Cheung et al. Molecular Cancer 2014, 13:184
http://www.molecular-cancer.com/content/13/1/184

(. MOLECULAR
CANCER

~-b

RESEARCH Open Access

miR-31 is consistently inactivated in EBV-associated
nasopharyngeal carcinoma and contributes to its
tumorigenesis

Chartia Ching-Mei Cheung', Grace Tin-Yun Chung', Samantha Wei-Man Lun', Ka-Fai To"?, Kwong-Wai Choy?,
Kin-Mang Lau', Sharie Pui-Kei Siu', Xin-Yuan Guan®, Roger Kai-Cheong Ngan®, Timothy Tak-Chun Yip®,
Pierre Busson®, Sai-Wah Tsao” and Kwok-Wai Lo'?"

Abstract

Background: As a distinctive type of head and neck cancers, nasopharyngeal carcinoma (NPC) is genesis from the
clonal Epstein-Barr virus (EBV)-infected nasopharyngeal epithelial cells accumulated with multiple genetic lesions.
Among the recurrent genetic alterations defined, loss of 9p21.3 is the most frequent early event in the tumorigenesis
of EBV-associated NPC. In addition to the reported CDKN2A/p16, herein, we elucidated the role of a miRNA, miR-31
within this 9p21.3 region as NPC-associated tumor suppressor.

Methods: The expression and promoter methylation of miR-31 were assessed in a panel of NPC tumor lines and
primary tumors. Its in vitro and in vivo tumor suppression function was investigated through the ectopic expression
of miR-317 in NPC cells. We also determined the miR-31 targeted genes and its involvement in the growth in NPC.

Results: Downregulation of miR-31 expression was detected in almost all NPC cell line, patient-derived xenografts
(PDXs) and primary tumors. Both homozygous deletion and promoter hypermethylation were shown to be major
mechanisms for miR-31 silencing in this cancer. Strikingly, loss of miR-37 was also obviously observed in the dysplastic

lesions of nasopharynx. Restoration of miR-31 in C666-1 cells inhibited the cell proliferation, colony-forming and
migratory capacities. Dramatic reduction of in vitro anchorage-independent growth and in vivo tumorigenic
potential were demonstrated in the stable clones expressing miR-31. Furthermore, we proved that miR-31
suppressed the NPC cell growth via targeting FIHT and MCM_2.

Conclusions: The findings provide strong evidence to support miR-31 as a new NPC-associated tumor suppressor
on 9p21.3 region. The inactivation of miR-31 may contribute to the early development of NPC.
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Background

MicroRNAs, about 21-25 nucleotides in length, are en-
dogenous non-coding RNAs that regulate gene expression
negatively at post-transcriptional level [1,2]. Increasing
evidence indicates that microRNAs can contribute to
the tumorigenesis process by modulating various cellular
mechanisms, such as proliferation, apoptosis, and cell
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migration and invasion. To date, a number of host- and
virus-encoded microRNAs were demonstrated to be
aberrantly expressed and play important roles in the
development of human cancers [3,4].

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr
virus (EBV)-associated epithelial malignancy that is preva-
lent in Southern China and Southeast Asia. In addition to
EBV infection, a number of recurrent genetic changes
contribute to NPC multi-step tumorigenesis. Through
comprehensive investigation of a panel of precancerous
lesions and normal nasopharyngeal epithelia, we have
previously demonstrated the occurrence of allelic loss
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on chromosome 3p and 9p prior to EBV latent infection
during the initiation of NPC [5,6]. Inactivation of the
key tumor suppressor genes on these regions such as
RASSFIA (3p21.3) and p16/CDKN2A (9p21.3) were proven
to be critical events in NPC tumorigenesis. Recently,
we investigated the miRNA profiles of a panel of EBV-
associated NPC tumor lines and identified several differ-
entially expressed miRNAs that may contribute to NPC
development. Among the aberrantly expressed miRNAs
identified, the miR-31, which is located on the common
homozygous deletion region on chromosome 9p21.3 and
adjacent to the p16/CDKNZ2A locus, is consistently down-
regulated in NPC [7]. Since down-regulation of miR-31
contributes to the progression of prostate, ovarian, and
breast cancers, we hypothesize that miR-31 is one of the
critical NPC-associated tumor suppressor on chromosome
9p and may involve in the early development of this cancer
[8-10]. Herein, we revealed the mechanisms involved in the
inactivation of miR-31, identified the direct targets and
demonstrated its tumor suppressor function in NPC cells.
Our study provides strong evidence that inactivation of
miR-31 in the 9p21.3 tumor suppressor loci is an important
event in NPC tumorigenesis.

