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Abstract
Background: Nuclear factor kappa B (NFκB) is a pro-malignant transcription factor with
reciprocal effects on pro-metastatic and anti-metastatic gene expression. Interestingly, NFκB
blockade results in the reciprocal induction of retinoic acid receptors (RARs). Given the
established property of RARs as negative regulators of malignant progression, we postulated that
reciprocal interactions between NFκB and RARs constitute a signaling module in metastatic gene
expression and malignant progression. Using Line 1 tumor cells as a model for signal regulation of
metastatic gene expression, we investigated the reciprocal interactions between NFκB and RARs
in response to the pan-RAR agonist, all-trans retinoic acid (at-RA) and the pan-RAR antagonist,
AGN193109.

Results: At-RA [0.1–1 µM] dose-dependently activated RAR and coordinately trans-repressed
NFκB, while AGN193109 [1–10 µM] dose-dependently antagonized the effects of at-RA. At-RA
and AGN193109 reciprocally regulate pro-metastatic matrix metalloprotease 9 (MMP 9) and its
endogenous inhibitor, the tissue inhibitor of metalloprotease 1 (TIMP 1), in a manner consistent
with the putative roles of NFκB and RAR in malignant progression. Activation of RAR concurs with
its ubiquitination and proteosomal degradation. Accordingly, the proteosome inhibitor, MG132 [5
µM], blocked RAR degradation, quelled RAR trans-activation and enhanced RAR trans-repression
of NFκB.

Conclusion: We conclude that reciprocal interactions between NFκB and RARs constitute a
signaling module in metastatic gene expression and malignant progression and propose that the
dissociative effect of proteosome inhibitors could be harnessed towards enhancing the anticancer
activity of retinoids.

Background
NFκB (p50/p65 heterodimer) is a ubiquitous transcrip-
tion factor that binds to promoter sequences (κB sites), to

modulate the expression of a wide array of genes impli-
cated in diverse cellular processes. NFκB activity is prima-
rily regulated by cytosolic retention through interactions
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with IκBα that mask its nuclear localization sequence.
Activation (nuclear translocation) of NFκB proceeds
through activation of the serine-specific multi-component
IκB kinase (IKK), which phosphorylates IκBα at two con-
served N-terminal serine residues and signals for the ubiq-
uitination and proteosomal degradation of IκBα [1,2].
Oncogenic kinases [3,4] and physico-chemical stressors
such as the hypoxic conditions and pro-inflammatory
content of the tumor microenvironment [5,6] contribute
to the hyperactivated state of NFκB in cancer, and its fun-
damental implications in cellular de-differentiation and
proliferation [7,8], the subversion of apoptosis [8-10], the
induction of neo-angiogenesis, invasive growth and
metastasis [11-13].

Using a genetically engineered IκBα with critical serine
substitutions that hinder signal-induced degradation, we
[9], and others [12,13] have demonstrated that suppres-
sion of NFκB activity decreases malignant progression.
Interestingly, NFκB reciprocally regulates putative pro-
metastatic and anti-metastatic factors [9]. While the
induction of pro-metastatic gene expression is consistent
with the transcription activating function of NFκB, anti-
metastatic gene repression is a mechanistic caveat.
Through microarray profiling and differential gene
expression analyses of a murine lung alveolar carcinoma
cell line (WT-Line1) and its non-malignant counterpart
transduced with a dominant negative inhibitor of NFκB
(mIκB-Line1), we identified the reciprocal induction of
retinoic acid receptors (RARs). Based on the mutually
antagonistic interactions between NFκB (p65) and multi-
ple members of nuclear receptor superfamily [14,15], and
given the auto-inductive property of nuclear receptors
[16], we postulated that dominant negative inhibition of
NFκB allowed for RAR signaling and the induction RAR
and anti-metastatic gene expression.

Conversely, RAR ligands, the retinoids, have established
anticancer properties [17-19], although clinical use is lim-
ited by drug toxicity that is ascribed to non-specific gene
trans-activation [20,21]. Mechanistically, RARs in obligate
heterodimeric partnership with retinoid X receptors
(RXRs), bind to gene regulatory sequences (retinoic acid
response elements) where they function as transcriptional
switches ("on-off") in response to ligand receptor occu-
pancy ("agonist-antagonist") [22,23]. In the "off" state,
receptors recruit transcriptional co-repressors with intrin-
sic histone deacetylase activity to the DNA template. The
functional result is the deacetylation of core histones,
chromatin condensation and active gene repression. The
"on" state is initiated by agonist binding and proceeds
through structural receptor trans-conformations that dis-
lodge co-repressors and recruit co-activators with intrinsic
histone acetylase activity. The functional result is the
acetylation of core histones and chromatin relaxation,

which permits the assembly of a multi-protein transcrip-
tion initiating apparatus, the enhanceosome [24]. As an
inbuilt resetting mechanism and to accommodate for
transcription elongation, RAR trans-activation concurs
with its sequential phosphorylation, ubiquitination and
proteosomal degradation [25,26].

