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Abstract

Background: Focal adhesion kinase (FAK) autophosphorylation seems to be a potential therapeutic target but little
is known about the role and prognostic value of FAK and pFAK in epithelial ovarian cancer (EOC). Recently, we
validated a gene signature classifying EOC patients into two subclasses and revealing genes of the focal adhesion
pathway as significantly deregulated.

Methods: FAK expression and pFAK-Y397 abundance were elucidated by immunohistochemistry and microarray
analysis in 179 serous EOC patients. In particular the prognostic value of phosphorylated FAK (pFAK-Y397) and FAK
in advanced stage EOC was investigated.

Results: Multiple Cox-regression analysis showed that high pFAK abundance was associated with improved overall
survival (HR 0.54; p = 0.034). FAK was positive in a total of 92.2% (n = 165) and high pFAK abundance was found in
36.9% (n = 66). High pFAK abundance (36.9% ; n = 66) was associated with either nodal positivity and/or distant
metastasis (p = 0.030). Whole genome gene expression data revealed a connection of the FAK-pFAK-Y397 axis and
the mTOR-S6K1 pathway, shown to play a major role in carcinogenesis.

Conclusion: The role of pFAK-Y397 remains controversial: although high pFAK-Y397 abundance is associated with
distant and lymph node metastases, it is independently associated with improved overall survival.
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Background
Despite increasing knowledge of the etiology and treat-
ment of epithelial ovarian cancer (EOC), ovarian cancer
still has the highest death rate compared to any other
gynecological malignancy [1]. Trying to understand the
biology of ovarian cancer, gene expression analysis and
molecular subclassification is a challenging, but import-
ant strategy [2,3].
So far, no molecular signature for ovarian cancer is

used in a routine clinical setting to classify patients with
EOC according to different prognosis and thus alterna-
tive therapeutic needs. We have recently published a val-
idation study of a previously defined gene signature in
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194 FIGO stage II-IV EOC patients, classifying the pa-
tients into two subclasses with significantly different
prognosis. This analysis revealed the molecular subclas-
sification and peritoneal carcinomatosis as the strongest
independent prognostic factors for progression free and
overall survival (HR 2.87 and HR 4.56, respectively). To
better understand the differences characterizing these
two subclasses, significance analysis of microarrays was
performed whereby functional analysis of differentially
expressed genes identified the focal adhesion pathway as
one of the most deregulated pathways [4]. Interestingly,
the central regulator, the focal adhesion kinase (FAK),
was not among them. Thus, we hypothesized that not
the different expression of the protein but the activation
status (i.e. autophosphorylation) of FAK deregulates this
pathway. This assumption and the fact that the inhibition
of the autophosphorylation of FAK is discussed as thera-
peutic target in many cancer entities including EOC [5],
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leads to the aim of this study: To investigate FAK expres-
sion and pFAK abundance in serous EOC in regard to the
molecular subclassification and patients’ outcome.
FAK promotes cell motility, invasion and proliferation

in normal and cancer cells and was found to be overex-
pressed in a variety of cancer entities [6-8]. The high po-
tential to disseminate within the peritoneal cavity and the
ability of EOC cells to survive as single cells and multi-
cellular spheroids in the ascitic fluid plays an important
role in EOC [9]. Activation of FAK seems to be essential
for anoikis resistance of epithelial cells without matrix
contact. The involvement in anti-apoptotic functions and
the ability to promote epithelial mesenchymal transition
(EMT) has rendered FAK as a potential therapeutic target
to inhibit tumor progression and metastasis [10-12].
Tyrosine 397 of the FAK protein is the main target

of autophosphorylation, leading to the activation of
FAK, and renders pFAK (Y397) as high-affinity partner
for v-src sarcoma viral oncogene homolog (SRC) binding
[13]. A number of inhibitors targeting FAK activation by
blocking Y397-FAK phosphorylation have been investi-
gated in in vivo and in vitro models of colon-, breast-,
squamous-, and pancreatic cancer [14-16]. In vitro studies
showed that the FAK inhibitor PND-1186 (proved by im-
munoblotting of pFAK-Y397) seems to trigger cell apop-
tosis and to inhibit cell motility in breast cancer cells [17].
In mouse models, PND-1186 inhibition of pFAK-Y397
resulted in reduced ovarian cancer tumor growth [17].
Recently, a phase I trial has investigated tolerability and
antitumor activity of PF-00562271 in a heterogeneous
population of 99 patients with advanced solid tumors [18].
Nevertheless, so far only one prognostic study using
immunohistochemistry has focused on pFAK abundance
and one study on FAK expression in human EOC tissues
(n = 60 and n = 79, respectively) [19,20].

