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Abstract
Background: The chromosomal location of CUL-5 (11q 22-23) is associated with LOH in breast
cancer, suggesting that CUL-5 may be a tumor suppressor. The purpose of this research was to
determine if there is differential expression of CUL-5 in breast epithelial cells versus breast cancer
cell lines, and normal human tissues versus human tumors. The expression of CUL-5 in breast
epithelial cells (HMEC, MCF-10A), and breast cancer cells (MCF-7, MDA-MB-231) was examined
using RT-PCR, Northern blot analysis, and Western blot analysis. The expression of mRNA for
other CUL family members (CUL-1, -2, -3, -4A, and -4B) in these cells was evaluated by RT-PCR. A
normal human tissue expression array and a cancer profiling array were used to examine CUL-5
expression in normal human tissues and matched normal tissues versus tumor tissues, respectively.

Results: CUL-5 is expressed at the mRNA and protein levels by breast epithelial cells (HMEC,
MCF-10A) and breast cancer cells (MCF-7, MDA-MB-231). These cells also express mRNA for
other CUL family members. The normal human tissue expression array revealed that CUL-5 is
widely expressed. The cancer profiling array revealed that 82% (41/50) of the breast cancers
demonstrated a decrease in CUL-5 expression versus the matched normal tissue. For the 50 cases
of matched breast tissue there was a statistically significant ~2.2 fold decreased expression of CUL-
5 in tumor tissue versus normal tissue (P < 0.0001).

Conclusions: The data demonstrate no apparent decrease in CUL-5 expression in the breast
cancer cell lines (MCF-7, MDA-MB-231) versus the breast epithelial cells (HMEC, MCF-10A). The
decrease in CUL-5 expression in breast tumor tissue versus matched normal tissue supports the
hypothesis that decreased expression of CUL-5 may play a role in breast tumorigenesis.
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Background
The chromosomal region 11q22-23 is associated with
LOH in breast cancer [1-8], suggesting that a gene or genes
at this chromosomal region may play a role as a tumor
suppressor. One study demonstrated that frequency of
LOH at 11q22-23 is 38% in primary breast tumors and
84% in local recurrences after surgery [8]. One candidate
gene located at this chromosomal region is CUL-5 [7,8].
CUL-5, first described as a gene product involved in medi-
ating vasopressin-induced increases of intracellular-free
calcium in renal medullary epithelial cells [9], belongs to
an evolutionarily conserved gene family named the Cull-
ins (CULs) [10,11]. To date, seven mammalian CULs have
been identified and designated CUL-1, CUL-2, CUL-3,
CUL-4A, CUL-4B, CUL-5, and CUL-7 [10-13].

CUL proteins appear to function as scaffolding proteins
within E3 ubiquitin ligase complexes [14], which assist in
targeting protein substrates for ubiquitin-mediated degra-
dation by the 26S proteasome [15,16]. The mechanism of
targeted degradation consists of three enzymatic steps
[15,16]. In step one, an E1 enzyme activates the 76-amino
acid protein ubiquitin to a high-energy thiol ester inter-
mediate. In step two, E2 enzyme, referred to as an ubiqui-
tin-conjugating enzyme, assists in the transfer of the
activated ubiquitin to a lysine residue on the substrate
protein that is bound to the E3 ubiquitin ligase complex.
Finally, the substrate protein is polyubiquitinated with a
chain a ubiquitins, which is the signal for it to be recog-
nized and degraded by the 26S proteasome. The CUL-
based E3 ubiquitin ligases consist of a CUL protein, a
RING finger protein (e.g. ROC1/Rbx1, ROC2), an E2
ubiquitin-conjugating enzyme (e.g. Cdc34, Ubc5), an
adaptor (e.g. SKP-1, Elongin C), and a substrate recogni-
tion protein (e.g. F-box proteins, BC-box proteins)
[15,16]. CUL proteins function in E3 ubiquitin ligase
complexes as scaffolds that bring together the ubiquitin
conjugating and substrate recognition components of
these E3 complexes.

CUL-5 has been suggested to be a tumor suppressor in
breast tissue despite a lack of information concerning the
expression and function of this gene during breast tumor-
igenesis. The main purpose of this study was to examine
the expression of CUL-5 in breast epithelial cells versus
breast cancer cell lines and in normal tissues versus
matched tumor tissues. Here, we report that MCF-7 and
MDA-MB-231 breast cancer cell lines do not demonstrate
an apparent decrease in the expression of CUL-5 mRNA or
protein when compared to HMEC and MCF-10A breast
epithelial cells. However, analysis of 50 cases of matched
normal versus breast tumor tissue revealed a statistically
significant ~2.2 fold decrease in CUL-5 expression in the
tumor tissue versus the matched normal tissue.

Results
Expression of CUL-5 mRNA and protein in human breast 
epithelial cells and breast cancer cell lines
As shown in Figure 1A, RT-PCR demonstrated that CUL-5
mRNA is expressed by primary HMECs, immortalized but
non-tumorigenic MCF-10A cells, and both ER-α positive
(MCF-7) and ER-α negative (MDA-MB-231) human
breast cancer cell lines, as evidenced by amplification of
the predicted 674-bp PCR product. The 674-bp CUL-5
PCR product was not evident in the NT controls (Figure
1A) or when reverse transcriptase was eliminated from the
reaction mixture (data not shown). The integrity of the
RNA samples was confirmed by amplifying a 411-bp PCR
product for ribosomal protein S9 (Figure 1B). The identity
of the CUL-5 PCR products from these cells were con-
firmed by restriction endonuclease digestion with EcoRI,
which resulted in the generation of two smaller DNA frag-
ments of the predicted sizes (Table 1 and Figure 1C), and
by DNA sequencing (data not shown). Expression of
mRNAs for other CUL family members in these same cells
was demonstrated by RT-PCR amplification of cDNAs for
CUL-1, -2, -3, -4A, and -4B (Figure 2). PCR products for
these other CUL family members were not amplified
when reverse transcriptase was not included in the reac-
tion mixture (data not shown). PCR products for CUL-1, -
2, -3, -4A, and -4B were confirmed by restriction endonu-
clease digestion with BglII, AatII, EcoRI, Sau3AI and HaeIII,
respectively (data not shown). The RT-PCR results for
CUL-5 mRNA expression were confirmed by Northern
blot analysis, which demonstrated one major transcript of
~7.4 kb and two minor transcripts were observed below
the 4.4 kb marker (Figure 3). To examine expression of
CUL-5 protein, Western blots were performed using affin-
ity-purified rabbit polyclonal antiserum generated in rab-
bits immunized with a synthetic CUL-5 peptide. Western
blot analysis revealed a major immunoreactive band of Mr
~ 82 kDa, and a minor band of Mr ~ 63 kDa (Figure 4).
These bands were not seen when antibody was preincu-
bated with immunizing peptide or when preimmune
serum was used (data not shown). Blots were stripped and
reprobed with anti-actin antibody to ensure the integrity
of the protein samples and the Western blotting proce-
dure (Figure 4).