Results

Consistent down-regulation of miR-31 in NPC

In our earlier studies, homozygous deletion of 9p21.3
including the CDKN2A/CDKN2B loci was commonly
found in EBV-associated NPC [11]. In addition to the
well-known tumor suppressor function of p16/CDKN2A,
it is suspected that inactivation of other candidate genes in
this region may also contribute to the NPC tumorigenesis.
MiR-31, which is at 0.5 Mb telomeric to the CDKN2A/p16
loci, was shown to function as tumor suppressor micro-
RNA in various human cancers [7,12,13]. Using microRNA
microarray, we examined the microRNA expression profiles
in the immortalized nasopharyngeal epithelial cell NP69
and a panel of NPC cell line and patient derived xenografts
(PDXs). Hierarchical clustering with average linkage al-
gorithm was performed and a heat map of the expression
profiles was generated (Additional file 1: Figure S1).
Among the 115 differentially expressed miRNAs identi-
fied, we noted that the miR-31 expression was highly
reduced in 5/6 NPC xenografts. This preliminary finding
suggested the inactivation of miR-31 is common in this
EBV-associated cancer. To confirm the frequent down-
regulation of miR-31 in NPC, we have assessed its
expression in a panel of tumor lines and microdissected
primary tumors by stem-looped qRT-PCR. As shown in
Figure 1A, miR-31 expression was highly reduced in 5 of 6
(83.3%) EBV-positive xenografts and in all 37 (100%)
primary tumors (Figure la and 1b). Down-regulation of
miR-31 was also detected in the EBV-positive NPC cell
line C666-1 which is originally derived from xeno-666.
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Abundant miR-31 transcription was only detected in the
C15 xenograft which expresses EBV-encoded LMP1
protein (Figure la). In Figure lc, in-situ hybridization
analysis demonstrated the high miR-31 expression in
normal nasopharyngeal epithelia and down-regulation
of miR-31 in the tumor cells of representative cases.
Importantly, down-regulation of miR-31 was also obvi-
ously detected in 2/4 dysplastic lesions which we collected
in our previous studies (Figure 1d) [14,15]. Our finding
not only revealed the consistent inactivation of miR-31 in
EBV-associated NPC, it also provided first evidence for
the involvement of miR-31 down-regulation in the early
development of NPC.

Homozygous deletion and promoter hypermethylation

of miR-31

Homozygous deletion of p16/CDNK2B locus on 9p21.3
was previously reported and identified by aCGH analysis
in 3 PDXs (xeno-2117, xeno-1915 and xeno-99186)
(Additional file 2: Figure S2) [11,16]. It is suspected
that the down-regulation of miR-31 in these tumors is
due to complete loss of the miR-31 allele. However,
detailed mapping of the deletion regions by multiple
PCR analysis demonstrated that miR-31 locus was deleted
in only 2 out of 6 xenografts (33.3%; xeno-1915 and
xeno-99186) (Figure 2a). The expression of miR-31 was
regulated by the promoter of its host gene LOC554202
(Figure 2a). Hypermethylation of the LOC554202-associ-
ated 5’'CpG islands can lead to the transcription silencing
of miR-31 [17]. In the 4 NPC tumor lines with miR-31
down-regulation, heavy methylation of the 5CpG islands
was detected by bisulfite sequencing and methylation-
specific PCR (Figure 2b and 2c). Notably, promoter
hypermethylation of miR-31 was commonly found in
the primary tumors (14/16; 87%) (Figure 2b). As shown in
Figure 2d, re-expression of miR-31 and unmethylated al-
lele were detected in the C666-1 cells treated with a DNA
methylation inhibitor, 5-aza-2'deoxycytidine (5-Aza-dC).
The findings indicated that homozygous deletion and
methylation of 5 CpG islands are the major mechanisms
for miR-31 inactivation in NPC.