Material and methods
Study population
In the frame of an FP6 EU-project named OVCAD
(http//www.ovcad.eu) we coordinated the development
of a comprehensive and well described tumor bank and
database of EOC patients. Within this project, samples from
primary EOC were collected at the University clinics of
Berlin, Hamburg, Innsbruck, Leuven, and Vienna (OVCAD-
consortium) according to standardized operation pro-
cedures. Clinical and histopathological data as well as
follow-up data were collected and cured by experienced
clinicians. Patients presenting with benign ovarian dis-
eases, low malignant potential ovarian cancer, clear-cell
ovarian cancer, FIGO I stage EOC and patients with sec-
ondary malignant diseases were excluded [21]. The study
protocol was approved by the Ethics Committees of the
participating OVCAD partners (EK207/2003, ML2524,
HEK190504, EK366, and EK260). All patients gave pre-
operative written informed consent before enrollment in
the study. Only patients undergoing debulking surgery
and platinum–based chemotherapy were included to the
OVCAD patient cohort. Overall survival (OS) was defined
as the time interval between diagnosis and tumor associ-
ated death and progression free survival (PFS) as the time
between cytoreductive surgery and disease progression or
death. Overall observation time was the time interval be-
tween diagnosis and last contact, defined as death from
the disease or last follow-up. Therapy response to chemo-
therapy was defined according to Chekerov et al. [21].
Patients were classified as non-responder if progression
was diagnosed during treatment or recurrence within six
months after end of first-line chemotherapy. Patients with-
out recurrence, disease progression or death were censored
at the time of last follow-up. Experienced gynecological
oncologists and pathologists from the OVCAD consortium
performed the clinical and histopathological evaluation
and the evaluation of response to first-line treatment. As
the impact of biomarkers on patients’ survival has been de-
scribed to vary between histological subtypes [22] only pa-
tients with serous histology were included, resulting in a
total of 179 serous EOC patients. Tumors were graded as
well (1), moderately (2), or poorly differentiated (3).

Immunostaining
Tissue micro arrays (TMAs) were constructed, whereby
two 1 mm-diameter cores were obtained from each tumor
sample. The immunohistochemistry procedure was
performed essentially as described previously [23].
Antigen heat retrieval was performed using citrate buffer
(Citra-BioGenex no. HK 087-5 K). The sections were
incubated at 4°C overnight with primary antibodies
(FAK, 1:200, monoclonal mouse IgG1, Millipore, cata-
log no. 05–182; pFAK, 1:150, polyclonal rabbit, abcam,
catalog no. ab4803). As positive control, breast cancer tis-
sue sections and kidney tissue sections were used. For nega-
tive control, breast and kidney sections were incubated
in absence of the primary antibody. The specificity of
the pFAK staining was shown by a peptide competition
experiment, i.e. blocking of the primary antibody with
the phosphorylated peptide mouse FAK (phospho Y397,
abcam, catalog no. ab40145) in a molar excess ratio of
200-fold over night (Additional file 1: Figure S1). Samples
were examined by two independent observers blinded for
the clinical data, including a pathologist specialized
in gynecology. FAK expression levels were determined
using a scoring system based on staining intensity (0–3)
and percentage of positive cells. pFAK scoring was
performed as previously described (Fan and Shi, [19]),
including staining intensity and percentage of positive cells.
As both, FAK and pFAK staining were homogenous
within the EOC tissue (Figure 1) percentage of positive
cells did not differ significantly within the analyzed
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Figure 1 Representative immunohistochemical examples of FAK and pFAK-Y397 staining. FAK and pFAK staining intensities: 0,
not stained at all; 1, low staining; 2, moderate staining; 3, strong staining. Pictures were taken using TissueFAXS, objective: ×40
(TissueGnostics, Austria).
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samples. The staining was grouped into FAK low and
pFAK low (0–1; not stained at all and low expression)
as well as FAK high and pFAK high (2–3; moderate to
high expression).
Colocalisation of FAK and pFAK was determined by

immunofluorescence staining of MCF7 and CaOV3 cells.
The fluorescence labeled secondary antibodies, goat anti-
rabbit (1:1,000; Invitrogen, AlexaFluor® 488 fragment of
goat anti-rabbit IgG (H + L)) and goat anti-mouse (1:500;
Invitrogen, AlexaFluor® 568 goat anti-mouse IgG1) were
used besides DAPI for nuclear counterstaining. FAK stain-
ing intensity was designated as FAK expression and pFAK
staining intensity as pFAK abundance throughout the
paper, since phosphorylation is not a result of expression
but a result of posttranslational modification.