Expression of CUL-5 in human tissues
A normal human tissue expression array was incubated
with a radiolabeled CUL-5 cDNA probe to determine
CUL-5 mRNA expression in adult and fetal human tissues.
CUL-5 mRNA is expressed in a wide range of human tis-
sues (Table 2). Using a PhosphorImager to quantify the
data the highest relative expression of CUL-5 was found in
skeletal muscle (volume = 163430, coordinate 7B of Table
2) and the lowest relative expression was found in ovarian
tissue (volume = 11139, coordinate 8G of Table 2). CUL-
5 mRNA was also detected in fetal human tissue samples
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and in human cancer cell lines (Table 2). The integrity of
the samples on the array was confirmed by reprobing the
blot with a radiolabeled ubiquitin cDNA (data not shown).
CUL-5 mRNA was not detected in negative controls,
including yeast total RNA, yeast tRNA, E. coli rRNA, E. coli
DNA, poly r(A) and Cot-1 DNA; these samples were used
to obtain an average background correction value. Mini-
mal hybridization did occur with the human genomic
DNA samples on the array, which may represent the 674-
bp cDNA hybridizing with the CUL-5 gene.

Expression of CUL-5 in matched normal tissues versus 
tumor tissues
A cancer profiling array was used to examine CUL-5
expression in matched normal tissues versus tumor tis-

sues. With the 50 cases of breast tissue examined, 41 cases
(82%) demonstrated a decrease in CUL-5 expression in
the breast tumor tissue versus the matched normal tissue
(see Table 3, Figures 5, 6 and 7). In three breast tumor
cases with matched metastatic samples, CUL-5 expression
was similar in the tumor tissues versus the matched meta-
static tissues (Figure 7). With the 50 cases of breast tissue
there was a statistically significant (P < 0.0001) ~2.2 fold
average decrease in CUL-5 expression in the tumor tissue
versus the matched normal tissue (Figure 8). The largest
difference was seen in sample #31 on the array with a ~7.4
fold decrease in CUL-5 expression in the tumor tissue ver-
sus the normal tissue (Table 3 and Figure 7). On the can-
cer profiling array three other tissues demonstrated
statistically significant decreases in CUL-5 expression in

RT-PCR analysis for CUL-5 in HMEC, MCF-10A, MCF-7, and MDA-MB-231 cellsFigure 1
RT-PCR analysis for CUL-5 in HMEC, MCF-10A, MCF-7, and MDA-MB-231 cells. Semiquantitative RT-PCR was per-
formed using 1 µg of total RNA with 20, 25, and 29 cycles of PCR using primers for (A) CUL-5, or (B) ribosomal protein S9; (C) 
The CUL-5 PCR products from HMEC, MCF-10A, MCF-7, and MDA-MB-231 cells were confirmed by restriction endonuclease 
digestion with EcoRI. The results shown are representative of triplicate experiments using independent RNA samples.
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tumor tissue versus the matched normal tissue (Figure 8).
These tissues included uterine (~1.5 fold decrease, P =
0.0021, n = 42), colon (~1.4 fold decrease, P = 0.0012, n
= 35), and kidney (~1.5 fold decrease, P = 0.0034, n = 20).
This trend was also observed in ovarian matched normal
and tumor tissues, but was not significant (P = 0.0565, n
= 14). Conversely, prostate tissue exhibited a ~1.5 fold
increase in CUL-5 mRNA in tumor tissue versus normal
tissue (P = 0.0335, n = 4). The integrity of the samples on
the cancer profiling array was confirmed by reprobing the
array with a radiolabeled ubiquitin cDNA (data not
shown). As with the normal human tissue expression
array, the CUL-5 674-bp cDNA probe did not hybridize
with yeast total RNA, yeast tRNA, E. coli rRNA, E. coli
DNA, poly r(A) and Cot-1 DNA.

Discussion
The CUL-5 gene is of interest in relation to breast tumori-
genesis as a putative tumor suppressor, since it is located
on a region of chromosome 11 that is associated with
LOH in breast cancer [1-8]. However, there is a lack of
information concerning the expression of CUL-5 in breast
epithelial cells compared with breast cancer cells and in

normal tissues compared with tumor tissues. To address
this issue, we used RT-PCR, Northern blot analysis and
Western blot analysis to analyze CUL-5 mRNA and pro-
tein expression. With these techniques, we demonstrated
a major CUL-5 transcript of ~7.4 kb and a major immuno-
reactive protein of Mr ~ 82 kDa in primary HMECs,
immortalized but non-tumorigenic MCF-10A breast epi-
thelial cells, ER-α positive MCF-7 breast cancer cells, and
ER-α negative MDA-MB-231 breast cancer cells, which is
consistent with previous reports [7,17-19]. While CUL-5
expression was unchanged in breast cancer cells versus
breast epithelial cells, the cells used for these studies came
from unsynchronized subconfluent proliferating cultures,
and cell cycle dependent expression of some CUL family
members has been described [19,20]. Investigation of cell
cycle dependent expression of CUL-5 is crucial to gain
insight into both the mechanism(s) regulating the expres-
sion and potential cellular function(s) of CUL-5.

The multiple human tissue expression array demonstrated
CUL-5 mRNA expression in many fetal and adult tissues.
Ubiquitous expression of CULs is expected, given that
CUL-1, -3 and -4A are all critical for proper development;

