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Abstract
Highly aggressive, rapidly growing tumors are exposed to hypoxia or even anoxia which occurs as
a consequence of inadequate blood supply. Both hypoxia and consecutive hypoxia/reoxygenation
exert a variety of influences on tumor cell biology. Among these are activation of certain signal
transduction pathways and gene regulatory mechanisms, induction of selection processes for gene
mutations, tumor cell apoptosis and tumor angiogenesis. Most of these mechanisms contribute to
tumor progression. Therefore, tissue hypoxia has been regarded as a central factor for tumor
aggressiveness and metastasis. In this review, we summarize the current knowledge about the
molecular mechanisms induced by tumor cell hypoxia with a special emphasis on intracellular signal
transduction, gene regulation, angiogenesis and apoptosis. Interfering with these pathways might
open perspectives for future innovative treatment of highly aggressive metastasizing tumors.

Review
Introduction
Hypoxic areas are a common feature of rapidly growing
malignant tumors and their metastases. Tissue hypoxia
due to inadequate blood supply is supposed to occur very
early during tumor development beginning at a tumor di-
ameter of a few millimeter [1–3]. Interestingly, even after
neovascularization oxygen supply generally stays behind
the demands of the tumor, and thus, hypoxia remains a
constant feature of these tumors [3]. Hypoxia not only ac-
counts for tissue necrosis but has also an strong impact on
tumor cell biology [4]. In particular, tissue hypoxia con-
tributes to tumor progression in a variety of ways [for re-
view, see [4,5]]. Thus, the hypoxic tumor cell response is
of paramount importance for the understanding of tumor
progression.

Up to now, in eukaryotic cells a cellular sensor for hypoxia
has not been identified. However, some of the down-
stream effector pathways, including intracellular signal
transduction cascades, which interfered with gene regula-
tion under hypoxia, had been identified. In particular,
members of the family of mitogen activated protein
(MAP) kinases were shown to be involved in the transduc-
tion of the hypoxic signal [6–8]. Among the genes which
were induced by hypoxia, and might even be dramatically
upregulated, recent interest focused on those involved in
tumor angiogenesis. However, hypoxia was not only of
importance for angiogenesis-induction, but also exerted
effects on cell-cell and cell extracellular matrix interaction.
It had been shown that hypoxia/aglycemia downregulat-
ed E-cadherin in brain microvessel endothelial cells [9].
Since loss of cell-cell contact mediated via cadherins had
been regarded as an initial step during tumor progression
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this phenomenon might be of relevance for hypoxic in-
duction of tumor progression.

Tumor hypoxia also selects for gene mutations in tumor
cells. In particular, mutations occurred in genes involved
in the process of apoptosis. It could be shown that repeat-
ed exposure to low oxygen tension selected for p53 muta-
tions and rendered tumor cells resistant to hypoxia-
induced apoptosis [10]. It is further well documented that
low oxygen tension confers resistance of tumors to irradi-
ation therapy and may thereby contribute to tumor ag-
gressiveness [for review, see [4]].

This review focuses on the molecular mechanisms in-
volved in hypoxic signal transduction, gene regulation,
angiogenesis factor production and apoptosis regulation
in tumor cells. A better understanding of these processes
might open perspectives for future tumor therapy.

Signal transduction
Extracellular stimuli that interfere with gene expression
and gene regulation are mediated by different intracellular
signalling cascades [for review, see [11,12]]. One of the
most intensively studied signalling pathway is the mi-
togenic Ras/Raf/MEK/ERK cascade, which responds to
growth factors and factors inducing cellular differentia-
tion, such as epidermal growth factor (EGF) and platelet
derived growth factor (PDGF) [13] (Fig. 1). Downstream
targets of this cascade are well-known transcription factors
such as AP-1, CREP and Elk. Parallel organized kinase cas-
cades which particularly respond to cellular stresses, such
as cellular injury by heat, UV and ionizing irradiation, and
osmotic shock have been identified [for review, see
[14,15]]. However, these cascades also respond to inflam-
matory cytokines, such as interleukin (IL)-1 and tumor
necrosis factor (TNF)-α. Members of these pathways are
the stress-activated protein kinases (SAPK, also termed c-
Jun N-terminal kinases, JNK) and the p38 kinase (Fig. 1).

Since hypoxia is a typical stress factor for rapidly growing
tumor cells, it was tempting to speculate, whether hypoxia
might induce JNK/SAPK and/or p38 activation in tumors.
Indeed, it could be shown that hypoxia and hypoxia/reox-
ygenation signalling involved members of the MAP family
of signalling kinases [6–8]. Hypoxia activated the JNK/
SAPK and p38 stress kinases in human squamous carcino-
ma cells in vitro [7]. This activation further led to a phos-
phorylation/activation of ATF-2 transcription factor.
Moreover, in this study hypoxia-induced mitogen-activat-
ed protein kinase phosphatase (MKP)-1 mRNA expres-
sion and MKP-1 activity. MKP-1 antagonizes SAPK activity
and its enhanced expression/activity under hypoxia had
been regarded as one possible explanation for the rapid
decline of JNK/SAPK activity after 4 hours [7].