Microarray analysis
Microarray analysis of this patient cohort has been pre-
viously published by Pils et al. [4]. In the present study
we tried to further elucidate differentially expressed
genes between pFAK positive and pFAK negative sam-
ples. Microarray data were available from 141 samples
[24]. The parameters pFAK (high, n = 51 vs. low, n = 90)
and FAK (high, n = 132 vs. low, n = 9) were used for
shrinkage and a non-parametric prior was calculated for
the pFAK parameter (allowing non-unimodality). Bayesian
False Discovery Rate (BFDR) values below 10% were
considered as statistically significant [24]. Functional
analysis of differentially expressed genes was performed
with Database for Annotation, Visualization and Integrated
Discovery (DAVID) v6.7 [25]. In addition a gene set en-
richment analysis [26] using the Gene Set Database
MSigDB v3.1 (http://www.broadinstitute.org/gsea/) was per-
formed with the romer function [27] from the R-package
limma v3.14.4 [28].

Data analysis and statistics
Statistical analyses were performed using SPSS soft-
ware version 19 (IBM Corporation, Armonk, New York,
United States). Associations between FAK expression
and pFAK abundance, and between these two factors and
clinicopathological parameters were assessed by T-tests
(age), Chi-square tests, and Fisher’s exact tests as appro-
priate. Results were adjusted for multiple testing by the
Bonferroni-Holm method [29]. Impact on progression
free survival (PFS) and overall survival (OS) was de-
termined by univariate and multiple Cox proportional-
Hazards regression model analyses. To assess the
independent impact of factors not significant in the
univariate Cox regression analyses, all factors were in-
cluded in the multiple models according to suggestions
from Harrell [30] and Sun et al. [31]. Impact on chemo-
therapy response was determined by univariate and
multiple logistic regression models. In addition, the
estimates of the impact of pFAK on overall survival
(i.e. the multiple Cox regression model) corrected for
the clinicopathologic parameters age, stage, grade, re-
sidual tumor load, and peritoneal carcinomatosis on
overall survival was illustrated by survival curves. For
this task all parameters were averaged and pFAK was
used as stratifying variable.
Results
Study population
The characteristics of the 179 patients included in this
study show a typical heterogeneous serous EOC popu-
lation (Table 1 and 2). The clinicopathological charac-
teristics are presented in Table 1 and 2 separately for
the cohorts of pFAK-positive and -negative as well as
FAK-positive and -negative patients, respectively. Mean
age of the EOC patients at time of cytoreductive surgery
was 57.6 years (SD ±12.6 years). The median observation
period was 49 months (range: 1–69 months). Within
the observation period, 82 patients died (45.8%) and
138 patients (77.1%) experienced tumor progression. A
total of 43 patients (25%) did not respond to first-line
chemotherapy.
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Table 1 Characteristics of patients with serous epithelial ovarian cancer broken down by pFAK abundance

n = 179 pFAK-low pFAK-high
Characteristics n = 113 (%) n = 66 (%) p Adjusted p

Age [mean +/− SD] 56.6 [13.2] 59.5 [11.2] 0.135

FIGO 0.010 0.050

II (n = 7) 6 (5.3) 1 (1.5)

III (n = 142) 95 (84.1) 47 (71.2)

IV (n = 30) 12 (6.7) 18 (27.3)

Grade (1 missing) 0.002 0.014

Grade 1&2 (n = 49) 40 (35.7) 9 (13.6)

Grade 3 (n = 129) 72 (64.3) 57 (86.4)

Residual tumor 0.229

no (n = 126) 76 (67.3) 50 (75.8)

> 0 cm (n = 53) 37 (32.7) 16 (24.2)

Peritoneal carcinomatosis 0.126

no (n = 50) 36 (31.9) 14 (21.2)

yes (n = 129) 77 (68.1) 52 (78.8)

Ascites 0.546

</= 500 ml (n = 106) 65 (57.5) 41 (62.1)