Table 1: Primers used for RT-PCR analysis of CUL family members

Primer Sequences Primer Location
and GenBank Accession #

Annealing
Temp. and
Predicted

product size

Restriction
endonuclease
and cut site

CUL-1 forward:
5'-CGCTGGCTTTGTGGCTGCTC-3'
CUL-1 reverse:
5'-TGTGGCGGCTGGCGTAGAA-3'

nt 1510 – 1529
nt 2051 – 2069

XM027270

58°C

560-bp

BglII

1891

CUL-2 forward:
5'-CAGCGAAAGGGATGACAGAGAATG-3'
CUL-2 reverse:
5'-TGAGTAAGAGGCCACGCACCA-3'

nt 1351 – 1374
nt 1688 – 1708
XM005814.3

54°C

358-bp

AatII

1435

CUL-3 forward:
5'-AGAGCGGAAAGGAGAAGTCGTAGA-3'
CUL-3 reverse:
5'-CTCAAAGTCACCCGCAATAGTT-3'

nt 833 – 856
nt 1424 – 1445
XM051985.1

53°C

613-bp

EcoRI
1160

CUL-4A forward:
5'-AACTCCACGCTGCCCTCCATCTG-3'
CUL-4A reverse:
5'-TGCTGCCCGCCCCTCACC-3'

nt 346 – 368
nt 840 – 857
XM027482.1

58°C

512-bp

Sau3AI
452

CUL-4B forward:
5'-GCGGAGCTGCTTTCACCA-3'
CUL-4B reverse:
5'-TTCTTCAACCGTTTCTTTCATCTG-3'

nt 1400 – 1417
nt 1969 – 1992
NM003588.1

54°C

593-bp

HaeIII

1551

CUL-5 forward:
5'-GAGTGGCTAAGAGAAGTTGGTATG-3'
CUL-5 reverse:
5'-TCTTCTCTCATCCTTTCTGTAGTG-3'

nt 1521 – 1544
nt 2171 – 2194
NM003478.1

58°C

674-bp

EcoRI

1767

Ribosomal S9 forward:
5'-GCAGGCGCAGACGGGGAAGC-3'
Ribosomal S9 reverse:
5'-CGCGAGCGTGGTGGATGGAC-3'

nt 6 – 25
nt 397 – 416
NM001013.2

62°C

411-bp

DdeI

349
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mice nullizygous for these CUL proteins fail to develop
past E5.5, E7.5, and E7.5, respectively [21-23]. The find-
ing of CUL-5 expression in various fetal human tissues
suggests that CUL-5 may also play a role in embryogenesis
and development. CUL-5 was expressed in adult tissues
associated with proliferation (e.g. gastrointestinal tract),
and in adult tissues not associated with a high level of pro-
liferation (e.g. brain). Ubiquitous tissue expression of
CUL-5 mRNA is supported by RT-PCR and Northern blot
studies in various human, rat and rabbit tissues
[7,17,18,24]. The high level of CUL-5 mRNA expression
found in skeletal muscle is consistent with similar find-
ings by others [7,18], and suggests that CUL-5 may play
an important role in this tissue. CUL-5 protein expression
was originally reported to be restricted to medullary col-
lecting tubule cells and endothelial cells as determined by
immunohistochemistry [17]. However, our work indi-
cates that several cultured cell types, including breast epi-
thelial cells, breast cancer cell lines of epithelial origin,
and mouse sol8 myoblast cells all express CUL-5 protein.
CUL-5 has also recently been show to be ubiquitously
expressed in the rat brain by immunocytochemistry [25].
The broad nature of CUL-5 expression suggests that CUL-

5 may have a fundamental role in cellular differentiation
and proliferation.

We evaluated 50 cases of breast tumor tissue and matched
normal tissue, and found a significant ~2.2 fold decreased
expression of CUL-5 in tumor tissues compared to normal
tissues. Patient samples on this cancer profiling array sup-
port the hypothesis that decreased expression of CUL-5
may be associated with breast tumorigenesis. This
decrease is remarkable, since a 2 fold reduction in CUL-4A
expression can result in embryonic death in mice [23],
and less than 2 fold increased expression of CUL-4A pre-
vents granulocytic differentiation and promotes prolifera-
tion [26]. The cause of the decreased CUL-5 expression in
breast tumor tissue remains unknown, but may reflect
both genetic and epigenetic events, and warrants further
investigation.

Another potential tumor suppressor gene in breast cancer
that is also located on chromosome 11 q22-23 is the ATM
gene, which is normally important for DNA damage cell
cycle checkpoint control [27]. Similar to our results for
CUL-5 expression in MCF-7 and MDA-MB-231 cells, these
cells do not express decreased levels of ATM mRNA [28].

RT-PCR analysis for CUL-1, -2, -3, -4A, -4B, -5, and ribosomal protein S9 in HMEC, MCF-10A, MCF-7, and MDA-MB-231 cellsFigure 2
RT-PCR analysis for CUL-1, -2, -3, -4A, -4B, -5, and ribosomal protein S9 in HMEC, MCF-10A, MCF-7, and MDA-
MB-231 cells. RT-PCR was performed using 1 µg of total RNA and 25 cycles of PCR. For all of the cells examined, a 560-bp 
cDNA for CUL-1, a 358-bp cDNA for CUL-2, a 613-bp cDNA for CUL-3, a 512-bp cDNA for CUL-4A, a 593-bp cDNA for CUL-
4B, a 674-bp cDNA for CUL-5, and a 411-bp cDNA for ribosomal protein S9 were amplified by RT-PCR. The results shown are 
representative of duplicate experiments using independent RNA samples.
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In contrast to our results obtained for CUL-5 expression in
breast tissue, one study reported that of 11 cases of
matched normal breast and cancerous tissue, seven cases
had higher expression of ATM mRNA associated with the
cancer, three cases expressed similar levels in the normal
tissue versus the cancer, and only one case had decreased
expression in the cancer [28]. The role of the ATM gene in
breast cancer is controversial since mutations in the ATM
gene have not been clearly linked to development of
breast cancer [29,30].

In addition to differential CUL-5 expression in breast
tumor tissue, a statistically significant decrease in CUL-5
expression was found in uterine tumor tissue, colon

tumor tissue, and kidney tumor tissue compared to
matched normal tissues. A similar trend was seen with
ovarian tumor tissue compared to matched normal tissue,
although the difference was not statistically significant. An
increase in CUL-5 expression was seen in prostate tumor
tissue compared to matched normal tissue. Differential
expression of CUL-5 in other human tumors suggests that
dysregulation of CUL-5 expression may occur during tum-
origenesis in these tissues as well. A recent study
demonstrated a ~1.5 fold increase in CUL-5 expression in
lung adenocarcinoma versus unmatched control lung tis-
sue [31]. Of the 21 matched lung samples on the cancer
profiling array used for this study there were seven
matched cases with the diagnosis of adenocarcinoma

Northern blot analysis for CUL-5 in HMEC, MCF-10A, MCF-7, and MDA-MB-231 cellsFigure 3
Northern blot analysis for CUL-5 in HMEC, MCF-10A, MCF-7, and MDA-MB-231 cells. Approximately 10 µg of 
total RNA from HMEC, MCF-10A, MCF-7, MDA-MB-231 was electrophoresed and transferred to a Nytran® supercharge 
membrane. The blots were hybridized with a 32P-labeled 674-bp CUL-5 cDNA or a 905-bp GAPDH cDNA. The results shown 
are from a 4-day exposure to x-ray film for CUL-5 and a 5-hr exposure to x-ray film for GAPDH. A major CUL-5 transcript of 
~7.4 kb was present in all of the cells examined. The results shown are representative of triplicate experiments using independ-
ent RNA samples.
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(Figure 5, 27B/28B, 27I/28I, 27J/28J, 27L/28L, 27N/28N,
27O/28O, 27P/28P). The mean volume ± SEM for CUL-5
expression for the normal tissue and matched tumor tis-
sue for these seven cases is 19230 ± 3352 and 22520 ±
6115, respectively. Therefore, The data for lung adenocar-
cinoma demonstrate a similar trend for higher expression
of CUL-5 in the tumor tissue versus normal tissue,
although the ~1.2 fold difference was not statistically sig-
nificant (P = 0.4574, n = 7).