miR-31 inhibits cell proliferation, viability and migration

in NPC cells

To explore the tumor suppressor function of miR-31 in
NPC cells, the C666-1 cells, in which miR-31 tran-
scripts are downregulated, were transiently transfected
with miR-31 mimic or corresponding control. By WST-1
assay, we demonstrated that ectopic expression of miR-31
significantly inhibited the cell proliferation and viability of
C666-1 cells (Figure 3a). The miR-31 expression also
suppressed the clone formation ability of NPC cells.
The number of colonies significantly reduced by 66% in
miR-31-transfected C666-1 when compared to that of
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Figure 1 Consistent down-regulation of miR-37 in NPC. By quantitative RT-PCR, loss or high reduction of miR-31 expression was
detected in (a) a NPC cell line, 5/6 xenografts and (b) all 37 primary tumors. The immortalized normal nasopharyngeal epithelial
cell line NP69 and microdissected normal epithelia (Normal 1-3) were included as controls. (c) Representative images of in-situ
hybridization showing the high miR-31 expression in normal nasopharyngeal epithelia and loss of miR-31 expression in the NPC
tumor cells (red arrow) (X400). (d) By in situ hybridization, loss of miR-31 expression was found in 2/4 dysplastic lesions (black

negative control in the colony formation assay (Figure 3b).
By flow cytometry, a significant decrease in the percentage
of C666-1 cells undergoing S-phase in cell cycle was
detected after transient transfection of miR-31 mimic
(Figure 3c). In addition, a decrease of 35% in wound re-
covery area was measured in miR-31-transfected C666-1
when compared to that of negative control (Figure 3d).
This implied that miR-31 expression also inhibited the
migratory capacity of NPC cells.

miR-31 suppresses tumorigenicity in vitro and in vivo

To further explore whether ectopic expression of miR-31
affects anchorage-independent growth in vitro and tumor
growth in vivo, we have established 2 stably transfected
C666-1 cell lines (miR-31#1 and miR-31#2) expressing
different amount of miR31 (Figure 4a). As shown in
Figure 4b, significant suppression in cell proliferation
was confirmed in both two stably-miR-31 expressing
cells. The stably transfected C666-1 cells with miR-31
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Figure 2 (See legend on next page.)
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Figure 2 Inactivation of miR-31 in NPC. (a) Homozygous deletions of miR-31, adjacent markers (=2mb, —1mb, +1mb, +2mb, +5mb) and loci
(LOC402359, CDKN2A/p16, DMRTAT) in EBV-positive NPC tumor lines were detected by PCR. The location of miR-37 and adjacent markers on
chromosome 9p21.3 was shown in the right panel. Homozygous deletions of miR-37 were detected in X1915 and X99186. (b) Methylation status
of 5 CpG islands of miR-37 in NPC tumor lines was examined by bisulfite sequencing. The locations of miR-31 and its host gene LOC554202 were
indicated. Dense methylation of 5'CpG islands were detected in the C666-1 cell lines and 3 xenografts (C17, X2117 and X666). No methylation were
observed in the normal control, NP&9. (c) Detection of promoter hypermethylation of NPC cell lines and primary tumors by MSP. M: methylated allele;
U: unmethylated alleles. (d) The restoration of miR-31 transcription in 5-aza-2'deoxycytidine (5-Aza-dC) treated C666-1 was detected by quantitative
RT-PCR analysis. By MSP, unmethylated alleles of miR-37 were found in the 5-Aza-dC-treated C666-1 cells.
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Figure 3 Effect of miR-31 expression on cell growth and migration of NPC cells. (a) By WST-1 assay, significant growth inhibition was detected
in the C666-1 cell transfected with miR-37 when compared with negative control. Data shown were taken from 5 independent experiments with
mean + SEM. (b) Expression of miR-31 significantly inhibited the colony-forming ability of C666-1 cells (**p < 0.01). Representative photographs
of colonies formed in each treatment were shown. Colonies formed were stained in blue by Giemsa stain. (c) Flow cytometry analysis revealed
significant reduction of the percentage of cells undergoing S phase in miR-31-transfected C666-1 cells (*p < 0.05). (d) By wound healing assay,
significant reduction of the migration ability of miR-37-expressing C666-1 (**P < 0.01). Representative photographs of wound healing progress
of C666-1 cells transfected with negative control and miR-31 at O hour and 30 hours were shown.
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considered significant (*p < 0.05, **p < 0.01, ***p < 0.001).