We were able to show that stress activated protein kinase,
JNK/SAPK, was activated under hypoxia in low aggressive
melanoma cells [8]. Interestingly, low aggressive melano-
ma cell lines showed strong hypoxia-inducibility, while
highly aggressive melanoma cell lines were much less re-
sponsive [8]. Thus, responsiveness of MAPK signalling
pathways to hypoxia might be a tumor stage-dependent
phenomenon. In further experiments, it could be shown
that JNK/SAPK activation was involved in apoptosis regu-
lation in low aggressive melanoma cells [8]. One feasible
explanation for a tumor-stage dependent JNK/SAPK acti-
vation might be that late-stage tumor cells often show an
independent, deregulated growth. Thus, the "classic" hy-
poxic signal transduction involving JNK/SAPK might be
lost in these cells.

In rat cardiac myocytes hypoxia induced the redistribu-
tion of specific protein kinase C isoforms from the soluble
to the particulate compartiment. These findings were sug-
gestive for an activation of protein kinase C pathways un-
der hypoxia [16]. In this study, inhibition of
phospholipase C prevented protein kinase C redistribu-
tion. It is well accepted that protein kinase C isoforms are
able to activate the Ras/Raf/MEK/ERK signalling pathway
on the level of the Ras GTPase and Raf kinase. Thus, hy-
poxic signalling might involve protein kinase C as a pos-
sible link to MAPK signalling pathways. We were able to
show that hypoxia activated p38 signalling pathways in
low aggressive melanoma cells [17]. P38 activation was
also observed under hypoxia/reoxygenation conditions in
these cells. The physiological relevance of these findings,
however, remains to be defined. However, it had been
suggested that activation of p38 under hypoxia might be
involved in apoptosis regulation, since it had been shown
that p38 mediated apoptosis under conditions of oxida-
tive stress [18].

One of the main downstream targets of JNK/SAPK kinase
signalling is cJun, a well known member of the Jun/Fos
family of transcription factors. Both, cJun and cFos may
act as oncogenes and heterodimerize to form the tran-
scriptional active complex, activator protein (AP)-1
[12,19]. Hypoxic activation of JNK/SAPK has been shown
to be able to induce cJun dependent transcription [8]. The
role of AP-1 in hypoxia-induced gene regulation is de-
scribed in more detail in the chapter about transcription
factors.

Little is known about the hypoxic induction of members
of the Ras/Raf/MEK/ERK signalling pathway. Interesting-
ly, however, BRAF knockout mice suffer from an impaired
development of the vascular system [20]. Vascular malfor-
mation on the other hand has also been described in mice
lacking the arylcarbon nuclear translocator (ARNT), the
heterodimeric partner of hypoxia-inducible factor (HIF)-
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1α [21]. Thus, although largely speculative at present, hy-
poxic signalling might also interfere with the Raf kinase
cascade at least during embryonic development. Involve-
ment of Braf in hypoxic signalling might be of special im-
portance for tumor growth since activating gene
mutations in the BRAF gene have been demonstrated in a
variety of different tumors [22].

The role of further upstream signalling molecules of MAP
kinases, such as members of the family of Rho and Ras

GTPases, has been described in oncogene signalling in
various tumors [23]. Although, Ras mutations have been
shown to play an outstanding role in the pathogenesis of
epithelial tumors these mutations have not been identi-
fied in significant percentages in other tumors [24]. A di-
rect activation of Ras by hypoxia has not been shown up
to now. However, it could be shown in in vitro luciferase
experiments that cells plated at high cell density (which
induces pericellular hypoxia) activated the hypoxia re-
sponse element [25]. In transfection studies, this activa-

Figure 1
MAP kinase signalling pathways. Major pathways that transfer extracellular signals to the nucleus are the MAP kinase sig-
nalling pathways. The extracellular stimuli may be heterogeneous, deriving from exposure of cells to growth factors, phorbol 
esters, cytokines, or cellular stresses, such as osmotic shock and γ-irradiation. In principal, the Ras-Raf-MEK-ERK pathway 
transduces mitogenic signals involved in cellular proliferation or differentiation. The JNK/SAPK and p38 pathways regulate the 
cellular inflammatory or stress response. There are interactions between both pathways on MAPK kinase kinase (MAPKKK) 
levels immediately upstream of MEK (not indicated in the presented scheme). The downstream targets of the MAP kinase sig-
nalling pathways are the MAP kinases, ERK, JNK/SAPK and p38, which directly or indirectly interfere with transcription factors, 
such as Elk-1, ATF2 or cJun for activation of gene transcription. Upstream signalling components include the family of Rho 
GTPases such as Rho, Rac and Cdc42 which interfere with MAPKKK. Cellular stresses such as hypoxia may activate JNK/SAPK 
and p38 pathways which exert influence on cJun and ATF-2 activation.
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tion could be inhibited by a dominant negative
interfering Ras mutant and nitric oxide inhibitors. Moreo-
ver, the action of nitric oxide could be placed upstream of
the Ras signalling pathway [25]. These findings suggest an
indirect activation of Ras in hypoxic signalling via nitric
oxide. In accordance with these findings, it had been
shown that ERK – a further downstream effector molecule
of Ras signalling-phosphorylated hypoxia inducible factor
(HIF)-1α and thus contributed to enhanced VEGF expres-
sion under hypoxic conditions [26].