The functional significance of altered CUL-5 expression in
cancer is currently not known. CUL-5 was originally
described as a gene product involved in vasopressin-medi-
ated increases of intracellular-free calcium [9], and was
subsequently shown to attenuate cAMP production in cul-
tured cells [32]. Recently, it was reported that overexpres-
sion of CUL-5 in CHO and cos 1 cells attenuates
proliferation with an associated decrease in MAPK phos-
phorylation and an increase in p53 [33]. It is not clear if
these reported effects of CUL-5 on cellular signaling and
proliferation are E3 ubiquitin ligase dependent or inde-
pendent. CUL-5 belongs to the CUL protein family, and
CULs have diverse roles in development, cell cycle regula-

tion, and transcriptional regulation through their actions
as components of E3 ubiquitin ligase complexes
[15,16,34]. Loss of function mutations in CUL-1 cause
generalized tissue hyperplasia in C. elegans [10]. CUL-1 is
a component of an E3 ubiquitin ligase complex called the
SCF [35], in which S stands for the adaptor protein SKP-1,
C stands for the yeast CUL CDC53, and F stands for a sub-
strate recognition F-box protein. CUL-1 containing E3
ubiquitin ligase complexes are implicated in ubiquitinat-
ing a wide range of target proteins such as cyclins E and D,
E2f-1, p21, p27, β-catenin and IκB [21,36-49]. CUL-2, -3,
-4A and -5 do not associate with the adaptor protein SKP-
1, but all of these CULs appear to function as components
of E3 ubiquitin ligases, suggesting that they use other
adaptor protein(s) besides SKP-1 [50-53]. In support of
this idea, CUL-2 forms an E3 ubiquitin ligase complex
with the Ring finger protein ROC1/Rbx1, the adaptor
Elongin BC, and a BC-box motif containing substrate rec-
ognition protein such as the VHL tumor suppressor or
mMED8 [34,54-56]. The VHL/Elongin BC/CUL-2/ROC1
E3 ubiquitin ligase complex regulates transcriptional
activity of hypoxia-inducible genes by targeting the α sub-
unit of hypoxia-inducible transcription factors for ubiqui-
tin-mediated degradation during non-hypoxic conditions
[57-63]. In C. elegans, CUL-2 is critical during G1-S phase
transitions, since CUL-2 mutant germ cells exhibit G1-
phase arrest with accumulation of CKI-1, a cyclin
dependent kinase inhibitor [64]. The CUL-2 mutant C.
elegan embryos also exhibited mitotic chromosomes that
were unable to condense [64]. Expression of CUL-3 is
increased in cultured colon cancer cells versus normal
colon cells, and CUL-3 containing E3 ubiquitin ligase
complexes are implicated in ubiquitinating cyclins D and
E [22,49,65]. The CUL-4A gene is located on an amplicon
in breast cancer and was found to be amplified in 16% of
the cases of primary breast cancer examined and the
mRNA was overexpressed in 47% of breast cancers exam-
ined [66]. Research indicates that CUL-4A is involved in
cell cycle control, degradation of the DNA repair protein
DDB2, embryonic development and hematopoiesis
[23,26,67-70]. The recently described CUL-7 which has
been shown to play a role in vascular morphogenesis,
forms an SCF E3 ubiquitin ligase by interacting with the
adaptor SKP-1, the RING finger protein ROC1, and the F-
box protein fbx29 [12,13]. Recent studies demonstrate
that CUL-5 is capable of forming E3 ubiquitin ligase com-
plexes with elongin BC, as is the case with CUL-2 [51]. The
CUL-5/Elongin BC complex was shown to interact with a
number of BC-box motif containing proteins, such as
MUF1, VHL, RNA polymerase II elongation factor Elongin
A, and suppressor of cytokine signaling proteins (e.g.
SOCS1 and WSB-1) [51]. It is of interest that CUL-5 was
recently shown to be involved in MDM2-independent
and adenovirus-dependent ubiquitin-mediated degrada-
tion of p53 [71,72].

Western blot analysis for CUL-5 in HMEC, MCF-10A, MCF-7, MDA-MB-231, and sol8 mouse myoblast cellsFigure 4
Western blot analysis for CUL-5 in HMEC, MCF-10A, 
MCF-7, MDA-MB-231, and sol8 mouse myoblast 
cells. Approximately 50 µg of protein from each cell type, 
and 25 µg of protein from sol8 mouse myoblasts was frac-
tionated by SDS-PAGE. The primary antibody was affinity 
purified anti-CUL-5 (378–393) at ~1.14 µg/ml for 1 hr at 
room temperature. The secondary antibody was an Immu-
nopure® peroxidase goat anti-rabbit IgG (1:40,000, 1 hr at 
room temperature). The blots were visualized using the 
Supersignal® west pico chemiluminescent substrate and 
exposure to x-ray film. Blots were stripped and reprobed 
with rabbit polyclonal anti-actin (1:1,000, Sigma) to evaluate 
loading differences and the integrity of the Western blotting 
procedure. Duplicate experiments yielded similar results.
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Despite growing evidence of functional roles of CUL fam-
ily members, CUL-5 remains largely uncharacterized,
including its possible involvement in breast tumorigene-
sis. Future plans include examination of CUL-5 protein
expression in breast cancer biopsy specimens by immuno-
histochemistry. Also, to elucidate the cellular role(s) of
CUL-5 in breast tumorigenesis, experiments are planned
to modulate CUL-5 expression and to identify CUL-5
interacting proteins from breast epithelial cells and breast
cancer cells.

Conclusions
Breast epithelial cells (HMEC, MCF-10A) and breast can-
cer cells (MCF-7, MDA-MB-231) all express CUL-5 mRNA
and protein without an apparent decrease in CUL-5

expression in the breast cancer cells versus the breast
epithelial cells. CUL-5 mRNA is ubiquitously expressed in
human tissues, which is indicative of an important funda-
mental cellular role for CUL-5. Examination of 50 indi-
vidual cases of matched breast tumor tissue and normal
tissue revealed a 2.2 fold decrease in the expression of
CUL-5 in the tumor tissue versus the matched normal
tissue, thus supporting a potential role for dysregulation
of CUL-5 expression in breast tumorigenesis.