Figure 4 Stable ectopic miR-31 expression suppresses the anchorage-independent growth and in vivo tumorigenicity of NPC cells. (a)
Expression of miR-31 was demonstrated in the stably miR-31-transfected C666-1 cell clones (miR31#1 and miR31#2) by quantitative RT-PCR. The
immortalized normal nasopharyngeal epithelial cells NP69 was included as control. (b) In the two stably miR-37-transfected NPC cell clones (miR314#1
and miR31#2), obvious growth inhibition was demonstrated by WST-1 assay. (c) Stable expression of miR-37 inhibits the anchorage-independent
growth of C666-1 cells. Obviously reduction in number and size of colonies in the stable miR-37-expressing cells were demonstrated by soft agar assay.
(d) /n vivo tumorgenic assay in nude mice showed that tumors formed in the sites implanted with C666-1 cells expressing miR-31 (miR-31#1
and miR-31#2) were consistently smaller than those implanted with vector controls. Photographs showing the nude mice (upper row) inoculated with
stable clones (vector, miR-31 #1, #2) and tumors extracted (bottom row) on day 38 after inoculation were also shown. Four nude mice were used in
the experiment and data was shown with mean + SEM. Student-t test was used for statistical significance, with a p-value of less than 0.05 was

showed obvious repression of anchorage-independent
growth. The cells expressing miR-31 displayed much
fewer and smaller colonies in the soft agar compared
with controls (Figure 4c). To investigate the effect of
miR-31 on in vivo tumor growth, the stably miR-31-ex-
pressing C666-1 cells and controls were subcutaneously
injected into nude mice. As shown in Figure 4d, tumor
growth by miR-31-expressing cells was significantly
inhibited when compared to those transfected with
control vector. Notably, the stronger inhibitory effects
on in vitro and in vivo tumor growth were found in the
miR-31#2 clone which expressed higher level of miR-31.
Our study demonstrated a dose-dependent tumor suppres-
sor effect of miR-31 in NPC cells.

MCM2 and FIH1 as target of miR-37 in NPC

To investigate the mechanism by which miR-31 suppressed
the tumor cell growth in NPC, we validated a number of
candidate targets of miR-31 which are reported previously
or predicated by the TargetScan and miRanda database.
We found that miR-31 expressed did not inhibit the ex-
pression of NIK, E2F2, RDX, RhoA, MCM?7 in C666-1
cells (Additional file 3: Figure S3). Only FIH1 and MCM2
expression was obviously repressed by the miR-31 in NPC
cells (Figure 5a). Overexpression of these two proteins
was commonly found in the NPC tumor lines (Additional
file 4: Figure S4). By luciferase reporter assay, FIH1 and
MCM2 were further confirmed to be direct targets of
miR-31 in C666-1. The binding of miR-31 to the 3’ UTR
of these genes markedly inhibited luciferase activity
(Figure 5b). As shown in Figure 5, miR-31 highly sup-
pressed the expression of MCM2 and FIH1 in NPC cells.
The finding confirmed FIHI and MCM?2 are direct targets
of miR-31 in NPC. MCM2 is a well-known component of
the minichromosome maintenance (MCM) proteins 2-7
complex which plays crucial roles in DNA replication
licensing. The important role of MCM2 in tumorigenesis
has also been demonstrated in our previous report [18]. In
this study, we also knocked down the expression of
MCM2 in NPC C666-1 cells by siRNAs (Figure 6a).
Significant growth inhibition of the C666-1 cells with
MCM2 depletion was observed (Figure 6b). It indicated