Another possible upstream activator of MAPK signalling
pathways, the Rho GTPase RhoC, has been identified as a
molecule that might confer high aggressiveness on malig-
nant melanoma [27]. By use of DNA chip technology,
RhoC was identified as one of the most interesting target
genes which showed enhanced expression in highly ag-
gressive, metastasizing melanoma cells compared with
their low aggressive, non-metastasizing counterparts. The
functional relevance of these findings was further demon-
strated in a mouse metastasis model and in matrigel as-
says using RhoC transfected melanoma cells. However,
the question whether hypoxia influences Rho GTPases ac-
tivity in tumors has not been addressed up to now.

Gene regulation
It is well established that hypoxia induces gene expression
and the number of hypoxia-inducible genes is increasing
steadily. In response to hypoxia, eukaryotic cells show ex-
pression of genes which are involved in cellular metabo-
lism (e.g. anaerobic glycolysis), erythropoiesis, cellular
proliferation and survival, and vascular biology [for re-
view, see [28]]. One major discovery in recent years was
the identification and characterization of the transcription
factor, hypoxia-inducible factor (HIF)-1α [29]. HIF-1α de-
pendent gene activation is of central importance for a se-
ries of hypoxia-inducible genes, e.g. erythropoietin,
lactate dehydrogenase A and vascular endothelial growth
factor (VEGF) [for review, see [28,30,32]]. After the initial
description of HIF-1α the molecular mechanisms that in-
terfere with HIF-1α gene expression, protein stability, and
DNA binding have attracted great interest, as interference
with these mechanisms might open perspectives for new
treatment strategies for rapidly growing malignant tumors
(Fig. 2).

HIF-1α heterodimerizes with HIF-1β (also termed ARNT)
to form the transcriptionally active protein complex. The
family of HIFs comprises two further members, HIF-2α
and HIF-3α. The role of the latter for hypoxic gene regula-
tion has not been defined so far. Further molecules that
interfere with the HIF/ARNT complex are well known
transcriptional coactivators, such as CBP/p300 [for re-
view, see [31]]. HIF-1α protein is rapidly degradated and
ubiquitinated under normoxic conditions, however, sta-

bilized under hypoxic conditions. Ubiquitination is medi-
ated by the von Hippel Lindau (VHL) tumor suppressor
gene [for review, see [28]]. Accordingly, patients suffering
from von Hippel Lindau syndrome – a disease character-
ized by a loss of the VHL gene-showed enhanced expres-
sion of HIF-1α and HIF-dependent genes, such as
angiogenesis factors [32]. A typical clinical feature of these
patients are vascular tumors.

More recent data showed that proline hydroxylation of
HIF in the oxygen-dependent degradation domain
(ODD) – which overlaps with the N-terminal transactiva-
tion domain – is of central importance for the recognition
of HIF-1α by the VHL protein and subsequent ubiquitina-
tion [33]. In this study, proline hydoxylation was depend-
ent on cellular oxygen levels and required 2-oxoglutarate
and iron as co-factors.

In another recent study, a further level of HIF regulation
has been described. It is known that hypoxia promotes the
interaction of transcriptional coactivators such as CBP/
p300 with its C-terminal transactivation domain. This in-
teraction was shown to be inhibited by the action of a fac-
tor called FIH-1 ("factor inhibiting HIF-1") [34]. Within
the C-terminal transactivation domain a conserved aspar-
agine residue has been identified and it could be shown
that this residue is hydroxylated under normoxic condi-
tions leading to a blockage of interaction with transcrip-
tional co-activators. It could be further shown that FIH is
indeed an asparaginyl hydroxylase [35]. Interestingly,
however, overexpression of FIH under hypoxia was still
able to suppress HIF activity, suggesting that further
mechanisms, additional to low O2 levels, might be re-
quired for FIH inactivition under hypoxia.

Posttranslational stabilization under hypoxia and enzy-
matic modification on prolyl and asparaginyl residues
were, however, not sufficient for the regulation of the
transcriptional activity of HIF-1α. Protein phosphoryla-
tion apparently plays a further important role [36]. In
hamster fibroblasts it could be demonstrated that under
low oxygen tension HIF-1α was directly phosphorylated
and activated by the MAP kinase ERK. This phosphoryla-
tion enhanced HIF-1 dependent transcriptional activition
of the VEGF gene [26,36].