Methods
Cell culture
Primary human mammary epithelial cells (HMEC) were
obtained from Clonetics (Walkersville, MD) and main-
tained using medium and instructions provided by the

Location of samples on the cancer profiling arrayFigure 5
Location of samples on the cancer profiling array. Information concerning the patient samples on this array is available 
at http://bioinfo.clontech.com/dparray (N = normal tissue; T = tumor tissue; a box indicates a matched normal/tumor pair with 
an associated metastatic sample).

Breast Uterus Colon Stomach Ovary Lung   Kidney Rectum Thyroid
1   2  3  4        7   8   9  10     13 14  15 16     19   20      23  24      27  28      31 32     35 36     39 40       48

A * * * * * * * * * * * * * * * * * * * * * * * * * Ubiquitin cDNA
B * * * * * * * * * * * * * * * * * * * * * * * *
C * * * * * * * * * * * * * * * * * * * * * * * *

D * * * * * * * * * * * * * * * * * * * * * * * * * HeLa

E * * * * * * * * * * * * * * * * * * * * * * * *
F * * * * * * * * * * * * * * * * * * * * * * * * * Burkitt’s lymphoma, Daudi
G * * * * * * * * * * * * * * * * * * * *

H * * * * * * * * * * * * * * * * * * * * Chronic myelogenous leukemia, 
K562

I * * * * * * * * * * * * * * * * * * * *

J * * * * * * * * * * * * * * * * * * * Promyelocytic leukemia, HL-60
K * * * * * * * * * * * * * * * * * * * *
L * * * * * * * * * * * * * * * * * * Prostate * Melanoma G361

M * * * * * * * * * * * * * * * * * * * *
N * * * * * * * * * * * * * * * * * * * * * Lung carcinoma

O * * * * * * * * * * * * * * * * * * * *
P * * * * * * * * * * * * * * * * * * * * Lymphoblastic leukemia
Q * * * * * * * * * * * * * * * *

R * * * * * * * * * * ←←←←Colon * * * * * * * Colorectal adenocarcinoma
S * * * * * * * * * * * * * * * *

T * * * * * * * * * * * * * * Pancreas * Burkitt’s lymphoma, Raji
U * * * * * * * * * * * * *
V * * * * * * * *

W * * * * * * Cervix

X * * * * * * * * * *
Small 

Intestine * Yeast total RNA
Y * * * * * * * * * * Yeast t RNA
Z * * * * * * * * * * * E. coli DNA

AA * * * * * * * * Poly (A)

BB * * * * * * * * * Human Cot-1 DNA
CC * * * * * * * Human genomic DNA
DD * * * * * *
EE * * * * * *
FF * * * * * * * Ubiquitin cDNA

N T N T N T N T N T N T N T N T N T N T N T N T
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manufacturer. The MCF-10A breast epithelial cells, which
are immortalized, but nontumorigenic [73,74], were
obtained from the ATCC (Manassas, VA; CRL-10317) and
maintained in Ham's F12:Dulbecco's modified Eagle's
medium (1:1, Sigma, St. Louis, MO) supplemented with
20 ng/ml epidermal growth factor (Gibco Invitrogen
Corp., Carlsbad, CA), 100 ng/ml cholera toxin (Sigma),
0.01 mg/ml insulin (Sigma) 500 ng/ml hydrocortisone
(Sigma) and 5% horse serum (Gibco Invitrogen Corp.).
The ER-α positive MCF-7 breast cancer cell line [75] and
the ER-α negative MDA-MB-231 breast cancer cell line
[76] were obtained from the ATCC (HTB-22 and HTB-26,
respectively) and maintained in Dulbecco's modified
Eagle's medium containing 10% iron-supplemented calf
serum (Hyclone, Logan, UT). All cells were maintained at
37°C in a humidified environment with 5% CO2/95%
air.

RT-PCR analysis
Total RNA was isolated from subconfluent proliferating
cultures using TRI REAGENT® according to the instruc-
tions provided by the manufacturer (MRC, Cincinnati,
OH). RT-PCR was performed using ~1 µg of total RNA for
each sample and the One-Step Superscript™ kit from Inv-
itrogen. The reaction volumes were 50 µl and contained
SUPERSCRIPT™ II reverse transcriptase/Platinum® Taq
DNA polymerase (1 µl), dNTPs (0.2 mM of each),
magnesium sulfate (1.2 mM) and gene specific sense/anti-
sense primers (0.2 µM) at concentrations that were recom-

mended by the manufacturer. The primers used for RT-
PCR of CUL-5 and other CUL family members are shown
in Table 1, and were designed using LASERGENE software
(DNASTAR, Inc., Madison, WI). The RT-PCR conditions
consisted of 30 min at 50°C, 2 min at 94°C, followed by
a denaturation step of 30 sec at 94°C, an annealing step
of 1 min (see Table 1 for annealing temperatures), an
extension step of 1 min at 72°C, and a final extension step
of 10 min at 72°C. Semiquantitative RT-PCR was per-
formed for CUL-5, using 20, 25, and 29 cycles, utilizing a
technique similar to that previously described [77]. The
RT-PCR analyses for CUL-5 expression were performed in
triplicate with independent RNA samples. The CUL-5 RT-
PCR products from HMEC, MCF-10A, MCF-7, and MDA-
MB-231 were cloned using the TOPO TA Cloning® kit
(Invitrogen) and confirmed by DNA sequencing using an
ABI Model 3700 sequencer. The CUL-5 PCR products
from HMEC, MCF-10A, MCF-7, and MDA-MB-231 were
also confirmed by restriction endonuclease digestion with
EcoRI (see Table 1). The CUL-1, -2, -3, -4A and -4B PCR
analyses were performed in duplicate using independent
RNA samples and 25 cycles of PCR. The CUL-1, -2, -3, -4A,
and -4B PCR products were validated by restriction endo-
nuclease digestion with BglII, AatII, EcoRI, Sau3AI, and
HaeIII, respectively (see Table 1). The NT negative control
samples received molecular biology grade water instead of
RNA, and the minus reverse transcriptase samples
received 2 units of Platinum® Taq DNA polymerase with-

Table 2: Analysis of CUL-5 expression in normal human tissues and cancer cell lines using a multiple human tissue expression array. The 
array was hybridized with the 32P-labeled (2 × 107 cpm) 674-bp CUL-5 cDNA for 20 hrs. Analysis of the array was performed using a 
PhosphorImager and ImageQuant software. The background-adjusted volumes for each sample are reported for the 2-day exposure of 
the array to a phosphor-screen.