Repression of NFκB by ligand activated RARs has not been
formally explored as a putative mechanism for the anti-
cancer properties of retinoids. Furthermore, the distinct
role that proteosome degradation plays in NFκB (activa-
tion) and RAR (repression) signaling schemes is compel-
ling as a strategy for limiting retinoid toxicity while
potentiating its anticancer activity. Using WT-Line1 and
mIκB-Line1 cells as models for signal regulation of meta-
static gene expression, we investigate the ligand depend-
ent interactions between NFκB and RARs and explore the
potential role of proteosome inhibitors in enhancing
NFκB antagonism while moderating RAR gene trans-acti-
vation and possibly retinoid toxicity.

Results
Reciprocal induction of Retinoic Acid Receptors (RARs) by 
NFκB blockade
Contrasting RAR transcript levels in WT and mIκB-Line 1
tumor cells by RT-PCR, we demonstrate the induction of
all RAR subtypes in mIκB-Line 1 tumor cells (Fig 1A).
Although all RAR subtype transcripts are detected, only
RARβ protein is detectable and demonstrably enhanced in
mIκB-Line 1 tumor cells (Fig 1B). Accordingly, basal RAR
reporter activity is five fold induced in mIκB-Line 1 tumor
cells, relative to their WT counterparts (Fig 1C).

Ligand modulation of RAR trans-activity reciprocates 
NFκB trans-activity
In WT-Line1 cells, the pan-RAR agonist, at-RA dose
dependently activates RAR trans-activation. Using 1 µM
at-RA as the optimal dose for induction of RAR reporter
activity, co-incubation with the pan-RAR antagonist
AGN193109 (1–10 µM), results in a dose-dependent
decrease in RAR reporter activity (Fig 2A). Consistent with
the inverse antagonistic property of AGN193109 [27], 1–
10 µM concentrations of AGN193109 alone suppress RAR
reporter activity below basal levels (data not shown).
However, in the presence of 1 µM at-RA, 10 µM
AGN193109 has an agonistic tendency.

The dose-dependent repression of NFκB reporter activity
by at-RA and its reversal by AGN193109 (Fig 2B) again
verifies the mutually antagonistic interactions between
RAR and NFκB. In the presence of 1 µM at-RA, 10 µM
AGN193109 is again observed to have an agonistic ten-
dency. To appreciate the basis for these reciprocal signal-
ing schemes, we assessed for RAR and NFκB (p65)
interactions on artificial promoter-enhancer elements.
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Suppression of NFκB signaling activity allows for the induction of retinoic acid receptor (RAR) message and protein levels and an increase in RAR signaling activityFigure 1
Suppression of NFκB signaling activity allows for the induction of retinoic acid receptor (RAR) message and 
protein levels and an increase in RAR signaling activity. WT-Line 1 tumor cells and their non-malignant counterparts 
(mIκB-Line 1) transduced with a dominant negative inhibitor of NFκB were assessed for the expression of RAR transcripts by 
RT-PCR, using primers specific for RAR subtypes. Exponential amplification of β-actin was utilized as a loading control (A). 
Western blot analysis for RAR expression in WT and mIκB-Line 1 tumor cells, using a pan-RAR antibody, demonstrates 
increased RAR protein levels in mIκB-Line 1 tumor cells (B) and correspondingly increased RAR reporter activity (C).
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Ligand modulation of RAR activity with the pan-RAR agonist, at-RA and the pan-RAR antagonist AGN193109, induces recipro-cal effects on NFκB signaling activityFigure 2
Ligand modulation of RAR activity with the pan-RAR agonist, at-RA and the pan-RAR antagonist AGN193109, 
induces reciprocal effects on NFκB signaling activity. WT-Line 1 tumor cells, transiently transfected with RAR or NFκB 
reporter constructs were exposed to at-RA +/- AGN193109 for 24 h at the indicated concentrations. The dose dependent 
induction of RAR reporter activity (A) and reciprocal repression of NFκB reporter activity (B) by at-RA is reversed by 
AGN193109. The results represent the average (+/- SEM) of 3 independent experiments. A consistent observation is the ago-
nistic tendency of 10 µM AGN193109, in both RAR and NFκB reporter assays.
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Activation (nuclear translocation) of NFκB precludes RAR-
DNA binding activity while RAR reversibly interacts with 
NFκB-DNA complexes in a ligand dependent manner
WT-Line1 cells, with high basal NFκB-DNA binding activ-
ity, demonstrate considerably lower RAR-DNA binding
activity in contrast to mIκB-Line1 tumor cells, with lower
basal NFκB-DNA binding activity [9]. Activation of NFκB
with phorbol myristate acetate [9] results in a decrease in
RAR-DNA binding activity in both WT and mIκB-Line1
cells (Fig 3A). These data suggest that NFκB activation
(nuclear translocation) precludes RAR-DNA binding.
Identical experiments performed in the presence of an
RXR DR-1 type oligonucleotide sequence demonstrate no
appreciable change in RXR-DNA binding (Fig 3A),
although an increase in the expression of RXR subtypes
was documented in the mIκB-Line1 cells (data not
shown). Furthermore, there is no change in RXR-DNA
binding, following induction of NFκB translocation by
PMA. Given that RXR is a heterodimeric partner for mul-
tiple members of the nuclear hormone receptor super-
family [22], it is conceivable that this assay system is
overwhelmed by mass effect.