> 500 ml (n = 73) 48 (42.5) 25 (37.9)

pNM 0.005 0.030

N0 and M0 (n = 20) 18 (15.9) 2 (3.0)

N1 and/or M1 (n = 111) 64 (56.6) 47 (71.2)

NX or MX* (n = 48) 31 (27.4) 17 (25.8)

P-values and adjusted p-values below 0.05 are shown in bold. *not included in statistics.
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Distribution of FAK expression and pFAK abundance in
EOC
For validation of the specificities of the FAK and the
pFAK-Y397 antibodies immunofluorescence co-staining
experiments were performed on MCF7 and CaOV3 can-
cer cell lines. As presented in Figure 2, both antibodies
clearly stained focal adhesions, which proved the speci-
ficities of the used antibodies. A nuclear expression of
pFAK (compared to only cytoplasmic expression of FAK)
has been described previously by Murata et al. in colon
cancer and breast cancer [32]. In accordance with this
data, staining of MCF7 cells also showed a nuclear stain-
ing of pFAK (Figure 2). However, in the ovarian cancer
cell line CaOV3 and the immunohistochemistry stainings,
nuclear abundance could not be observed, as also de-
scribed by Fan and Shi [19].
Immunohistochemistry of FAK and pFAK revealed

a granular cytoplasmic immunostaining in serous EOC
tumor tissue, typical for focal adhesion staining (Figure 1).
High FAK staining was detected in a total of 92.2%
(n = 165). pFAK was positive in a total of 87.2% and
highly abundant in 36.9% (n = 66) of the samples. As ex-
pected, all the 66 samples showing high pFAK abundance
also expressed FAK (p = 0.002). Comparing expression
and abundance levels, a positive association between FAK
and pFAK could be observed (p < 0.001).

Correlation of pFAK abundance and FAK expression with
clinicopathological parameters
pFAK abundance in grade 3 tumors was significantly
higher than in grade 1&2 tumors (adjusted p = 0.014;
Table 1). High pFAK abundance was also associated with
the presence of either nodal positivity (N1) and/or distant
metastasis (M1) (adjusted p = 0.030; Table 1). No signifi-
cant differences were found for the clinicopathological
parameters age, presence of residual tumor after debulk-
ing surgery, peritoneal carcinomatosis, and ascites (≤ vs >
500 ml). There was no association between FAK expres-
sion and the described clinicopathological parameters
(adjusted p-values > 0.05; Table 2). The hypothesis,
that pFAK abundance might be different between tu-
mors of the previously described [4] molecular subclass 1
and molecular subclass 2 proved wrong. The subclasses
were classified using a published 112 gene set [4]. Neither
the FAK expression status correlated significantly with the
molecular subclasses (p = 0.910), which is in accordance
with previous data [4], nor the pFAK-Y397 abundance
(p = 0.108), which was the initial hypothesis of this study.



Table 2 Characteristics of patients with serous epithelial ovarian cancer broken down by FAK abundance

n = 179 FAK-low FAK-high
Characteristics n = 14 (%) n = 165 (%) p Adjusted p

Age [mean +/− SD] 56.1 [18.7] 57.8 [11.9] 0.645

FIGO 0.150

II (n = 7) 1 (7.1) 6 (3.6)

III (n = 142) 13 (92.9) 129 (78.2)

IV (n = 30) 0 (0) 30 (18.2)

Grade (1 missing) 0.535

Grade 1&2 (n = 49) 5 (35.7) 44 (26.8)

Grade 3 (n = 129) 9 (64.3) 120 (73.2)

Residual tumor 0.082

no (n = 126) 7 (50.0) 119 (72.1)

> 0 cm (n = 53) 7 (50.0) 46 (27.9)

Peritoneal carcinomatosis 0.539

no (n = 50) 5 (35.7) 45 (27.3)

yes (n = 129) 9 (64.3) 120 (72.7)

Ascites 0.869

</= 500 ml (n = 106) 8 (57.1) 98 (59.4)

> 500 ml (n = 73) 6 (42.9) 67 (40.6)

pNM 0.031 0.217

N0 and M0 (n = 20) 4 (28.5) 16 (9.8)

N1 and/or M1 (n = 111) 5 (35.7) 106 (64.6)

NX or MX* (n = 48) 5 (35.7) 42 (25.6)