that miR-31 may modulate NPC cell growth via repressing
MCM?2 expression. To further explore whether FIH1 is
the target associated with the tumor suppressor function
of miR-31, we knocked down the expression of FIHI by
siRNAs in C666-1 cells and assessed its effects on growth
inhibition (Figure 7a). As shown in Figure 7b, by WST-1
assay, the proliferation of C666-1 cells was significantly
inhibited by the treatment of siRNAs targeting FIHI. Fur-
thermore, we also found that FIHI knockdown enhanced
Ser15 phosphorylation of p53 and up-regulated p21 ex-
pression (Figure 7c). The finding confirmed FIH1 function
in the suppression of p53 activity as reported previously
[19]. Since a majority of NPC contains the wild-type p53,
down-regulation of miR-31 is believed to be an important
mechanism for impairing p53 tumor suppressor function
in this EBV-associated cancer.

Discussion

NPC is a distinctive type of head and neck cancer which is
consistently associated with EBV infection and prominent
lymphoplasmacytic infiltration. Based on the studies
on premalignant lesions and invasive cancers, we have
proposed a model of NPC tumorigenesis, in which EBV
infection and inactivation of multiple tumor suppressors
on chromosomes 3p and 9p play crucial roles in the initi-
ation process. The inactivation of RASSFIA on 3p21.3 was
shown to be an early event in NPC development [20]. On
chromosome 9p, we have previously demonstrated the
consistent inactivation of p16 on 9p21.3 in the primary
tumors and precancerous lesions. In addition to a loss of
growth inhibitory effects, p16 inactivation predisposed
nasopharyngeal epithelial cells to persistent EBV latent
infection [15]. miR-31 is a cancer-associated microRNA at
0.5 Mb telomeric to the p16 locus and commonly deleted
in various human cancers including melanoma, mesotheli-
oma and urothelial carcinoma [7,21,22]. In this study, we
clearly demonstrated that miR-31 is consistently inacti-
vated in NPC by either homozygous deletion or promoter
methylation. As shown in the xenografts, both miR-31
and p16 loci are located in the common homozygous de-
letion region of NPC (Figure 2a). Notably, loss of miR-31
expression was also detected in the pre-invasive lesions
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Figure 5 miR-31 suppresses FIH1 and MCM2 expression in NPC cells. (a) Protein expression of FIH1 and MCM2 proteins were reduced in the
C666-1 cells transfected with miR-31 when compared with controls (Right panel). By gRT-PCR, no significant changes of FIH1 and MCM2 transcripts
were found in the miR-31-transfected C666-1 cells (Left panel). (b) Luciferase reporter assay showing the effects of miR-37 on 3’ untranslated region
(3'UTR) of FIHT and MCM2 mRNA. Luciferase activity was normalized by the renilla luciferase control. The binding of miR-31 on 3'UTR of FIHT

UTR were also constructed (m

(*p <001, *p <0.001).

and MCM2 significantly decreased the luciferase activity. As a control, reporter vector carrying miR-31 complementary sequence in the 3’
iR-31) which upon binding showed a near complete abolishment of miR-37 luciferase activity. Three independent
experiments with mean + SEM. Student-t test was used for statistical significance, with a p-value of less than 0.05 was considered significant

although the dysplastic lesions are rare and only limited
cases were studied. The findings suggest the crucial role of
miR-31 in early development of NPC.

miR-31 acts as tumor suppressor in several human ma-
lignancies, such as ATL (adult T cell leukemia), gastric
cancer, mesothelioma, and melanoma [7,12,13,23]. Ectopic
expression of miR-31 inhibited in vitro cell proliferation
and in vivo tumor growth in prostate cancers [8,24]. In