Based on the current knowledge about its role in hypoxia-
induced gene expression and the mechanisms of molecu-
lar regulation one could speculate that HIF-1α might be
an interesting target for future tumor therapy. Indeed, the
relevance of HIF-1α for tumor progression could be dem-
onstrated [37]. In the latter paper HIF-1α wildtype H-ras-
transformed mouse embryonic fibroblasts showed en-
hanced tumor growth in vivo compared with their HIF-1α
deficient counterparts. The underlying mechanisms for
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the observed differences remain elusive. Interestingly,
there were no differences in vascularity of tumors derived
from both wildtype and HIF deficient cells. Ravi and cow-
orkers demonstrated that human colon cancer cells defi-
cient in p53 display enhanced tumor growth and
neovascularization of tumor xenografts in nude mice [38].
It could be further shown that p53 expression exerted a
negative influence on HIF-1 expression via induction of
Mdm2 mediated ubiquitination and proteasomal degra-
dation of HIF-1. In contrast, loss of p53 enhanced HIF-1

activity and VEGF expression under hypoxia. Thus, both
enhanced growth and vascularity could attributed to HIF-
1 expression and function. Furthermore, in another
mouse tumor model, inhibition of HIF-1α activity by
anti-sense technique reduced aggressive tumor growth
[39]. Based on these findings, the idea was emphasized
that interfering with the ubiquitination pathway and hy-
droxylation events might be a promissing approach for fu-
ture therapeutic strategies [for review, see [40]].

Figure 2
Hypoxic activation of transcription factors HIF-1α, AP-1 and NF-κB. Cells exposed to hypoxia activate the cellular 
transcription factors HIF-1α, AP-1 and NF-κB. Under normoxic conditions the von Hippel Lindau tumor suppressor protein 
mediates ubiquitination and degradation of HIF-1α. This mechanism is inhibited under hypoxia. As a consequence, the HIF-1α 
protein is stabilized and shows enhanced expression. There are a series of factors that may interfere with HIF-1α under 
hypoxia, such as cJun/AP-1, heat shock protein (hsp) 90, and the transcriptional co-activator CBP/p300. Further mechanisms of 
HIF regulation include phosphorylation by extracellular signal regulated kinase (ERK), and phosphorylation of its interaction 
partner, cJun/AP-1 via stress activated protein kinase, JNK/SAPK. Recently, a factor inhibiting HIF-1α activation, FIH, has been 
described, representing a further level of HIF regulation. Upon reoxygenation, NF-κB, a well-known transcription factor 
involved in transcriptional regulation of immune response genes, is activated. However, evidence has been provided that NF-
κB activation may also be induced by hypoxia.
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Activator protein (AP)-1 is a well-known oncogene and
transcription factor. AP-1 has been shown to be involved
in a variety of processes linked to malignant transforma-
tion of mammalian cells [for review, see [19,41]]. Howev-
er, evidence has also been provided that it may be
involved in gene regulation under cellular stress, in partic-
ular under hypoxia [42] (Fig. 2). While the transcription
factor NF-κB is known to play a central role in gene regu-
lation under hypoxia/reoxygenation, AP-1 has been
shown to be strongly activated under hypoxia [42]. It
could be shown in a series of different tumor cells, e.g. co-
lon cancer, glioblastoma and malignant melanoma cells
that AP-1 activity may be induced by hypoxia [43–45].
AP-1 is a heterodimeric complex which may be composed
of a variety of different components, among which mem-
bers of the family of Jun and Fos proteins are of central
importance [for review, see [19,41]]. Since cJun is targeted
by the JNK/SAPK signalling this pathway may be one sig-
nalling cascade by which AP-1 activity is mediated under
hypoxia. Indeed, JNK/SAPK signalling leads to AP-1 acti-
vation under hypoxia [8,46]. NF-κB activation may also
be induced under hypoxia, although strongest activation
was observed under hypoxia/reoxygenation [42,47]. The
latter mechanism has been proposed to be independent of
the degradation of the common upstream inhibitor of NF-
κB, IκBα. Tyrosine hydroxylation of IκBα-which does not
impact on its degradation – has been proposed as an acti-
vation mechanism under hypoxia/reoxygenation [48].

Recently, it could be demonstrated that both AP-1 and
HIF cooperated in hypoxia-induced transcription [49–
51]. In one study [50], using wildtype and HIF-1α nul-
lizygous mouse embryonic fibroblasts it was shown that
under chronic hypoxia c-Jun mRNA expression and phos-
phorylation of cJun in the N-terminal region were both
dependent on the presence of HIF-1α [50]. In contrast,
early and rapid induction of cJun was not dependent on
HIF-1α. The underlying mechanisms remain to be investi-
gated. However, positive feedback of hypoxia-induced
cJun expression on its own transcriptional induction was
excluded since the phosphorylation/activation status of
cJun did not impact on the levels of cJun mRNA expres-
sion. It was suggested that genes induced via HIF-1α de-
pendent transcription might contribute to enhanced cJun
expression.

In another study, a direct cooperation of both transcrip-
tion factors, cJun/AP-1 and HIF-1, has been demonstrated
[51]. The investigators used in vitro luciferase assays to
show that overexpression of cJun induced HIF-dependent
promoter activity. This promoter activity could partially
be inhibited by co-expression of TAM67, a dominant neg-
ative form of cJun. Moreover, in further immunoprecipi-
tation studies, an association between cJun and HIF-1α
could be demonstrated. In addition, evidence was provid-

ed that this interaction requires further interaction part-
ners, since HIF-1α /cJun interaction could only be
demonstrated in vivo but not in vitro, using both partners
HIF-1α and cJun as in vitro translated proteins.