P-values and adjusted p-values below 0.05 are shown in bold. *not included in statistics.
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Survival analyses
Table 3 shows the impact of pFAK abundance and FAK
expression on OS and PFS in the subgroup of FIGO III/
IV serous EOC (n = 172), together with various clinico-
pathological parameters considered as potential prog-
nostic factors. In univariate analyses, age (in decades)
(hazard ratio [HR] 1.48; p < 0.001), FIGO stage (HR 2.48;
p < 0.001), residual tumor (HR 1.77; p < 0.001), peritoneal
carcinomatosis (HR 3.11; p < 0.001) and the molecular
subclassification (HR 2.51; p = 0.001) affected OS. Like-
wise, PFS was negatively affected by higher age, FIGO IV
stage, residual tumor, peritoneal carcinomatosis, and mo-
lecular subclass.
In addition, the prognostic impact of FAK and pFAK to-

gether with the molecular subclassification in FIGO III
and IV serous tumors was analyzed by multiple Cox re-
gression. In the final model, pFAK (HR 0.54; p = 0.034)
and molecular subclass (HR 2.23; p = 0.004) showed a sig-
nificant independent impact on OS besides age, FIGO
stage, and the presence of peritoneal carcinomatosis. Al-
though residual disease is known as an important clinical
prognostic factor, it was not independently prognostic in
the multiple analysis, because it was outperformed by the
other factors in the model - probably by the very closely
linked factor peritoneal carcinomatosis. For PFS, the
parameters age, stage, and peritoneal carcinomatosis
showed a significant independent impact but neither FAK,
pFAK nor the molecular subclass did (Table 3). Figure 3
shows the univariate impact of pFAK on PFS and OS and
the impact of pFAK, corrected for the relevant clinico-
pathologic parameters, on prognostication of PFS and OS
as estimated survival curves (Figure 3C).
The predictive value of FAK and pFAK abundance,

i.e. influencing response to first-line chemotherapy, was
estimated by multiple logistic regression analyses. The risk
to be a non-responder was neither significantly influenced
by FAK expression, nor by pFAK abundance (HR 1.13,
95% CI [0.29-4.31], p = 0.858; HR 0.73, 95% CI [0.35-1.51],
p = 0.729, respectively).

Gene expression analysis
Using an empirical Bayesian approach for differential
gene expression analysis between pFAK high and pFAK
low abundant samples, 780 ProbeIDs were found to be sta-
tistically (BFDR < 10%) significantly differentially expressed.
An over-representation analysis (602 of the 780 ProbeIDs



Figure 2 Coexpression and distribution of FAK and pFAK-Y397 in MCF7 (breast) and CaOV3 (ovarian) cancer cell lines. An intense FAK
(green) and pFAK staining (red) can be observed within the membrane borders, interpreted as focal adhesions (white arrows). DAPI (blue) was
used for nuclear counterstaining and Phalloidin (white) for staining of F-actin in the cytoplasm. (Pictures were taken with a confocal microscope
LSM 700, Carl Zeiss AG, Germany).
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were annotated in DAVID) revealed the annotation clus-
ters “ribosome” and “RNA processing” as over-represented
(Additional file 2: Figure S2; Enrichment Scores 5.26 and
2.34, respectively) from the differentially expressed genes
and the KEGG pathway “Ribosome” as the most over-
represented single pathway (Additional file 3: Figure S3;
Benjamini-Hochberg corrected, p = 0.00022). A sensitive
Gene Set Enrichment Analysis using 6,769 gene sets and
the romer-function from the limma package revealed 227
down-regulated, 300 mixed (partly down- and partly up-
regulated), and 414 up-regulated gene sets as significantly
deregulated in pFAK high tumors (FDR < 5%; totaling in
862 gene sets; Additional file 4: Table S1; overlap shown in
Additional file 5: Figure S4). Among the up-regulated gene
sets were the “Creighton AKT1 signaling via mTOR” [33],
the “mRNA-binding” and the “microtubule associated
complex” gene set and among the mixed gene set was the
“cell adhesion molecules” gene set. For FAK no such
analysis was performed mainly because there were only
nine FAK negative samples compared to 132 FAK positive
samples, which renders a very unbalanced, thus under-
powered, design.
Discussion
Several approaches to inhibit FAK kinase activity in anti-
cancer therapy have been published but little is known
about the role and prognostic value of FAK and phos-
phorylated FAK (pFAK) in EOC. Moreover, in a previous
study we found that the focal adhesion pathway was the
mostly deregulated pathway in two distinct molecular
subclasses of EOC with different prognosis [4]. As FAK
was not differentially expressed, we hypothesized that phos-
phorylation of FAK could have accounted for the dif-
ference between the two subclasses. Therefore, we found
it important to determine the abundance and prognostic
impact of FAK and especially pFAK-Y397 in a large and
well-described stage II-IV serous EOC patient cohort.
Addressing the prognostic impact of FAK and pFAK-