our study, miR-31 was found capable of inhibiting NPC
cell proliferation, anchorage-independent growth, cell
migration, and in vivo tumor development. The tumor
suppressor properties of miR-31 in EBV-associated NPC
were confirmed. The phenotypes resulting from the
tumor suppressor miRNA is dependent on its target
genes. Although a number of experimental validated
miR-31 target genes have been reported, it is likely that
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Figure 6 Knock-down of MCM2 inhibits cell proliferation of NPC cells. (a) Expression of MCM2 was knocked down by siRNAs targeting
MCM?2 (sIMCM2#1 and siMCM2#2). The suppression of MCM2 in C666-1 cells was confirmed by quantitative RT-PCR and Western blotting.
(b) WST-1 assay demonstrated that cell proliferation was reduced in C666-1 cells treated with MCM2 siRNAs (sSiMCM2#1 and siMCM2#2).
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knocked down by siRNAs targeting FIHT (siFIH1#1 and siFIH1#2). The suppression of FIH1 in C666-1 cells was confirmed by quantitative RT-PCR
and Western blotting. (b) WST-1 assay demonstrated that cell proliferation was reduced in C666-1 cells treated with FIHT siRNAs (siFIH1#1 and
SiFIHT#2). (c) By Western blotting, increase of phosphorylated p53 and p21 in C666-1 treated with FIHT siRNAs was demonstrated. Knock-down of
FIH1 did not induce the expression of HIFa in NPC cells.

the targets vary from one tumor type to another. Here, = MCM protein complex which is important in the initi-
we confirmed MCM2 and FIH1 as miR-31 target genes  ation of DNA replication. Regulation of MCM2 protein
in NPC cells. The growth inhibitory effect of miR-31 in  expression by miR-31 was recently reported in prostate
NPC via modulating of MCM2 and FIH1 expression was  cancer [8]. Elevated expression of MCM proteins were
demonstrated. MCM2 is one of the six components of detected in both dysplasia and malignancy of various
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tissues [18]. It is believed that deregulation of MCM
proteins contribute to the early stage in carcinogenesis.
In our earlier study, we demonstrated that knockdown
of MCM2 significantly inhibited the cell growth, migra-
tion, and invasion in medulloblastoma [18]. Further-
more, the involvement of MCM2 in regulating filopodia
and stress fiber formation through cdc42 and Rho acti-
vation respectively was shown. Through knocking down
of MCM2 by siRNA, studies demonstrated that the
MCM2 expression impaired the growth of the prostatic
(LNCaP) and colon (HCT116) cancer cell lines [18,25,26].
Similar growth inhibition was also observed in the C666-1
cells with MCM2 depletion. Occurrence of inhibitory phe-
notypes in the miR-31-expressing NPC cells is suspected
to be due to MCM2 repression. Aside from MCM?2, the
suppressive effect of miR-31 on NPC tumor growth was
also via repressing FIH1. Liu et al. first reported miR-31
target FIH1 and thereby activates the HIF pathway in
HNSCC [27]. High FIH1 expression contributes to the de-
velopment of colon carcinomas and melanoma through
the suppression of the p53-p21 axis [19]. Interestingly,
FIH1 overexpression is also sufficient to inhibit differenti-
ation of primary human corneal epithelial keratinocytes
(HCEKSs) [28]. Knocking down of FIH1 suppressed the
cell proliferation in the clear cell renal cell carcinoma
(CCRCC) (RCC10 and RCC4) and colon adenocarcin-
oma (LS174) cell lines [19,29]. Silencing of FIHI results
in the elevation of p53 activity and p21 expression
under normoxia [19]. Here, we also showed an increase
in the expression of phospho-p53 (Serl5) and p21 in the
NPC C666-1 cells with FIHI silencing. Since p53 mutation
is rare in EBV-associated NPC, impaired p53 function
may be associated with high FIH1 expression in this
miR-31 deficient cells. Although miR-31 modulated the
expression of FIH1 in NPC cells, it did not alter HIF1«
expression as shown in head and neck squamous cell
carcinoma (HNSCC) [27]. HIFla expression in the
C666-1 cells was also not affected by knockdown of
FIHI (Figure 7e). The oncogenic function of FIHI in
NPC cells is likely to be HIF-independent. EBV-encoded
LMP1 is capable to upregulate HIF1la through inducing
Siahl E3 ubiquitin ligase which promotes the degradation
of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial
cells [30]. In our study, high miR-31 expression was de-
tected in the xenograft C15 which shows homogeneous
LMP1 expression (Additional file 5: Figure S5). The obser-
vation raises the possibility of interplay between these two
proteins in NPC. Such potential crosstalk of viral protein
and cellular microRNA needs to be further investigate in
future study.