1 2 3 4 5 6 7 8 9 10 11 12

A whole 
brain 
77451

cerebellu
m left 
67297

substantia 
nigra 
41295

heart 
97252

esophagus 
44513

colon, 
transverse 

62300

kidney 
137204

lung 
58777

liver 
85484

leukemia, HL-
60 48972

fetal brain 
43774

yeast total 
RNA

B cerebral 
cortex 
73105

cerebellu
m right 
110567

accumben
s nucleus 

82337

aorta 
31370

stomach 
63062

colon, 
descendin
g 60792

skeletal 
muscle 
163430

placenta 
80932

pancreas 
79718

HeLa S3 
32213

fetal heart 
55979

yeast 
tRNA

C frontal 
lobe 

68310

corpus 
callosum 
63455

thalamus 
76840

atrium, 
left 83350

duodenum 
54191

rectum 
49102

spleen 
53685

bladder 
61953

adrenal 
gland 
70467

leukemia, K-
562 58024

fetal 
kidney 
63966

E. coli 
rRNA

D parietal 
lobe 

63575

amygdala 
72591

pituitary 
gland 
65881

atrium, 
right 

71626

jejunum 
75472

thymus 
50578

uterus 
46700

thyroid 
gland 
62460

leukemia, 
MOLT-4 
40827

fetal liver 
47640

E. coli 
DNA

E occipital 
lobe 

78745

caudate 
nucleus 
84064

spinal 
cord 

28621

ventricle, 
left 76376

ileum 
66144

peripheral 
blood 

leukocyte 
29858

prostate 
57159

salivary 
gland 
73592

Burkitt's 
lymphoma, 
Raji 31147

fetal 
spleen 
62971

poly r(A)

F temporal 
lobe 

55023

hippocam
pus 52220

ventricle, 
right 

62321

ileocecum 
45452

lymph 
node 
48852

testis 
48162

mammary 
gland 
28970

Burkitt's 
lymphoma, 

Daudi 30413

fetal 
thymus 
53776

human 
C0t-1 
DNA

G paracentra
l gyrus of 
cerebral 
cortex 
48569

medulla 
oblongata 

60577

inter-
ventricular 

septum 
89675

appendix 
56027

bone 
morrow 
37152

ovary 
11139

colorectal 
adenocarcino
ma, SW480 

54931

fetal lung 
64933

human 
DNA 100 
ng 6117

H pons 
55401

putamen 
70937

apex of 
the heart 

91122

colon, 
ascending 

40405

trachea 
38285

lung, 
carcinoma, 

A549 27590

human 
DNA 500 
ng 9541
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out the SUPERSCRIPT™ II reverse transcriptase. Integrity
of the RNA samples was confirmed by amplifying a 411-
bp PCR product for ribosomal protein S9.

Northern blot analysis
Approximately 10 µg of total RNA from HMEC, MCF-10A,
MCF-7, MDA-MB-231 cells, or 5 µg of RNA ladder (0.24–
9.5 Kb, Invitrogen) was electrophoresed for 3.5 – 4 hrs at
70 volts using a 1% agarose gel containing 0.66 M
formaldehyde and 1X MOPS. After electrophoresis, gels
were washed 3 × 5 min with DEPC-treated water and the
RNA was transferred overnight by capillary transfer to a
Nytran® supercharge membrane (Schleicher & Schuell,
Keene, NH) using 20X SSC (Ambion, Austin, TX) and the
Turboblotter™ rapid downward transfer system (Sch-
leicher & Schuell). Following the transfer, RNA was
immobilized to the membrane by UV irradiation using a
model 1800 UV-Stratalinker (Statagene, La Jolla, CA) and

by baking for 2 hrs at 70°C. Membranes were stained with
blot stain blue (Sigma), according to the procedure pro-
vided by the manufacturer, to visualize the RNA ladder.
Membranes were then prehybridized with ULTRAhyb™
hybridization buffer (Ambion) for 0.5 – 1 hr at 42°C. The
CUL-5 cDNA probe used for Northern blot was prepared
by RT-PCR using RNA from HMEC and the primer pairs
described in Table 1. The CUL-5 PCR product was purified
using the QIAquick® PCR purification kit (QIAGEN,
Valencia, CA) and the DNA concentration determined by
measuring the absorbance at 260 nm. The purified DNA
(~25 ng) was radiolabeled using deoxycitidine 5'-triphos-
phate [α-32P] (3000 Ci/mmol, Perkin Elmer Life Sciences,
Boston, MA) and the DECAprime™ II DNA labeling kit
(Ambion), according to the instructions provided by the
manufacturer. The radiolabeled probe was separated from
the unincorporated nucleotides using NucTrap® probe
purification columns (Stratagene). The radiolabeled DNA

Expression of CUL-5 in normal tissues versus matched tumor tissuesFigure 6
Expression of CUL-5 in normal tissues versus matched tumor tissues. The cancer profiling array was hybribized with 
the 32P-labeled (2 × 107 cpm) 674-bp CUL-5 cDNA for 20 hrs. The results shown represent the 2-day exposure to the phos-
phor screen. The location of individual samples on the array is shown in Figure 5.
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was denatured prior to hybridization by adding 0.1 vol-
umes of 1 N NaOH and incubating for 10 min at 37°C.
After prehybidization, the membranes were hybridized
for 18 hrs at 42°C with ~107cpm of denatured radiola-
beled probe in ULTRAhyb (Ambion). Following hybridi-
zation, the membranes were washed 2 × 5 min with 2X
SSC/0.1% SDS at 42°C, followed by 2 × 15 min washes
with 0.1X SSC/0.1% SDS at 42°C. Membranes were then
exposed to a Molecular Dynamics phosphor screen
(Amersham Pharmacia Biotech, Piscataway, NJ) or to x-
ray film for documentation. To account for loading and
transfer differences, the membranes were stripped by
washing 2 × 15 min at 99°C with 0.1X SSC/0.5% SDS,
and reprobed using a radiolabeled 905-bp mouse GAPDH

cDNA (Ambion). Northern blots were performed in trip-
licate using independent RNA samples.