Y397, we did not find an association between FAK ex-
pression and survival, concluding that tumor expression
of FAK alone is of limited prognostic value in advanced
stage EOC. However, pFAK abundance was associated
with significantly better OS in multiple analysis in this
cohort of FIGO III/IV stage serous EOC patients (HR
0.54 (0.31-0.96), p = 0.034). This finding is surprising in



Table 3 Multiple Cox regression analyses for progression-free and overall survival, both for the proportion of explained
variations of clinicopathologic parameters and FAK as well as pFAK for late stage serous ovarian cancer patients (n = 172)

A. Overall survival

Univariate, n = 172 Multiple, n = 140

Characteristics HR (CI 95%) p HR (CI 95%) p

Age (per decade) 1.48 (1.22-1.79) <0.001 1.35 (1.08-1.69) 0.010

FIGO (IV vs III) 2.48 (1.51-4.06) <0.001 3.35 (1.84-6.09) <0.001

Grade (3 vs 1,2) 1.56 (0.91-2.68) 0.105 1.64 (0.83-3.24) 0.155

Residual tumor (yes vs no) 1.77 (1.12-2.78) 0.014 1.33 (0.78-2.24) 0.292

Peritoneal carcinomatosis (yes vs no) 3.11 (1.64-5.90) <0.001 3.18 (1.43-7.11) 0.005

Yoshihara subclassification (subclass 2 vs 1) 2.51 (1.49-4.24)* 0.001 2.23 (1.29-3.87) 0.004

FAK (high vs low) 0.85 (0.41-1.77) 0.671 0.91 (0.37-2.24) 0.830

pFAK (high vs low) 0.80 (0.50-1.27) 0.343 0.54 (0.31-0.96) 0.034

B. Progression free survival

Univariate, n = 172 Multiple, n = 140

Characteristics HR (CI 95%) p HR (CI 95%) p

Age (per decade) 1.25 (1.08-1.44) 0.003 1.19 (1.01-1.41) 0.042

FIGO (IV vs III) 2.81 (1.83-4.31) <0.001 3.04 (1.83-5.06) <0.001

Grade (3 vs 1,2) 1.32 (0.89-1.97) 0.171 1.01 (0.61-1.66) 0.971

Residual tumor (yes vs no) 1.94 (1.35-2.81) <0.001 1.40 (0.91-2.17) 0.127

Peritoneal carcinomatosis (yes vs no) 2.77 (1.78-4.32) <0.001 3.13 (1.80-5.46) <0.001

Yoshihara subclassification (subclass 2 vs 1) 1.61 (1.09-2.36)** 0.016 1.36 (0.90-2.04) 0.142

FAK (high vs low) 0.87 (0.48-1.58) 0.654 0.89 (0.41-1.95) 0.776

pFAK (high vs low) 1.15 (0.81-1.63) 0.425 1.02 (0.66-1.57) 0.927

P-values and adjusted p-values below 0.05 are shown in bold. *n = 141 (due to the limited availability of microarray data).
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view of previous in vitro data describing that an inhib-
ition of FAK phosphorylation leads to decreased invasion
and migration of 222 and SKOV3 cancer cells [20]. In
mouse models, an inhibition of pFAK-Y397 resulted in
reduced ovarian cancer tumor growth [17].
Reports describing pFAK abundance in human serous

