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Abstract
Wide-spread hypomethylation of CpG dinucleotides is characteristic of many cancers.
Retrotransposons have been identified as potential targets of hypomethylation during cellular
transformation. We report the results of an preliminary examination of the methylation status of
CpG dinucleotides associated with the L1 and HERV-W retrotransposons in benign and malignant
human ovarian tumors. We find a reduction in the methylation of CpG dinucleotides within the
promoter regions of these retroelements in malignant relative to non-malignant ovarian tissues.
Consistent with these results, we find that relative L1 and HERV-W expression levels are elevated
in representative samples of malignant vs. non-malignant ovarian tissues.

Findings
In the genome of differentiated somatic human cells, it is
estimated that ~80% of all CpG dinucleotides are methyl-
ated [1]. Methylation of CpG dinucleotides located in or
near promoter regions is typically associated with tran-
scriptional repression [e.g, [2]]. Most retrotransposons,
satellite DNA sequences, imprinted genes, X-chromosome
inactivated genes, and many genes that are expressed tis-
sue-specifically and that are transcriptionally silenced in
differentiated human cells are associated with highly
methylated (hypermethylated) CpG dinucleotides [3,4].
In contrast, CpG dinucleotides associated with the pro-
moter regions of genes normally expressed in differenti-
ated human cells, including tumor suppressor genes and
genes involved in DNA repair and apoptosis, are associ-
ated with under-methylated (hypomethylated) CpG dinu-
cleotides [e.g, [5]]. A number of recent studies have
demonstrated that dramatic changes in these characteris-
tic patterns of methylation are typically associated with
cellular transformation [3]. For example, wide-spread

(global) hypomethylation of up to 25% of CpG dinucle-
otides normally methylated in differentiated cells has
been shown to be characteristic of many cancer cells,
including those isolated from prostate, liver, ovarian and
breast carcinomas [6]. In many instances, these increases
in levels of global hypomethylation have been observed
to be correlated with an increase in more localized pat-
terns of hypermethylation associated with a subset of
genes that includes tumor suppressor genes and other
genes involved in DNA repair and apoptosis. The conse-
quent reduction in expression of these genes is believed to
initiate a cascade of events leading to cellular transforma-
tion [7].

Relatively little is currently known concerning the specific
targets of global increases in hypomethylation associated
with cellular transformation, although they frequently
include repetitive sequences located in proximity to cen-
tromeres [8]. One major class of middle repetitive
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sequences believed to be targets of hypomethylation dur-
ing cellular transformation are retrotransposons [9,10].

At least 40% of the human genome is comprised of retro-
transposons [11]. Moreover, retrotransposons are widely
dispersed throughout the human genome and, as alluded
above, these elements are generally hypermethylated and
transcriptionally silenced in most postnatal somatic cells.
Retrotransposons are classified into three subtypes: long
interspersed elements (LINEs) comprising 16–21% of the
genome, short interspersed elements (SINEs) comprising
~13% of the genome and LTR [long terminal repeat] ret-
rotransposons comprising 5–8% of the genome [12].

A significant increase in the expression of a variety of ret-
rotransposons has been previously observed in a number
of carcinomas including lymphocytic leukemia [13,14],
lung [15], renal cell [9], colorectal [16] and breast [17]
carcinomas. Direct evidence for the hypomethylation of
retrotransposons has been observed in hepatocellular
[18], prostate [19], lymphocytic leukemia [20], renal cell
[9], and urinary bladder [21] carcinomas. In this paper,
we report the results of a preliminary examination of the
methylation status of CpG dinucleotides associated with
two representative families of retrotransposons in benign
and malignant human ovarian tumors. L1 is the most
abundant family of human LINE elements comprising
about 17% of the genome [22]. Human Endogenous Ret-
rovirus-W (HERV-W) is a family LTR retrotransposons
consisting of ~140 full-length or truncated elements ran-
domly dispersed throughout the human genome [23].
Our results demonstrate that large numbers of both fami-
lies of retrotransposons are hypomethylated in ovarian
carcinomas. We further demonstrate that relative levels of
both L1 and HERV-W expression are elevated in represent-
ative samples of malignant vs. non-malignant ovarian tis-
sues. Our findings are consistent with the hypothesis that
retrotransposons are a major target of global hypomethyl-
ation associated with cellular transformation.