In our hands, at-RA did not affect NFκB-DNA binding in
standard gelshift assays. We note however that ligand acti-
vated RXR has been reported to preclude NFκB-DNA
binding activity in a cell free system that implicates higher
ligand-receptor ratios than otherwise achievable [15]. To
overcome the limitations of the standard gelshift assay, we
utilized a gelshift oligonucleotide pull-down assay (see
methods) that allows for the assessment of native protein-
DNA interactions at a concentration three orders of mag-
nitude higher than a standard gelshift assay. Using this
technique, we demonstrate a dose dependent increase in
RAR binding to NFκB-DNA complexes in response to at-
RA (Fig 3B), and its reversal by increasing concentrations
of AGN193109 (Fig 3B). These results taken together with
the reporter experiments, suggest that in the "on" state
(the holo receptor conformation), RARs bind to NFκB-
DNA complexes and trans-repress NFκB activity while the
"off" state (apo receptor conformation) is non-associa-
tive, and allows for NFκB trans-activity.

RAR reciprocally regulates pro-metastatic matrix 
metalloprotease 9 (MMP 9) and the anti-metastatic tissue 
inhibitor of metalloprotease 1 (TIMP 1)
NFκB reciprocally regulates putative pro-metastatic and
anti-metastic factors [9]. To assess the regulation of pro-
metastatic and anti-metastatic gene expression by at-RA
and AGN193109, we examined for changes in pro-meta-
static MMP 9 and anti-metastic TIMP 1 gene expression.
We demonstrate a dose-dependent induction of TIMP 1
and reciprocal repression of MMP 9 gene expression in
response to increasing concentrations of at-RA. The effects
of at-RA are again mitigated by AGN193109 (Fig 4). We

have previously shown, in the same model system, that
the net result of the reciprocal regulation of MMP 9 and
TIMP 1 gene expression by at-RA is the suppression of
MMP 9 activity, tumor cell invasiveness in vitro and spon-
taneous metastasis in vivo [28]. We however exercise cau-
tion in speculating on the in vivo effects of AGN193109,
given low doses are antagonistic while higher doses have
agonistic tendency albeit not intrinsic. A fortiori, high
doses of retinoid antagonists have antiproliferative ("ago-
nist-like") activities [29]. This underscores the notion of
ligand-receptor interactions as "rheostatic" (modulators)
and not "static" (agonist/on – antagonist/off) switches.