Direct or indirect interaction of both transcription factors
cJun/AP-1 and HIF-1α might be a general mechanism for
the regulation at least for some of the known hypoxia-in-
ducible genes. In line with this, in immunoprecipitation
studies we were able to co-immunoprecipitate HIF-1α
with antibodies against cJun and vice versa, indicating
that HIF-1α binds to cJun/AP-1 [Kunz et al., submitted].
One mechanism by which both HIF and cJun/AP-1 may
interact in vivo could involve the transcriptional co-acti-
vator CBP/p300, a molecules which had been shown to
bind to both molecules. Indeed, CBP/p300 recruitment to
HIF has been shown to be redox-regulated [for review, see
[31]].

SP-1 had been regarded as a transcription factor involved
in baseline gene transcription of a variety of genes [52].
Little is known about the role of SP-1 in hypoxia-induced
gene regulation. However, SP-1 has been recently shown
to be involved in the transcriptional regulation of cycloox-
ygenase-2 in vascular endothelial cells under hypoxic con-
ditions [53]. These studies were undertaken based on
observations that cyclooxygenase-2 showed enhanced ex-
pression in vivo in hypoxic heart and vessel tissues. Over-
expression of SP-1, but not SP-3, was able to induce the
cyclooxygenase-2 promoter in in vitro luciferase assays. In
contrast, SP-3 acted as a transcriptional repressor under
hypoxia in these studies.

Taken together, the picture of the molecular mechanisms
underlying hypoxia-induced gene regulation is becoming
more and more complete. Hypoxic gene regulation in-
volves transcription factors HIF-1α, AP-1, NF-κB and SP-
1. Some of these probably interact directly.

Angiogenesis factor production
It is well established that local growth and metastasis of a
large variety of malignant tumors are dependent on neo-
vascularization [for review, see [1,2,54,55]]. Tumor angio-
genesis requires the production and secretion of so-called
angiogenesis factors, such as vascular endothelial growth
factor (VEGF), fibroblast growth factor (FGF), platelet de-
rived growth factor (PDGF) and interleukin-8 [for review,
see [55,58]]. The mechanisms underlying angiogenesis
factor production are, however, poorly understood. Evi-
dence has been provided that a constitutive high expres-
sion of angiogenesis factors in isolated tumor cells or cell
clones may be the first step in a selection process towards
angiogenesis factor producing tumors [59]. A constitutive
high expression of angiogenesis factors in tumor cells may
derive from the so-called "angiogenic switch" which is
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supposed to happen very early during tumor development
[for review, see [54]]. In accordance with this, it has been
shown that a constitutive high expression of IL-8 pro-
motes tumor growth of melanoma cells in vivo [60].

However, it has been shown for a large series of angiogen-
esis factors that these were strongly induced by tissue hy-
poxia. Based on currently available data, hypoxia
inducible angiogenesis factors are VEGF, IL-8, angiogenin,
FGF and PDGF [44,45,61–66]. In a recent attempt using
gene expression libraries of hypoxic glioblastoma cells a
series of new, as yet unknown, hypoxia-inducible genes
were identified [67]. Among the genes identified that may
impact on tumor angiogenesis, a gene termed "angiopoi-
etin-related gene" was described. Its role for tumor angio-
genesis awaits further investigation.

That hypoxia may indeed act as a strong inducer of angio-
genesis factors in tumor cells has been shown for a variety
of malignant tumors in vitro and in vivo, e.g. glioblasto-
ma, ovarian carcinoma, malignant melanoma and squa-
mous cell carcinoma [45,61,65,68,69]. These findings
may have a profound influence on future tumor therapies
and therefore have attracted great interest in recent years.
A large series of clinical trials are currently underway test-
ing various antiangiogenic compounds for their efficacy
in tumor therapy [for review, see [55]].

At present, vascular endothelial growth factor (VEGF) is
the best characterized angiogenesis factor. VEGF was ini-
tially described as "vascular permeability factor" [70]. In-
vestigations on VEGF unveiled a series of different
receptors with structural similarities: Flt 1 (VEGFR-1),
KDR/Flk-1 (VEGFR-2), Flt 4, Tie-1 and Tek/Tie-2. The
functional importance of VEGF and VEGF receptors for
embryonic vasculogenesis and angiogenesis had been
demonstrated in a variety of experimental models includ-
ing VEGF and VEGF receptor knockout mice [71]. VEGF
expression had been shown to play a particular role in the
growth of glioblastomas, which show extensive vasculari-
zation [72]. A characteristic feature of VEGF expression is
its inducibility by hypoxia. HIF-1α could be identified as
major transcription factor involved in the hypoxic gene
induction of VEGF [62]. Recently, the role of VEGFR-2 (al-
so termed KDR/Flk-1) for the invasive growth of skin sq-
uamous cell carcinoma cells could be demonstrated [69].
In malignant keratinocyte transplants onto nude mice the
invasive phenotype of these cells could be reverted by ad-
dition of blocking antibodies to VEGFR-2. Furthermore, it
could be shown that VEGF overexpression in human
melanoma cell lines led to increased growth of tumors
subcutaneously injected into nude mice. The latter tumors
were well vascularized and displayed little necrosis, while
non-transfected control tumor cells formed minimally
vascularized tumors with extensive necrosis [73]. In clini-

cal trials specific peptides directed against VEGF are cur-
rently being used for antioangiogenic tumor treatment
[for review, see [55]].