To test the hypothesis that L1 and HERV-W elements may
experience reduced methylation in malignant ovarian car-
cinomas, we utilized a restriction-enzyme based assay to
compare the methylation status of CpG dinucleotides
located within the promoter regions of these elements in
a series of malignant and non-malignant ovarian tissues.
The restriction enzymes MspI and HpaII both recognize
the sequence CCGG but HpaII only cuts when the recog-
nition sequence is unmethylated at the inner cytosine
(i.e., CCGG) while MspI is indifferent to the methylation
status of the inner cytosine

Figure 1A &1B displays Southern blots of HpaI and MspI
digested genomic DNA isolated from tissue samples and
hybridized against probes homologous to regions encom-

passing the promoter regions of each family of elements.
The HpaII/MspI restriction sites located within the pro-
moter regions of both L1 and HERV-W elements are poly-
morphic among family members. By aligning the
promoter regions of both families of elements present in
the consensus human genome http://genome.ucsc.edu/
and identifying the HpaII/MspI sites present, we estimated
that the expected size range of restriction fragments within
the elements to be between ~100 – 700 bp and ~1500 –
3000 bp for L1 elements and between ~100 – 500 bp for
HERV-W elements. Larger sized fragments representing
partial digestions and/or polymorphic HpaII/MspI sites
located within the elements or in regions flanking the ele-
ments are also visible.

The results presented in Figure 1A &1B show that MspI-
generated bands within the expected size range of internal
fragments were visible in digestions of DNA from all tis-
sue samples. In contrast, HpaII-generated fragments
within the expected size range were only visible in diges-
tions of DNA from the malignant samples. These results
are indicative of a consistent reduction in the methylation
of CpG dinucleotides within the promoter regions of both
L1 and HERV-W elements in the malignant tissue. The fact
that the number and intensity of HpaII generated bands in
the malignant samples is significantly less than generated
by MspI digestion indicates that some L1 and HERV-W ele-
ments remain hypermethlyated in the malignant samples.
The reasons for this variable response among members of
the same retrotransposon family are currently under
investigation. Regardless, so far as we know, this is the first
report of the hypomethylation of L1 elements in ovarian
carcinomas and of the hypomethylation of HERV-W in
any human cancer.

As noted above, hypomethylation of retroelement pro-
moter regions may be expected to result in a localized
relaxation of chromatin structure and a corresponding
increased element expression [e.g., [10]]. In order to test
this prediction in our samples, we extracted total RNA
from representative samples of two malignant and two
non-malignant ovarian tissues and conducted quantita-
tive Real Time RT-PCR. Two replicate assays were run for
each tissue sample. The results shown in Figure 1C indi-
cate a significant average increase in both L1 and HERV-W
expression in the malignant vs. non-malignant ovarian
tissues examined.

If further work supports the generality of these and other
similar findings [10,19-22], the implications would be
important. Hypomethylation is generally associated with
the relaxation of chromatin structure, an increased acces-
sibility of transcription factors and a consequent elevation
in levels of expression [27]. Our findings are generally
consistent with these prior results. Since transcription is a
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rate limiting step in retrotransposition [11], hypomethyl-
ation might be expected to result in an increase in retro-
transposon insertion mutations. While there have been
occasional reports of L1 and other retrotransposon inser-
tion mutations implicated in cancer development in
humans [e.g, [28]], this may not be as significant a factor
as it apparently is in the mouse [29], perhaps because
most L1 and other retrotransposon sequences in the
human genome are believed to be truncated or otherwise
transpositionally defective [30].