The Proteosome inhibitor MG132 dissociates Retinoic Acid 
Receptor trans-activation from trans-repression of NFκB
In keeping with the rheostatic nature of RAR signaling
function, at-RA dose-dependently activates RAR signaling
while inducing a dose-dependent decrease in RAR protein
expression. This pattern is reversed by co-incubation with
AGN193109 (Fig 5A). Ligand induced ubiquitination and
proteosomal degradation of RARs [25,26], is a permissive
event and resetting mechanism for RAR trans-activation.
Accordingly, RAR trans-activity and degradation is
blocked by the proteosome inhibitor MG132 (5 µM)
(5B). Although proteosome inhibitors independently
inhibit NFκB activity by maintaining inhibitory IκBα pro-
tein levels, trans-repression of NFκB by ligand activated
RAR is enhanced by MG132, potentially by maintaining
RAR protein expression (Fig 5B). The significance of the
latter mechanism is asserted by the compound repression
of NFκB activity by MG132, on mIκB-Line1 cells
expressing a genetically engineered IκBα, not susceptible
to proteosomal degradation (Fig 5C).

Discussion
Cellular transformation and malignant progression result
from an imbalance in critical positive and negative growth
regulatory signals, as well as cellular factors that maintain
tissue homoestasis [33]. A fundamental dynamic inter-
play between the mitogenic transcription factor complex,
AP-1, and nuclear receptors, the arbiters of cellular differ-
ention, has for long been recognized and characterized as
a pivotal module in the homeostatic control of cellular
phenotype [34,35]. With remarkable fidelity to this
model, we demonstrate a fundamental interplay between
NFκB and RARs, by a mechanism that involves cross-cou-
pling (mutually antagonistic interactions) off and on gene
promoter-enhancer elements. Furthermore, we demon-
strate the resulting imbalance in the expression of an
extracellular protease, MMP 9 and its endogenous inhibi-
tor TIMP 1.

Our data supports the comprehensive model that hyper-
activation of NFκB in cancer results in the hyper-repres-
sion of RARs. This is consistent with the progressive
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Activation (nuclear translocation) of NFκB precludes RAR-DNA interactions while RAR reversibly interacts with NFκB-DNA complexes in a ligand dependent mannerFigure 3
Activation (nuclear translocation) of NFκB precludes RAR-DNA interactions while RAR reversibly interacts 
with NFκB-DNA complexes in a ligand dependent manner. (A) RAR and RXR gelshift oligonucleotides were employed 
to contrast RAR and RXR-DNA binding activity in WT and mIκB-Line 1 tumor cells under basal and PMA (NFκB) induced con-
ditions. Under basal conditions, we observe increased RAR-DNA binding activity in mIκB cells contrasted to their WT coun-
terparts (1, 3), and a decrease in RAR-DNA binding activity upon activation of NFκB with PMA in both cell types (2, 4). No 
appreciable differences in RXR-DNA binding activity were observed under all experimental conditions. (B) NFκB gelshift oligo-
nucleotides conjugated to agarose beads were used to pull down NFκB and NFκB associated proteins, from the total protein 
lysate of cells exposed to at-RA +/- AGN193109 for 24-h. We consistently pulled down comparable amounts of RelA-NFκB 
and observed a dose dependent increase in the association of RAR with NFκB-DNA complexes with increasing concentrations 
of at-RA, and its reversal by increasing concentration of AGN193109.

A
- +         - +         - +         - +     

WT mIκB mIκBWT

RAR RXR

PMA

B

C

RAR

RelA

RAR

RelA

CONTROL

RA 0
.1

 µ
M

RA 0
.3

 µ
M

RA
1

µ M

RA 1
.0

 µ
M

RA 1
 µ

M
+A

G
1

µ M

RA 1
 µ

M
+A

G
3

µ M

RA
1

µ M
+A

G
10

µ M
Page 6 of 12
(page number not for citation purposes)



Molecular Cancer 2004, 3 http://www.molecular-cancer.com/content/3/1/8
RAR reciprocally regulates anti-metastatic TIMP 1 and pro-metastatic MMP 9 in a ligand dependent and reversible mannerFigure 4
RAR reciprocally regulates anti-metastatic TIMP 1 and pro-metastatic MMP 9 in a ligand dependent and 
reversible manner. MMP 9 and TIMP 1 gene expression in WT-Line 1 tumor cells exposed to at-RA +/- AGN193109 for 24 
hours at the indicated concentrations was assessed by real time PCR. The results represent the average of 3 independent 
experiments, normalized to β-actin loading controls.
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decrease in RAR expression in animal models of carcino-
genesis and human clinical cancer specimens [36]. Con-
versely, ligand activation of RAR mitigates malignant
progression by repressing NFκB. Illustrative of the rheo-
static nature of RAR signaling function, low doses of the
pan-RAR inverse antagonist, AGN193109, de-repress
NFκB activity, while higher doses are relatively agonistic
in the presence of at-RA. We propose that this agonistic
tendency results from decreasing the threshold for RAR
activation by maintaining RAR protein levels. On the
other hand, at-RA coordinately activates and induces the
ubiquitination and proteosomal degradation of RAR
[25,26]. These events are preceded by the sequential phos-
phorylation of RARs by proline-dependent protein

kinases, notably cyclin dependent kinases (CDKs) and
mitogen activated proteins kinases (MAPKs) [37]. The lat-
ter suggests an inbuilt mechanism for the integration of
mitogenic and differentiation-inducing signals in the
homeostatic control of cellular phenotype.