Conclusions
Our study revealed that miR-31 is frequently inactivated
in NPC and its inactivation is believed to be an early
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event in tumorigenesis. miR-31 may target MCM2
and FIHI and thereby inhibit growth of NPC cells.
The significant inhibitory effects of miR-31 on in vitro
and in vivo tumorigenicity implied miR-31 as a poten-
tial therapeutic target for EBV-associated NPC. Our
findings provide important understanding for the
further elucidation on the therapeutic use of miRNA in
NPC.

Materials and methods

Cell lines, xenografts and primary tumors

Six NPC patient-derived xenografts (PDXs) (C15, C17,
xeno-2117 (X2117), xeno-666 (X666), xeno-1915 (X1915),
and xeno-99186 (X99186)), an EBV-positive NPC cell line
(C666-1), and an immortalized normal nasopharynx epi-
thelial cell line (NP69) established by us were used in this
study [31-37]. The study also included a total of 37 NPC
endoscopic biopsies and 3 normal nasopharyngeal epithe-
lium specimens obtained from NPC patients in Prince of
Wales Hospital, The Chinese University of Hong Kong
with informed consent. All NPC specimens were taken
before treatment and confirmed to be non-keratinizing
carcinoma and EBV positive. To enrich the collection
of tumor cells or normal nasopharyngeal epithelial
cells, microdissection was conducted manually on these
samples. DNA and RNA extraction were performed as
previously reported [5]. The patient characteristics are
listed in Additional file 6: Table S1.

To assess the involvement of promoter methylation in
miR-31 silencing, C666-1 cells at 30% confluence were
treated with the demethylation agent 5-aza-2’deoxycy-
tidine (5-Aza-dC; Sigma-Aldrich). Half of the medium
was replaced with fresh complete medium containing
5-Aza-dC every day for 3 days. Cells were harvested on
day 4 for DNA or RNA extraction.

PCR and Quantitative RT-PCR

To delineate the 9p21.3 homozygous deletion region in
NPC xenografts, conventional PCR analysis of the loci in
this region was performed using multiple primer pairs.
The sequences of these primers were listed in Additional
file 7: Table S2.

Total RNA from homogenized xenografts and cell lines
was extracted using TRIZOL"® reagent (Life Technologies).
Conventional qRT-PCR using SuperScript™ III Reverse
Transcriptase (Life Technologies) was performed for the
detection of mRNA expression of target genes as de-
scribed [38]. For determining microRNA expression,
TagMan MicroRNA Assay (Life Technologies) was per-
formed according to the manufacturer’s instructions. The
assays employed pre-designed, target-specific stem-loop
reverse transcription miRNA primers (Life Technologies)
for the mature miRNAs.
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In situ hybridization (ISH) analysis

By using the miRCURY LNA microRNA ISH Optimization
Kit (Exiqon), in situ hybridization was performed to access
the miR-31 expression of on the NPC tumor and dysplas-
tic lesions. Four micron paraffin-embedded tissue sections
were incubated with proteinase-K buffer (Exiqon) at 37°C
for 20 minutes after deparaffinization by xylene and re-
hydration by ethanol. The slides were subjected to
hybridization at 55°C. After washing, the sections were
counter-stained with methyl green.

Bisulfite sequencing and Methylation specific-PCR (MSP)
analysis

For examining the methylation status, the DNA samples
were subjected to bisulfite modification using EZ DNA
Methylation-Gold Kit (Zymo Research). The modified
DNA was subjected to bisulfite sequencing and MSP
analysis as described [39,40]. The primers used were
listed in Additional file 7: Table S2.

miR-31 mimic and siRNA transfection

C666-1 cells were transiently transfected with miR-31
mimic or negative control (Life Technologies). The
transfection was performed according to manufacturer’s
instructions of Lipofectamine 2000 (Life Technologies).
Stably transfected C666-1 cells were generated by G418
selection of the clone transfected with miR-31 expressing
vector and miR-negative control (Origene) for 40 days. To
knock down the expression of FIHI and MCM?2, two in-
dependent specific siRNA duplexes for each gene were
transfected into C666-1 cells, using LipofectAMINE 2000
(Invitrogen, Carlsbad, CA, USA) as described (Additional
file 8: Table S3) [41]. Non-specific control siRNA and re-
agent control were included in the experiments.