Another possible consequence of the hypomethylation of
retroelements in humans is the opportunity it provides for
ectopic pairing and recombination among homologous
elements dispersed throughout the genome. The unequal-
crossover events typically associated with ectopic recom-
bination might well account for at least some of the vari-
ous chromosomal aberrations and aneuploid events
characteristic of human malignancies. Indeed, direct evi-
dence of such an effect has recently been documented in
mice [31,32]. In humans, L1 retrotransposition events
have been shown to induce various forms of chromo-
somal instabilities [33] and L1 and other retrotransposon
sequences have frequently been linked with a variety of
chromosomal aberrations associated with human cancers
[e.g, [34]].

A third possible consequence of the hypomethylation of
retroelements in cancer cells is the potential regulatory
impact of the release of methylation complexes known to
be bound to these elements in post-embryonic somatic
cells [e.g, [35]]. Although little is currently understood
concerning the factors that determine the relative affinity
of methylation complexes for DNA target sequences, ret-
rotransposons are known to be high affinity targets [e.g,
[10]]. Complexes released from retroelements may initi-
ate a cascade of regulatory changes by binding to other
lower affinity target sites and possibly resulting in the
down regulation of genes essential for DNA repair and
genome stability.

Methods
Tissue samples, DNA extraction, Southern hybridization
Bulk ovarian tissue samples were surgically removed and
placed in RNA later (Ambion, Austin, TX) in the operating
room within 1 minute of removal from the patients. The
pathological and clinical information of each sample is as
follows: Sample #11 (Age 43), Adenocarcinoma (papil-
lary serous, poorly differentiated, Stage IIc); Sample #18
(Age 34), Adenocarcinoma (endometroid, well differenti-
ated, Stage IIb); Sample #19 (Age 57), Adenocarcinoma
(papillary serous, poorly differentiated, Stage IIc); Sample
#21 (Age 80), Malignant mixed mullerian; Sample #23
(Age 52), Adenocarcinoma (papillary serous, poorly dif-
ferentiated, Stage IIa); Sample #29 (Age 66), Adenocarci-

Hypomethylation and expresion of L1 and HERV-W ele-ments in ovarian cancerFigure 1
Hypomethylation and expresion of L1 and HERV-W 
elements in ovarian cancer. Genomic DNA was digested 
either with MspI (left) or HpaII (right), and hybridized with 
probes specific for the promoter regions of L1 (A) or HERV-
W (B) elements. The restriction enzymes MspI and HpaII 
recognize the sequence CCGG but HpaII only cuts when the 
recognition sequence is unmethylated at the inner cytosine 
(i.e., CCGG) while MspI is indifferent to the methylation sta-
tus of the inner cytosine. Brackets indicate bands from 
restriction cut sites internal to the elements (B = benign 
cystic mass; LMP = low-malignancy potential or borderline 
tumor; N = normal ovary. (C) Real time RT-PCR was per-
formed to determine expression levels of LINE-1 and HERV-
W elements in representative malignant and non-malignant 
samples. Normalized values (retroelement expression value 
divided by expression value of the RPS27A control gene. 
Shown is the average of 3 replicate assays per sample ± SE. 
RPS27A expression has been previously determined to be 
unchanged between the malignant and non-malignant samples 
examined in this study (see text for details).
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noma (papillary serous, poorly differentiated, Stage III);
Sample #15 (Age 54), Serous borderline /low-malignancy
potencial; Sample #31 (Age 40), Benign cystic masses;
Sample #16 (Age 53), Normal ovary; Sample #89 (Age
53), Normal ovary. This study was approved by the Insti-
tutional Review Board of the University of Georgia and of
Northside Hospital (Atlanta), from which the samples
were obtained.