Angiogenin, first described in adenocarcinoma cell-condi-
tioned medium, is a potent angiogenic factor in vivo [74].
Angiogenin is a member of the RNase superfamily target-
ing ribosomal and transfer RNA. Its ribonucleolytic activ-
ity is low, however, significantly contributes to its
angiogenic activity. A 170 kDa cell surface angiogenin re-
ceptor has been identified mediating angiogenin induced
endothelial cell proliferation [75]. In inhibition experi-
ments with a monoclonal antibody directed against ang-
iogenin suppression of tumor growth of human colon
adenocarcinomas, lung carcinomas, and fibrosarcomas in
nude mice was observed [76]. Angiogenin has also been
identified as an important angiogenesis factor for melano-
ma progression [64]. In melanoma metastases angiogenin
has been shown to be predominantly localized around
necrotic/hypoxic tumor areas. In accordance with this, its
induction by hypoxia could be shown in melanoma cells
in vitro [64].

Interleukin-8 (IL-8) is a member of the well-known super-
family of CXC chemokines [for review, see [77]]. Original-
ly, it was termed neutrophil-activating peptide. However,
it also acts as a strong activator of lymphocytes and mono-
cytes. IL-8 is also a well defined angiogenesis factor [78].
It could be shown that IL-8 induces neovascularization in
the rabbit cornea assay. Further detailed analyses demon-
strated that an aminoterminal ELR motif is central for IL-
8 receptor binding and angiogenesis induction. IL-8 has
been opposed to other members of the CXC chemokine
family which lack the ELR motif, such as Mig-1 and IP-10.
Both chemokines have no angiogenic capacity, but exert
antiangiogenic effects. The molecular regulation of IL-8,
especially after cytokine stimulation of target cells, has
been extensively studied in the past years [79]. More re-
cent investigations showed that IL-8 production is
inducible in tumor cells by hypoxia [65,68]. We were able
to demonstrate that IL-8 was strongly expressed in vivo in
hypoxic melanoma metastases [45]. The molecular mech-
anisms underlying hypoxic gene regulation of IL-8 in-
volved the transcription factors NF-κB and AP-1 [44,45].
IL-8 induction by hypoxia might be a general mechanism
in a variety of tumors. Based on currently available data
IL-8 activation by hypoxia occurred in malignant melano-
ma, glioblastoma and ovarian carcinoma [45,65,68].

Cyr61 is a recently identified angiogenesis factors, which
was initially described as a growth factor inducible gene in
mouse fibroblasts [80]. It belongs to the CCN family of
immediate early genes. The acronym CCN stands for the
currently best characterized family members CCN1
(CYR61), CCN2 (CTGF, connective tissue growth factor),
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and CCN3 (NOV, nephroblastoma overexpressed) [for re-
view, see [81]81]. CCN family members are involved in
cellular proliferation and cell adhesion. Recent investiga-
tions showed that Cyr61 acted as an angiogenesis factor
[82]. In this study, it could be shown that Cyr61 stimulat-
ed endothelial cell migration in vitro and induced neovas-
cularization of rat corneas. Moreover, in a nude mouse
tumor model, transfected Cyr61 overexpressing RF-1 hu-
man gastric carcinoma cells resulted in larger and more
vascularized tumors compared with their non-transfected
normal counterparts.

The receptors mediating the diverse functions of Cyr61
have been investigated in more detail and it could be
shown that Cyr61 binds to members of the family of in-
tegrins, e.g. αvβ3, αvβ5. Integrin receptor binding was of
importance for endothelial cell activation and prolifera-
tion, however, might also account for the effects of Cyr61
on tumor cells. Very recently, it could be shown that high
Cyr61 expression was associated with the aggressiveness
of breast carcinoma cells lines [83]. Additionally, we were
able to show that Cyr61 is hypoxia-inducible in melano-
ma cells and both transcription factors, AP-1 and HIF-1α,
may contribute to the hypoxic induction of Cyr61 [Kunz
et al., submitted]. Interestingly, also CTGF, another mem-
ber of the CCN family, could be induced by hypoxia [84].

Apoptosis regulation
In malignant tumors the rate of apoptosis is high in un-
dervascularized areas [85,86]. One feasible explanation
for these findings might be that low oxygen pressure/hy-
poxia in the tumor microenvironment might directly in-
duce apoptosis in tumor cells. Indeed, it could be shown
in vitro that besides it various metabolic effects, hypoxia
induced apoptosis in tumor cells [for review, see [87]].
The mechanisms of apoptosis regulation under hypoxia
are, however, poorly understood. Evidence has been pro-
vided that the so-called mitochondrial permeability tran-
sition (MPT), presenting as a hyperpermeability of the
inner mitochondrial membrane, is a central mechanism
in hypoxia mediated apoptosis (Fig. 3). As a consequence
of MPT induction cytochrome C is released into the cyto-
plasm. Cytochrome C in turn interacted with Apaf-1, a
central kinase in apoptosis signalling [88]. Apaf-1 is a well
known activator of downstream effector caspases, which
are the main executors of apoptosis, such as caspase 9.
This process could be counteracted by members of the Bcl-
2 family of anti-apoptotic molecules, such as Bcl-2 itself
and Bcl-xL. However, evidence had also been provided
that Bax, another member of the Bcl-2 family, enhanced
hypoxia-induced apoptosis. Bax was able to generate
membrane pores in the outer mitochondrial membrane
and thereby contribute to cytochrome C induced apopto-
sis [89]. The mechanisms by which members of the Bcl-2
family exert anti-apoptotic effects are not fully defined. It