EOC are scarce. To our knowledge, only one previous
study [19] investigated the prognostic impact of pFAK in
EOC. Fan and Shi showed, that pFAK alone was no in-
dependent risk factor for prognosis in EOC but DLC1
negative combined with pFAK positive patients showed
a shorter OS [19]. An explanation for these results
might be the population itself. Fan and Shi included
60 advanced stage EOC patients in their survival ana-
lysis (mean follow-up 36 months) while we analyzed a
larger population of 140 advanced stage EOC patients
of only serous histology (mean follow-up 49 months).
As the majority of associations vary significantly be-
tween the histological subtypes, studies seeking prognos-
tic biomarkers in ovarian cancer should be adequately
accounted for histotype [22]. Additionally the factors re-
sidual tumor load, FIGO III vs IV, and age, commonly
used as correcting factors in multiple analysis, are missing
in this study.
Disagreeing to data indicating pro-tumorigenic and
pro-metastatic effects in vitro and in vivo (mouse) and a
negative impact of high FAK expression on survival in
other tumor entities, we showed that FAK had no influ-
ence on prognosis in advanced stage serous EOC. In
contrast, high pFAK abundance had an independent
positive impact on OS, although we also find a positive
correlation of high pFAK abundance with lymph-node
and/or distant metastasis. However, correcting for the
most relevant clinicopathologic factors, high pFAK abun-
dance is an independent positive risk factor. As described
by Kohn et al. [34] EOC does not follow the classical rules
observed in other cancer entities: cancer spread within the
peritoneal cavity seems to be an early event and of much
more relevance than lymphovascular dissemination result-
ing in distant metastasis. According to clinical data, dis-
tant metastasis does not per se influence prognosis,
therefore oncogenes involved in the process of distant
metastasizing seem to play a minor role in EOC. As
previously published, similar contradictory results were
described for CCNE1 [35] and TRAP1 [23], both pro-
tumorigenic in in vitro analyses but both independent
positive predictors for OS in EOC. EOC patients are usu-
ally diagnosed with disseminated intraperitoneal tumor



Figure 3 Kaplan–Meier estimates of the univariate impact of FAK (A) and (B) pFAK-Y397 and survival curves of the final Cox regression
model (C), corrected for the clinicopathologic parameters age, stage, grade, residual tumor load, peritoneal carcinomatosis, and
molecular subclass (i.e. all of these factors were averaged and pFAK was used as stratifying variable) on progression free and overall
survival. In contrast to Kaplan-Meier plots, where it is common to indicate censored observations, Figure 1C shows survival estimates derived
from the Cox model, as explained in the statistical analysis section. In this plot it is uncommon to graphically show censored observations. pFAK
low, n = 90 versus pFAK high, n = 50 patients.
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spread. This indicates that especially the specific micro-
environment (e.g. highly anaerobic) in the peritoneal cav-
ity has an important influence on recurrence and survival
in this tumor entity.
Comparing FAK expression in human EOC tissues

(n = 5) and normal ovarian tissues (n = 3), an overexpres-
sion of FAK was seen in EOC cells [36]. Addressing
immunohistochemically determined FAK expression in
EOC, Sood et al. described an overexpression of FAK in
the majority of EOC patients (80%, n = 79) [20], compar-
able to our high FAK expression rate of 92.2% (n = 179).
The increased expression and activation of FAK in EOC,
consistent with its role in invasion, cell migration, angio-
genesis and proliferation highlights the clinical importance
of this tyrosine kinase.
To our knowledge, only one other study including 76

EOC patients of serous and non-serous histology, analyzed
pFAK abundance in EOC tissue [19] whereby the pFAK
positive rate was 67.1%, compared to our pFAK positive
rate of 87.2% (staining intensity > 0). We found a signifi-
cant association of high pFAK abundance and high tumor
grade and an association of high pFAK abundance with the
presence of either nodal positivity and/or distant metasta-
sis. In accordance to our findings, an association between
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nodal positivity and pFAK abundance was also seen by
Fan and Shi [19]. The ability of tumor cells to survive in
different environments seems to be influenced by FAK
signaling. Cell detachment, migration, proliferation and
invasion are crucial components of this complex process
of intraperitoneal tumor spread and metastasis. The acti-
vation and phosphorylation of FAK is stimulated by
integrins and involved in cellular interactions with the
extracellular matrix. Phosphorylation of FAK at Y397
is critical for its scaffolding function and its role in cell
motility [37], it has been shown to promote transendothe-
lial migration of breast cancer cells [38] and to initiate a
cascade of phosphorylation events and a variety of cel-
lular functions involved in cell migration and metasta-
sis [37-39]. The correlation with lymph node and distant
metastasis gives additional clinical information besides
already published in vivo [40] and in vitro [41] data on the
clinical importance of the Y397 FAK phosphorylation site.
As shown by functional analysis of the differences in