Genomic DNA was extracted by proteinase K digestion of
20–25 mg of bulk ovarian tissue and phenol-chloro-
phorm extraction. DNA was ethanol precipitated and re-
suspended in water. Ten micrograms of genomic DNA
were digested overnight at 37°C with 10 to 16 excess
amount of either HpaII [methylation sensitive restriction
enzyme] or MspI [not sensitive for methylation at internal
cytosine]. These enzymes recognize the sequence CCGG,
which is found in diverse positions in the promoter
regions of these retroelements. Digested DNA was
resolved on an agarose gel and transferred to a nylon
membrane (Hybond N; Amersham-Biosciences, Piscata-
way, NJ) with NaOH. Membranes were prehybridized for
1 hour with 10 mg/ml of herring sperm DNA in Church
buffer [0.5 M NaH2PO4, 7% SDS and 10 M EDTA] and
hybridized overnight at 65°C in the same buffer with
100–200 ng of probe DNA labeled with [α-32P]dCTP
using a Nick Translation Kit (Roche, Indianapolis, IN).
Filters were washed twice for 15 min in 2 × SSC and 0.1%
SDS and then twice for 30 min in 1 × SSC and 0.1% SDS
at 65°C and exposed to Phosphorimager screens (Molec-
ular Dynamics, Sunnyvale, CA).

The HERV-W probe was designed in the LTR region,
downstream of the putative TTAAAT box. PCR was per-
formed on genomic DNA with forward primer HERVF 5'-
CCACCACTGCTGTTTGCCAC-3 ' and reverse primer
HERVR 5 '-GCCTCGTGTTCTCTGACCTGGGG-3', produc-
ing a 304 bp fragment. The LINE1 probe for the promoter
region was designed according to Takai et al [18]. PCR was
performed on genomic DNA with forward primer L1F 5'-
CGGGTGATTTCTGCATTTCC-3' and reverse primer L1R
5'-GACATTTAAGTCTGCAGAGG-3', giving a product of
540 bp. PCR products were cloned into pCR2.1-TOPO
and transformed into TOP10 E. coli cells (Invitrogen,
Carlsbad, CA). Plasmids were extracted (Qiaprep Spin
Miniprep Kit, Qiagen, Valencia, CA) and sequenced. Sub-
sequent PCR reactions were performed on cloned plasmid
DNA for both HERV-W and LINE1, and gel extracted PCR
products were used as hybridization probes.

RNA extraction, quantitative real time RT-PCR
Total RNA was extracted using Trizol Reagent (Invitrogen,
Carlsbad, CA) and 2–5 µg of total RNA were reverse tran-
scribed into first-strand cDNA using the Thermoscript RT-
PCR system (Invitrogen, Carlsbad, CA) in a final volume

of 20 µl. The HERV-W primers used were: forward; 5'-
TTGGCGGTATCACAACCTCT-3' reverse; 5'-GTGACGAT-
TCCGGATTGA-3'; (product size:230 bp) based on the
HERV-W sequence (GeneBank accession no. AC000064).
The LINE-1 primers were: forward 5'-TCATAAAG-
CAAGTCCTCAGTGACC-3'; reverse 5 '-GGGGTGGA-
GAGTTCTGTAGATGTC-3' (product size:165 bp) based
on the LINE-1 sequence (GeneBank accession no.
M80343). Real-time monitoring of PCR reactions was per-
formed using the DNA Engine Opticon 2 System (MJ
Research, Waltham, MA) and the SYBR Green iQ dye (Bio-
Rad, Hercules, CA) [24]. For each reaction, the amount of
a target and of an endogenous control (Ribosomal Protein
S27A) were determined using a calibration curve and the
amount of target molecule was divided by the amount of
endogenous reference to obtain a normalized target value
[25]. RPS27A has been previously identified as a valid
control gene in expression studies conducted among
human malignant and control tissues [26]. In addition,
we independently verified by microarray analyses that
RPS27A expression levels are constant among the samples
examined in this study (data not shown). Separate calibra-
tion (standard) curves for RPS27A, HERV-W and LINE-1
were constructed using serial dilutions of total cDNA from
normal human ovarian tissue (purchased from Ambion,
Austin, TX). Standards for HERV-W, LINE-1 and RPS27A
were defined to contain an arbitrary starting concentra-
tion, and serial dilutions were used to construct the stand-
ard curve. Standard curve calibrations were included in
each assay.

List of abbreviations
HERV-W, human endogenous retrovirus-W; LINEs, L1,
long interspersed elements; LTR, long terminal repeat;
RPS27A, ribosomal protein S27A; PCR, polymerase chain
reaction; RT-PCR, reverser transcription PCR
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