had been suggested that reactive oxygen metabolites/spe-
cies (ROS) are the main contributors to stress-induced ap-
optosis and are affected by the expression of members of
the Bcl-2 family. However, it could be demonstrated that
Bcl-2 and Bcl-xL may protect PC12 rat hepatoma cells
from hypoxia-induced apoptosis under conditions where
ROS were not detectable [90,91]. A recently identified
member of the Bcl-2 family, Nip3, has been shown to ex-
ert pro-apoptotic effects [92]. At present it is the only mol-
ecule of this family which is inducible by hypoxia.

Although not directly linked to the caspase 9 signalling
cascade the caspase 8 system might also be involved in ap-
optosis regulation under hypoxia. Recently, it could be
shown that caspase 8 is involved in hypoxia-induced ap-
optosis in Jurkat cells [93]. In accordance with the latter
paper we were able to show that hypoxia induced caspase
8 mRNA in melanoma cells (unpublished observation).
In this respect it is of particular importance, that the cellu-
lar expression levels of caspase 8 might influence the sen-
sitivity to apoptosis inducing agents. This was emphasized
in a study demonstrating that neuroectodermal brain tu-
mor cells lacking caspase 8 expression were resistant to
TRAIL induced apoptosis. Treatment with a methyltrans-
ferase inhibitor restored caspase 8 expression and led to
enhanced apoptosis sensitivity. Thus, caspase 8 expres-
sion levels might contribute to apoptosis sensitivity of tu-
mor cells [94].

Recently, it could be shown that experimental deprivation
of glucose induced apoptosis in myc-transformed fibrob-
lasts [95]. Since glucose deprivation also occurs in the
center of undervascularized and hypoxic tumors it might
contribute to hypoxia-induced apoptosis in vivo. Further-
more, data from another group showed that not hypoxia
itself but concomitant acidosis may be the main trigger for
apoptosis under hypoxic conditions [96]. It could be
demonstrated that in normal fibroblasts hypoxia-induced
cell cycle arrest. In contrast, in oncogene transformed
fibroblasts hypoxia induced apoptosis. The latter mecha-
nism, however, required acidosis. If acidosis was removed
from culture conditions by buffering, tumor cell viability
and clonogenicity – of transformed fibroblasts – were
both enhanced. Thus, hypoxia has not only a different im-
pact on normal versus transformed cells, but its effects
may also depend on the presence of acidosis in the tissue
microenvironment. Further experiments have to address
the question whether this phenomenon is cell-type
specific.

It had been shown that p53 induction under severe hy-
poxia was HIF-1α dependent [97]. Thus, HIF-1α exerts a
dual function by promoting tumor growth via the induc-
tion of angiogenesis, and, by promoting apoptosis via sta-
bilization of the p53 protein. Under hypoxia the
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phosphorylation status of HIF-1α is a critical factor for the
decision whether HIF may promote apoptosis or not.
While dephosphorylated HIF-1α exerts pro-apoptotic ef-
fects under hypoxia its phosphorylated form does not
[98]. The decision, which way the cells go was dependent
on the severity of hypoxia [97].

The phosphatidylinositol (PtdIns) 3-kinase-Akt signalling
pathway plays a central role in mediating signals derived
from growth factors and cytokines that induce cell surviv-

al and proliferation (Fig. 3). Akt is a serine/threonine ki-
nase which phosphorylates substrates leading to a
decrease of the activity of pro-apoptotic molecules and an
increase in the activity of anti-apoptotic molecules [for re-
view, see [99,100]]. In particular, Akt promotes cell sur-
vival by preventing Bad from inhibiting the anti-apoptotic
activity of Bcl-xL. Akt also inhibits the alteration of the mi-
tochondrial membrane potential. Moreover, Akt induces
NF-κB activation via phosphorylation of IκB kinase α,
thereby increasing the expression of genes promoting cell