Western blot analysis
Protein samples were prepared from approximately 107

subconfluent proliferating HMEC, MCF-10A, MCF-7, and
MDA-MB-231 cells using M-Per™ mammalian protein
extraction reagent (Pierce, Rockford, IL) containing a
complete™ mini protease inhibitor cocktail tablet (Roche
Molecular Biochemicals, Indianapolis, IN), according to
the instructions provided by the manufacturers. Protein
concentrations were determined using the BCA™ protein
assay kit (Pierce) and ~50 µg of each sample was diluted
using 2X SDS sample buffer (0.125 M Tris-Cl/0.1% SDS,

Expression of CUL-5 in the 50 cases of matched normal breast tissue and breast tumor tissueFigure 7
Expression of CUL-5 in the 50 cases of matched normal breast tissue and breast tumor tissue. The data in this fig-
ure was derived from quantification of the data in Figure 6 using a PhosphorImager and ImageQuant software, and the back-
ground adjusted volumes are shown for each sample. 41 of the 50 cases of breast tissue (82%) exhibited a decrease in CUL-5 
expression in the tumor tissue versus the matched normal tissue. Three of the 50 cases had a matched metastatic sample 
(cases 39, 40, and 41), and the level of CUL-5 expression in the metastatic samples was similar to that seen in the associated 
tumor tissues.
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pH 6.8, 20% glycerol, 4% SDS, 0.2% 2-mercaptoehtanol,
0.001% bromphenol blue), and the samples were boiled
for 5 min. Samples were electrophoresed using SDS-PAGE
(10% acrylamide separating gel, 3.9% acrylamide stacking
gel) according to the method of Laemmli [78]. Proteins
were transferred at 4°C to a PVDF-Plus membrane (MSI,
Westboro, MA) at 14 volts for 18 hrs. A synthetic peptide
consisting of amino acids 378–393 (NDATIFKLEL-
PLKQKG) of human CUL-5, containing a COOH-termi-
nal cysteine, made as an amide, was produced and
conjugated to ovalbumin (BioSource International, Hop-
kinton, MA). Rabbit polyclonal antiserum was generated
against this synthetic peptide and was immunopurified
using a thiol coupling gel. The blots were blocked for 1 hr
at room temperature using Superblock® (Pierce, Rockford,
IL), and incubated with affinity-purified anti-CUL-5
(378–393) for 1 hr at room temperature at a dilution of
1:1,000 (~1.14 µg/ml) in antibody dilution buffer (10%
Superblock®/90% 10 mM Tris, pH 7.5, 100 mM NaCl, and
0.1% Tween® 20). The blots were then washed 6 × 5 min
with wash buffer (10 mM Tris pH 7.5, 100 mM NaCl, and
0.1% Tween® 20). After washing, the blots received a sec-
ondary antibody for 1 hr at room temperature, that was
either Immunopure® peroxidase conjugated goat anti-rab-
bit IgG (1:40,000, Pierce) or a Cruz marker compatible
peroxidase conjugated goat anti-rabbit IgG (1:5,000,
Santa Cruz Biotechnology, Inc., Santa Cruz, CA) prepared
in antibody dilution buffer. The blots were then washed as
previously described and exposed to Supersignal® west
pico chemiluminescent substrate (Pierce). The Western
blots were visualized by exposure to x-ray film. As a nega-

tive control, IgG was purified from preimmune serum
using a NAb™ protein A spin chromatography kit (Pierce),
and ~1.14 µg/ml of the IgG purified preimmune serum
was used as the primary antibody. An additional control
for the Western blots involved adding a 200 molar excess
of the immunizing peptide to the anti-CUL-5 (378–393)
antiserum for 30 min at room temperature prior to blot-
ting. A cellular lysate from sol8 mouse myoblast cells
(Santa Cruz Biotechnology, Inc.) was used as a positive
control in the Western blots, since skeletal muscle was
found to express the highest levels of CUL-5 mRNA (see
Table 2). To control for sample loading differences and
the integrity of the Western blotting procedure, the blots
were stripped using 0.2 N NaOH and reprobed using a
rabbit polyclonal antibody (1:1,000, Sigma) that recog-
nizes actin (~42 kDa).

Human expression arrays
The human multiple tissue expression array was obtained
from Clontech (Palo Alto, CA). This array contains poly
A+ RNA from 61 adult tissues, 7 fetal tissues, and 8 cancer
cell lines. The samples on the multiple tissue expression
array are normalized using 8 different housekeeping genes
[79-81]. The multiple tissue expression array was
prehybridized for 30 min at 65°C in 10 ml of ExpressHyb
(Clontech) containing 1 mg of sheared salmon testes
DNA. The radiolabeled CUL-5 probe was prepared as
described for Northern blot analysis, and 2 × 107 cpm of
the probe was mixed with 30 µg of C0t-1 DNA, 150 µg of
sheared salmon testes DNA, and 50 µl of 20X SSC, and the
mixture was heated at 95°C for 5 min followed by 68°C

Expression of CUL-5 in matched normal tissue versus tumor tissueFigure 8
Expression of CUL-5 in matched normal tissue versus tumor tissue. The data in this figure was derived by quantifica-
tion of the data in Figure 6 using a PhosphorImager and ImageQuant software. The mean volumes ± the SEM are shown. An 
asterisk indicates a statistically significant difference between the matched normal versus tumor tissue as determined by two-
way paired t-tests (P ≤ 0.05). A statistically significant decrease in CUL-5 expression was found in breast tumor tissue (~2.2 fold 
decrease, P < 0.0001, n = 50), uterine tumor tissue (~1.5 fold decrease, P = 0.0021, n = 42), colon tumor tissue (~1.4 fold 
decrease, P = 0.0012, n = 35), and kidney tumor tissue (~1.5 fold decrease, P = 0.0034, n = 20), compared to matched normal 
tissues. A significant increase in CUL-5 expression was found in prostate tumor tissue compared to matched normal tissue 
(~1.5 fold increase, P = 0.0335, n = 4).
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Table 3: Clinical information and fold-change in CUL-5 expression for the 50 cases of matched normal tissue and breast tumor tissue. 
The fold-increase (↑) or fold-decrease (↓) in CUL-5 expression in the tumor tissue compared to the matched normal tissue is shown for 
each individual matched pair.