Cell proliferation, colony formation and cell migration
assays

Cell proliferation and anchorage-dependent growth of
miR-31-transfected C666-1 cells was determined by per-
forming WST-1 and colony-formation assays as previously
described [34]. The cells were also fixed and stained with
propidium iodide, and then subjected to flow cytometry
analysis using BD FACS Calibur (Becton Dickinson) and
FlowJo software (Treestar). The migration capability was
determined using wound closure assay as described [42].

Anchorage-independent growth and in vivo tumorigenicity
assays

Stably miR-31-transfected C666-1 and control cells were
subjected to the soft agar assay for anchorage-
independent growth in 4 mL medium supplemented
with 0.35% agarose and layered on a 5 mL base of 0.7%
agarose [41]. Experiments were carried out in tripli-
cate. After 40 days, cells were stained with 0.8 mM
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p-iodonitrotetrazolium violet (Sigma-Aldrich). The in vivo
tumorigenicity assay was performed as described pre-
viously [41]. A total of 2x10° C666-1 cells stably
expressing miR-31 or controls were subcutaneously
inoculated into the flank of female BALB/c nude mice
(nu/nu) (4 mice/construct). Tumor growth was monitored
and the tumors were excised at the end of the experiment.
All experimental procedures were approved by the Animal
Ethics Committee of the Chinese University of Hong
Kong.

Luciferase reporter assay

C666-1 cells at 60% confluence in 96-well plate were co-
transfected with miR-31 mimic and reporter plasmid.
After 48 hours of transfection, cells were lysed with 1X
passive lysis buffer (Promega) at room temperature for
20 minutes. The lysates were then transferred to a 96-well
ELISA plate and enzyme activities were assayed using the
Dual Luciferase Reporter Kit (Promega).

Western blotting

By western blotting, the expression of various proteins
in the miR-31 transfected and siRNA-treated NPC cells
was detected. The antibodies against p21 Wafl/Cipl
(Abcam), Phospho-p53 (Serl5) (Abcam), HIFla (Abcam),
FIH1 (Santa Cruz), MCM2 (Santa Cruz) and ACTIN
(Santa Cruz) were used.

Additional files

Additional file 1: Figure S1. Heat map of expression profiles of
differentially expressed miRNAs in immortalized normal epithelial cell line
NP69 and NPC tumor lines. The normalized data was log2-transformed and
each miRNA was scaled among all the samples. Hierarchical clustering with
average linkage algorithm and using one-minus correlation for determination
of similarity was performed to cluster the samples and miRNAs. High
expression is depicted as red while green box represents low expression.

Additional file 2: Figure S2. High resolution array-CGH analysis of
chromosome 9p21 region in three NPC xenografts, (a) xeno-99186, (b)
xeno-1915, and (c) xeno-2117. The locations of miR-31, CDKN2A/p16 and
DMRTAT1 are indicated.

Additional file 3: Figure S3. Ectopic expression of miR-31 did not
suppress the expression of NIK, E2F2, RDX, RhoA and MCM7 in NPC cells.
By western blotting, no significant reduction of several reported miR-31
targets including NIK, E2F2, RDX, RhoA and MCM?7 were detected in
miR-31-transfected C666-1 cells.

Additional file 4: Figure S4. Overexpression of MCM2 and FIH1 in NPC
tumor lines. By western blotting, high MCM2 and FIH1 expression were
detected in C666-1 and the xenografts. Weak expression of both MCM
and FIH1 were found in the immortalized nasopharyngeal epithelial cells
NP69.

Additional file 5: Figure S5. LMP1 expression in NPC cell line and
xenografts. The expression of LMP1 in NPC cell line and xenografts was
determined by quantitative RT-PCR. By immunohistochemistry staining,
LMP1 expression in C15, C17 and xeno-2117 was shown. The assays were
performed as we previously described [43].

Additional file 6: Table S1. The characteristics of NPC patients involved
in this study.
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Additional file 7: Table S2. List of primer sequences used in PCR,
gRT-PCR, MSP and bisufite sequencing analysis.

Additional file 8: Table S3. List of siRNA sequences used in this study.
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