cell cycle regulator proteins
via p27Kip1

UCHL1 may be involved in multiple cellular processes.
In lung cancer cells, UCHLI interacts with p27Kip1l
[36]. There is an inverse relationship between UCHL1
and p27Kipl expression in many cell lines [37]. p27Kip1
is a multifunctional protein involved in regulation of cell
proliferation and apoptosis [38]. In our hands we
observed that UCHL1 overexpression positively
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regulates p27Kip1 levels in LNCaP cells. However, the
precise role of UCHLI in regulation of p27Kipl is not
well described so far. Earlier reports showed evidence
that p27Kip1 is degraded through the ubiquitin-protea-
some pathway resulting in decreased cellular concentra-
tion [39]. Caballero et al. demonstrated that UCHL1
might be involved in nuclear localization of p27Kip1l
mediated via JAB1 in lung cancer cells [36].

To get more insights about the role of UCHLI via
p27Kipl accumulation, we investigated the mechanism
by which proliferation and anchorage-independent
growth is suppressed by the UCHL1 in LNCaP. To inhi-
bit cell cycle progression, p27Kipl needs to be located
in the nucleus and interacts with cyclin dependant
kinases (CDKs) and/or cyclins to block their activity. As
a result, activation of Rb by phosphorylation is blocked
and the Rb protein binds to E2F resulting in a positive
regulation of cell cycle progression. Guandagno et al.
have shown that the expression of cyclin A is critical for
anchorage-dependent progression of the cell cycle in
NIH3T3 and NRK normal rodent fibroblast cell lines
and exogenous expression of cyclin A induced ancho-
rage-independent growth in NRK cells [40]. These find-
ings are consistent with our result, indicating that the
downregulation of Cyclin A is correlated with the sup-
pression of anchorage-independent growth of LNCaP
cells by UCHLI.

It has also been reported that p27Kip1 inhibits the
expression of Cyclin A. p27Kip1”~ knockout in mice is
associated with increased cell proliferation due to defi-
cient Cyclin D inhibition [41]. Consistent with these
findings we could also demonstrate downregulation of
Cyclin D1 in UCHL1 positive LNCaP cells. One of the
best known substrates of cyclin D is the Rb tumor sup-
pressor protein. Phosphorylation of Rb is performed by
Cyclin D/Cyclin E and Rb remains phosphorylated
throughout S, G2 and M phases during cell cycle pro-
gression. Zhu et al have shown that phosphorylation of
the Rb protein is anchorage-dependent in NIH3T3 and
human fibroblast cells. However, in the same report
they have also shown convincingly Rb independent reg-
ulation of Cyclin A expression in NRK suspension cul-
tures [42]. In our findings we observed that both the
expression of Rb or phosphorylation of Rb and Cyclin E
expression were not affected by UCHL1 expression in
LNCaP cells. Therefore we assume that downregulation
of cyclin A in p27Kipl accumulated LNCaP cells by
UCHL1 overexpression is caused by an Rb-independent
pathway.

In summary, we showed that ICHLI is suppressed in
prostate cancer patients by promoter hypermethylation.
Restoration of UCHL1 in LNCap cells in which UCHLI
silenced by its promoter methylation could activate p53
signaling axis via reduced AKT phosphorylation and
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accumulation of p27 kipl cell cycle inhibitor there by
suppressing cellular growth (Figure 4). Thus, our study
supplement substantially the current knowledge of the
tumor suppressor functions of UCHL1 in cancer pro-
gression and postulate that /CHLI hypermethylation
could be a potential molecular marker for prostate can-
cer need to be evaluated in large number of patient
cohort.
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