Sample Number Array Location Normal/
Tumor

Patient Information Fold Change in CUL-5

#1 1A/2A 39-yr-old Caucasian, noninfiltrating intraductal 
carcinoma

↓1.89

#2 1B/2B 78-yr-old Caucasian, lobular carcinoma ↓1.79
#3 1C/2C 49-yr-old Caucasian, infiltrating intraductal carcinoma ↓1.66
#4 1D/2D 52-yr-old Caucasian, infiltrating intraductal carcinoma ↓1.90
#5 1E/2E 66-yr-old Caucasian, infiltrating intraductal carcinoma ↑1.01
#6 1F/2F 65-yr-old Caucasian, lobular carcinoma ↓3.48
#7 1G/2G 44-yr-old Caucasian, infiltrating ductal carcinoma ↓2.07
#8 1H/2H 33-yr-old Caucasian, infiltrating ductal carcinoma ↓3.00
#9 1I/2I 40-yr-old Caucasian, infiltrating ductal carcinoma ↓2.26
#10 1J/2J 49-yr-old Caucasian, infiltrating ductal carcinoma ↓1.26
#11 1K/2K 41-yr-old Caucasian, lobular carcinoma ↓2.34
#12 1L/2L 50-yr-old Caucasian, infiltrating ductal carcinoma ↓1.66
#13 1M/2M 61-yr-old Caucasian, lobular carcinoma ↓4.87
#14 1N/2N 64-yr-old Caucasian, infiltrating ductal carcinoma ↓4.85
#15 1O/2O 40-yr-old Caucasian, infiltrating ductal carcinoma ↓4.66
#16 1P/2P 50-yr old Caucasian, infiltrating ductal carcinoma ↓2.10
#17 1Q/2Q 44-yr-old Caucasian, infiltrating ductal carcinoma ↑1.34
#18 1R/2R 52-yr-old Caucasian, infiltrating ductal carcinoma ↓1.41
#19 1S/2S 47-yr-old Caucasian, infiltrating ductal carcinoma ↓1.95
#20 1T/2T 59-yr-old Caucasian, infiltrating ductal carcinoma ↓1.67
#21 1U/2U 50-yr-old Caucasian, infiltrating ductal carcinoma ↑1.24
#22 1V/2V 68-yr-old Caucasian, infiltrating ductal carcinoma ↓2.45
#23 1W/2W 63-yr-old Caucasian, tubular carcinoma ↓1.51
#24 1X/2X 44-yr-old Caucasian, fibrosarcoma ↓2.52
#25 1Y/2Y 49-yr-old Caucasian, infiltrating lobular carcinoma ↓1.84
#26 1Z/2Z 64-yr-old Caucasian, infiltrating ductal carcinoma ↓4.08
#27 1AA/2AA 50-yr-old Caucasian, infiltrating ductal carcinoma ↓2.63
#28 1BB/2BB 39-yr-old Caucasian, mixed lobular-ductal carcinoma ↓3.15
#29 1CC/2CC 66-yr-old Caucasian, infiltrating lobular carcinoma ↑1.07
#30 1DD/2DD 65-yr-old Caucasian, infiltrating lobular carcinoma ↓4.68
#31 1EE/2EE 61-yr-old Caucasian, infiltrating lobular carcinoma ↓7.41
#32 1FF/2FF 38-yr-old Caucasian, infiltrating lobular carcinoma ↓5.19
#33 3A/4A 58-yr-old Caucasian, infiltrating ductal carcinoma ↓1.88
#34 3B/4B 64-yr-old Caucasian, infiltrating ductal carcinoma ↓2.72
#35 3C/4C 47-yr-old Caucasian, tubular adenocarcinoma ↓2.61
#36 3D/4D 40-yr-old Caucasian, infiltrating ductal carcinoma ↓1.87
#37 3E/4E 60-yr-old Caucasian, lobular carcinoma ↓6.37
#38 3F/4F 62-yr-old Caucasian, infiltrating ductal carcinoma ↓5.01
#39 3G/4H 71-yr-old Caucasian, infiltrating ductal carcinoma ↓4.51
#40 3I/4J 52-yr-old Caucasian, infiltrating ductal carcinoma ↓4.16
#41 3K/4L 57-yr-old Caucasian, infiltrating ductal carcinoma ↓4.42
#42 3M/4M 43-yr-old Caucasian, infiltrating ductal carcinoma ↓5.08
#43 3N/4N 40-yr-old Caucasian, infiltrating ductal carcinoma ↓1.30
#44 3O/4O 48-yr-old Caucasian, infiltrating ductal carcinoma ↓2.65
#45 3P/4P 45-yr-old Caucasian, infiltrating ductal carcinoma ↑2.28
#46 3Q/4Q 47-yr-old Caucasian, medullary carcinoma ↑1.52
#47 3R/4R 60-yr-old Caucasian, infiltrating ductal carcinoma ↑2.69
#48 3S/4S 71-yr-old Caucasian, infiltrating ductal carcinoma ↑1.06
#49 3T/4T 53-yr-old Caucasian, mucinous adenocarcinoma ↑1.41
#50 3U/4U 42-yr-old Caucasian, infiltrating ductal carcinoma ↓1.44
Page 13 of 16
(page number not for citation purposes)



Molecular Cancer 2003, 2 http://www.molecular-cancer.com/content/2/1/40
for 30 min. The array was then hybridized with radiola-
beled probe for 20 hrs at 65°C in 5 ml of ExpressHyb. The
array was washed 5 × 20 min at 65°C with 2X SSC/0.1%
SDS, and 2 × 20 min at 55°C with 0.1X SSC/0.5 % SDS.
The array was exposed to a phosphor screen for 1, 2, and
3 days and to x-ray film for 3 and 4 days. The array was
stripped using boiling 0.5% SDS and reprobed for 20 hrs
using a radiolabeled human ubiquitin cDNA (1 × 107

cpm), to ensure the integrity of the samples on the array.
The cancer profiling array contains SMART™ cDNA syn-
thesized from CLONTECH's premium RNA™ from 241
cases of matched normal and tumor tissue from individ-
ual patients [82]. Information concerning the patient
samples on this array can be obtained at http://bio
info.clontech.com/dparray[83]. Information concerning
the 50 cases of matched breast tissue is located in Table 3,
and the location of samples on the array is shown in Fig-
ure 5. The matched samples on the cancer profiling array
are normalized using four different housekeeping genes.
The cancer profiling array was analyzed using a technique
similar to that described for the multiple tissue expression
array, except that the array was washed 4 × 30 min at 65°C
with 2X SSC/0.5% SDS, followed by 1 × 30 min at 65°C
with 0.2X SSC/0.5% SDS, with a final 5 min wash using
2X SSC. The cancer-profiling array was exposed to a phos-
phor-screen for 1, 2, and 3 days and to x-ray film for 3 and
4 days. The cancer profiling array was stripped and rep-
robed using radiolabeled human ubiquitin cDNA to
ensure the integrity of the samples on the array. Both
arrays were analyzed using a Molecular Dynamics STORM
860 PhosphorImager and ImageQuant software. Analysis
of the arrays consisted of drawing individual boxes or
grids around the hybridization signal for each sample and
subtracting an average background value adjusted to the
area of the box or grid for each individual sample. The 2-
day exposure for both arrays was used for quantification
of CUL-5 expression with the PhosphorImager, since the
sample signals were in the linear range. Statistical analysis
of the cancer-profiling array was performed using Graph-
Pad prism 2.01 software (GraphPad Software, inc., San
Diego, CA) and two-tailed paired t-tests (P ≤ 0.05).
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