Figure 3
Hypoxic activation of apoptosis pathways. Hypoxia activates intracellular signalling pathways involved in apoptosis and 
cell survival. One pathway of particular importance is hypoxia-induced mitochondrial membrane permability, leading to subse-
quent release of cytochrome C into the cytoplasm. Cytochrome C initiates the apoptosis cascade via activation of the apopto-
sis kinase Apaf-1, which in turn activates the caspase 9 apoptosis pathway. Hypoxia also activates JNK/SAPK signalling pathways 
which leads to apoptosis induction by an as yet unknown mechanism. The protein kinase Akt plays a central role in cell survival 
via induction of anti-apoptotic mechanisms, involving the anti-apoptotic function of Bcl-xL. Akt is also involved in hypoxia-
induced HIF-dependent VEGF expression, a signalling cascade that can be inhibited by the tumor suppressor PTEN. PTEN 
exerts its negative regulatory effects via inhibition of phosphatidylinositol (3,4) and phosphatidylinositol (3,4,5) phosphoryla-
tion. Late-stage tumors often display mutated PTEN or show a complete loss of PTEN expression, which leads to a de-repres-
sion of the survival phosphatidylinositol (PtdIns) 3-kinase-Akt signalling pathway. PDK, PtdIns (3,4,5)P3-dependent kinase.
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survival. It also acts on cell cycle inhibitors and the well-
known apoptosis molecule caspase 9. Recently, it could be
shown that Akt signalling could be activated by hypoxia
and prevented PC12 cells from hypoxia-induced apopto-
sis [101]. Moreover, HER-2/neu-overexpressing breast
cancer cell lines were shown to be resistant to hypoxia-in-
duced apoptosis and suppression of apoptosis could be
reversed by PtdIns 3-kinase inhibitors such as LY294002
and wortmannin [102]. Thus, Akt could play an impor-
tant role for apoptosis resistance under hypoxia.

PTEN, a recently discovered tumor suppressor gene has
been shown to be mutated or lost in a variety of different
tumors, in particular in tumors of advanced stage [103–
105]. It could be shown that germline mutations in PTEN
underly Cowden syndrome [106], a disease characterized
by the occurence of multiple tumors in affected patients.
Functionally, PTEN acts as a lipid phosphatase which de-
phosphorylates PtdIns lipids, such as PtdIns (4,5)P2 and
PtdIns (3,4,5)P3. This leads to a disruption of PtdIns 3-ki-
nase-Akt signalling (Fig. 3). It could be shown that this
lipid phosphatase activity of PTEN is indeed important for
its tumor suppressor function [107]. In the mentioned
study reconstitution of wild type PTEN in the PTEN-defi-
cient prostate cancer cell line LnCaP inhibited cell surviv-
al. Furthermore, transfection of LnCaP cells with
constitutively active Akt reverted the phenotype of PTEN
deficient cells.

In a recent study it could be shown that overexpression of
wildtype PTEN suppressed hypoxia-mediated activation
of Akt in glioblastoma cell lines [108]. Although without
influence on the rate of apoptotic cells under hypoxia, re-
constitution of wildtype PTEN in PTEN-deficient glioblas-
toma cells downregulated angiogenesis factors such as
VEGF (Fig. 3). This process involved the transcription fac-
tor HIF-1α (Fig. 3). Thus, PTEN expression negatively in-
terfered with hypoxia-induced angiogenesis factor
expression in glioblastoma cells. Since loss of PTEN is a
common feature in late-stage tumors enhanced angiogen-
esis factor production under hypoxia might indirectly pro-
mote cell survival under the adverse conditions of the
tumor microenvironment.

Recently, the oncoprotein Mdm2 had been identified as
another target for Akt [for review, see [100]]. Activation of
Akt signalling pathway promotes nuclear entry of Mdm2.
There, it interacts with p53 tumor suppressor protein and
targets p53 for proteasomal degradation. PTEN had been
shown to inhibit movement of Mdm2 into the nucleus
and thereby inhibited p53 proteasomal degradation, ren-
dering cells susceptible for apoptosis inducing stimuli.
Moreover, p53 binding motifs have been identified in the
PTEN promoter [109]. In the latter study p53 induced
PTEN transcription and cellular levels of PTEN protein,

thus providing a pro-apoptotic p53-PTEN pathway. The
role of hypoxia in this regulatory pathway has also been
addressed. It could be demonstrated that hypoxia sup-
pressed Mdm2 expression and thereby enhanced p53 ex-
pression [110]. Interestingly, however, in a recent study
the transcriptional activity of stabilized p53 induced by
deferoxamine mesylate, which mimics hypoxia, was lost
in all the tested tumor cell lines [111]. Thus, hypoxia-in-
duced stabilization of p53 does not necessarily relate to
p53 function.

Taken together, hypoxia mediated apoptosis utilizes dif-
ferent intracellular pathways involving apoptosis and cell
survival molecules such as cytochrome C, members of the
Bcl-2 family, Akt and PTEN.

Conclusions
In the present report the current knowledge about hypox-
ia-induced signal transduction, gene regulation,
angiogenesis factor production and apoptosis regulation
is summarized with a special emphasis on molecular
mechanisms. Many of the presented findings demonstrate
that hypoxia critically interferes with tumor progression
and tumor aggressiveness. As a consequence, a series of
studies are currently underway targeting molecular proc-
esses related to tissue hypoxia in tumor cells. Some of the
recent studies have already provided evidence that tumor
growth might be influenced via interference with tran-
scription factors, such as HIF-1α. Since the molecular
mechanisms are becoming more and more clear future
therapies may find new target molecules in tumor cells, fi-
nally leading to a more efficient treatment of aggressive
and metastasizing tumors.
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