At the system level understanding of cancer biology,
"overly" simplistic models are confounded by redundan-
cies, feed-back loops and multiple signal integration,
characteristic of robust regulatory systems. With better
understanding of molecular circuits and signaling
schemes, we are better skilled at manipulating biological
systems to desired ends. Case in point, we demonstrate
that the proteosome inhibitor MG132 blocks RAR

The proteosome inhibitor, MG132, quells RAR trans-activation a potentiates RAR trans-repression of NFκBFigure 5
The proteosome inhibitor, MG132, quells RAR trans-activation a potentiates RAR trans-repression of NFκB. 
(A) at-RA induces a dose dependent decrease in RAR protein levels while increasing concentrations of AGN193109 have a 
restorative effect. The expression of RelA and β-actin is however not affected by at-RA +/- AGN193109. (B) at-RA (1 µM) 
induced degradation of RAR is blocked by the proteosome inhibitor MG132 (5 µM). Correspondingly, induction of RAR 
reporter activity by at-RA (1 µM) is quelled by MG132 (5 µM). (C) Basal NFκB reporter activity in mIκB-Line 1 cells is further 
repressed by MG132 (5 µM) by mechanism independent of the IκB-NFκB signaling axis (* P value < 0.05).
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degradation and quells RAR trans-activity while enhanc-
ing RAR trans-repression of NFκB (Fig 6). This repression
is independent of the effect of proteosome inhibitors on
the IκB-NFκB signaling cascade, given the compounded
suppression NFκB responsiveness in mIκB-Line 1 cells
expressing a dominant negative IκBα, not susceptible to
proteosomal degradation. These results resound the
promise of proteosome inhibitors in the anticancer arse-
nal [38-40]. We propose the combinatorial use of proteo-
some inhibitors and retinoids, as a strategy for enhancing
chemo-preventive activity and possibly limiting retinoid
toxicity.

Conclusions
Identifying NFκB as a target in the anticancer activity of
retinoids provides a critical endpoint in chemo-preventive
interventions. This validation yields an essential template
for the assessment of intermediate endpoints of chemo-
preventive interventions, by establishing discernable bio-
chemical and metabolic differences between malignant
cell lines and their non-malignant counterparts with
diminished NFκB activity.

Methods
The pan-RAR agonist all-trans retinoic acid (Sigma) was
dissolved in 70% ethanol, to obtain a 1 mM stock solu-
tion, while the pan-RAR antagonist AGN193109
(Allergen pharmaceuticals) and MG132 (Calbiochem)

A reductionist model for optimizing the anticancer property of retinoidsFigure 6
A reductionist model for optimizing the anticancer property of retinoids. The classical IκB-NFκB signaling cascade 
proceeds through the sequential phosphorylation, ubiquitination (ub) and proteosomal degradation of IκBα and the coordinate 
release and nuclear translocation of NFκB. Hyper-activation of NFκB in cancer can be overridden by hyper-activating RAR 
with retinoids. As such retinoid therapy induces malignant reversion but is associated with retinoid toxicity. Proteosome inhib-
itors quell RAR trans-activation and enhance RAR trans-repression of NFκB.
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were reconstituted in DMSO to obtain a 10 mM stock
solution.

Cell lines and cell culture
Wild type Line 1 tumor cells (WT) and their non-malig-
nant counterparts (mIκB), transduced with a dominant
negative inhibitor of NFκB were cultured in DMEM
supplemented with 10% FBS and 1% penicillin/strepto-
mycin, and maintained at 37°C in a 95% humid atmos-
phere, with 5% CO2.