the transcriptome between tissues of molecular subclass
1 and molecular subclass 2, described by Pils et al. [4],
the focal adhesion pathway was the most deregulated
pathway at all. Contradictory to our main hypothesis, that
the two molecular subclasses might differ in levels of acti-
vated pFAK-Y397, abundance of pFAK was not signifi-
cantly different in the two subclasses. The previously
described prognostic impact of the molecular subclassifi-
cation on OS [4] remained high and significant also in-
cluding FAK and pFAK in the multiple Cox regression
analysis (HR 2.23 (1.29-3.87), p = 0.004), indicating an in-
dependent influence of the molecular subclassification
and pFAK abundance on OS.
Gene expression analysis comparing pFAK high and

pFAK low tissues revealed that the expression of riboso-
mal proteins was highly deregulated, which was some-
what surprising. Recently, Kim et al. showed a clear link
between the mTOR pathway and pFAK via the S6 kinase
1 (S6K1) in esophageal squamous cell carcinoma [42].
mTOR regulates ribosomal gene expression via S6K1,
i.e. high S6K1 expression leads to high S6 (small ribo-
somal protein S6) expression and subsequently to lar-
ger cell sizes [43] and cell growth but also to induced
phosphorylation of tyr-397 of FAK. Kim et al. showed
that lowering the levels of S6K1 and S6 led to impair-
ment of focal adhesion formation, which was paralleled
by a reduction in phosphorylation of FAK and paxilin con-
trolling. Correspondingly, our data showed that high pFAK
abundance correlated with higher expression of ribosomal
proteins in general. The PI3K/AKT/mTOR pathway is a
well-known pathway involved in ovarian cancer carcino-
genesis and mTOR as a drug target (e.g.: Rapamycin,
Everolimus, and Temsirolimus) is being investigated in
clinical trials [44,45]. Therefore, it is interesting that the
PI3K/AKT/mTOR pathway seems to be connected to
the FAK-pFAK axis via S6K1 [46] in EOC (a pathway
showing the connection between mTOR and FAK is
depicted in Additional file 6: Figure S5, indicating also
the expression changes of the key player).
This study showed that the role of FAK and pFAK-

Y397 in high stage serous EOC patients is not as straight
forward as expected from in vitro and mouse models
and that the therapeutic effect of blocking Y397-FAK
phosphorylation could be at least ambiguous: on the one
hand high pFAK abundance was associated with increased
lymph node and distant metastases (known to be of minor
importance in ovarian cancer prognosis) but on the other
hand patients with high pFAK abundance showed better
prognosis if corrected for all histopathologic parameters.
Additional files

Additional file 1: Figure S1. Peptide competition experiment, showing
the specificity of the pFAK antibody on kidney positive control tissue
sections (NC, negative control omitting primary antibody; Ab + peptide,
pre-incubating primary antibody with 200-fold molar excess of
phosphorylated FAK peptide over night; pFAK, positive staining).

Additional file 2: Figure S2. Significantly enriched DAVID annotation
clusters. DAVID analysis using the 780 significantly differentially expressed
ProbeIDs (thereof 602 annotated in DAVID) revealed the annotation
clusters “ribosome” and “RNA processing” as over-represented.

Additional file 3: Figure S3. The significantly overrepresented KEGG
pathway “ribosome” with the significantly deregulated genes labeled by
asterisks.

Additional file 4: Table S1. List of the 227 down-regulated, 300 mixed
(partly down- and partly up-regulated), and 414 up-regulated gene sets
(FDR < 5%; totaling in 862 gene sets) found as significantly deregulated
by pFAK abundance (cf. Additonal file 3: Figure S3).

Additional file 5: Figure S4. Venn-plot of the overlap of the 227
down-regulated, 300 mixed (partly down- and partly up-regulated),
and 414 up-regulated gene sets (FDR < 5%; totaling in 862 gene sets)
found as significantly deregulated by pFAK abundance (cf. Additional
file 4: Table S1).

Additional file 6: Figure S5. Pathway analysis showing the axis mTOR
(AKT)-S6K1/RPS6KB1-FAK/PTK2 with gene expression values averaged
over all pFAK low (left) and pFAK high (right) samples. (The pathway was
built with GeneSpring 11.5.1 using the mTOR KEGG-pathway genes,
RPS6KB1, and PTK2 as seeding proteins: Expand Interactions; Relations
score > = 9; Relation types chosen: Expression, Regulation, Binding,
Protein Modification; Entity local connectivity > = 9; Entity types chosen:
Enzyme, Protein; Limit results by Local to Global Connectivity Ratio;
Limit results to: 8 new entities).
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