Expression profiling of retinoid acid receptors (RARs)
RT-PCR was used to assess the expression levels of retinoid
receptor subtypes in WT and mIκB-Line1 tumor cells. 1 µg
of total RNA obtained from cell lines was reversed tran-
scribed and amplified for RAR subtypes using the Advan-
tage rapid RT-PCR kit (Promega®), under the following
conditions: reverse transcription at 48°C for 60 min,
initial denaturation at 95°C for 5 min, followed by 30
cycles of denaturing at 95°C for 45 s, annealing at 55°C
for 45 s, and extension at 72°C for 1 min; followed by a
final extension of 72°C for 7 min, in a Stratagene
RoboCycler™ Gradient 96 thermal cycler (Stratagene, La
Jolla, CA) RAR subtype specific primers used were – RARα
(5-ATGTAAGGGCTTCTTCCG-3 & 3-AGTCTTAATGAT-
GCACTT-5), RARβ(5-CTGGCTTGTCTGTCATAATTCA-3 &
3-GGTACTCTGTGTCTCGATGGAT-5), RARγ (5-GTGGA-
GACCGAATGGACC-3 & 3-GACAGGGATGAACACAGG-
5), The expression levels of β-actin (5-GAGCTATGAGCT-
GCCTGACG-3 & 3-AGCACTTGCGGTGCACGATG-5) and
RelA (5-GAAGAAGCGAGACCTGGAGCAA-3 & 3-GTT-
GATGGTGCTGAGGGATGCT-5) were assessed under
identical conditions.

Assessment of differential DNA binding and transcriptional 
activity of RARs in WT and mIκB-Line 1 tumor cells
Electromobility shift assay was used to contrast RAR-DNA
binding activity in WT and mIκB-Line1 cells. Briefly, 5 µg
of nuclear extracts were admixed with 2 µg of poly (di-dc)
and DNA binding buffer (50 mM NaCl, 5 mM HEPES (pH
7.5), 5 mM EDTA, 10% EGTA, 30% glycerol and 1.25 µg
BSA) in a total volume of 10 µl and incubated on ice for
20 min. RAR and RXR oligonucleotides (Santa Cruz Bio-
tech) were end labeled by use of T4 polynucleotide kinase
and [32P] cytosine triphosphate (DuPont NEN) and
20,000 cpm of the 32P labeled oligonucleotides added to
the binding reaction and incubated for 30 min at room
temperature. The complexes were subsequently separated
on a 6% polyacrylamide gel under non-denaturing condi-
tions at 125 Volts for 3 h. Gels were dried on 3 M
Whatman papers and the DNA-protein complexes visual-
ized by autoradiography.

RAR and NFκB transcriptional activity was assessed by
transient transfection of 0.8 µg of pRAR-firefly luciferase

construct (trimerized retinoic acid receptor-beta 2
response element, generously provided by Dr M.T
Underhill) or pNFκB-firefly luciferase construct
(Promega) plus 2 ng of pRL-SV40 (Promega) renilla luci-
ferase to normalize and control for tranfection efficien-
cies. Plasmids were incubated with 3 µl of Lipofectamine
2000 (Gibco) in serum free DMEM for 15 min, and the
complex added to 70% confluent well of a 6 well plate.
Experiments were performed in triplicates, and the trans-
fection reagents scaled up accordingly.

Physical association of RARs to NFκB-DNA complexes and 
the ligand responsiveness of these interactions
WT-Line1 tumor cells were exposed to increasing concen-
trations of at-RA (0.1–1 µM) or increasing concentrations
of AGN193109 (1–10 µM) in the presence of 1 µM at-RA
for 24 h. Cells thus treated were re-suspended in 1 ml of
ice cold RIPA buffer (50 mM HEPES pH 7.6, 150 mM
NaCl, 1 mM EDTA, 0.5% NP40, 1 µM PMSF and 1 µM
DTT), incubated on ice for 30 min and resulting suspen-
sion pelleted by centrifugation at 14000 rpms for 10 min-
utes. 200 µls of the supernatant thus obtained was added
to 100 µls of NFκB-oligonucleotide agarose conjugate
slurry (Santa Cruz), plus 300 µls of binding buffer (10
mM Tris, pH 7.5; 50 mM NaCl; 1 mM DTT; 1 mM EDTA;
5% glycerol; 1 µg/ml poly dI-dC), and incubated over-
night at 4°C with constant rocking. After the overnight
incubation, agarose beads were washed thrice in binding
buffer, re-suspended in 30 µl of protein loading dye,
boiled for 5 min and analyzed by western blot analysis.
RAR or NFκB–RelA antibodies (Santa Cruz) were used in
conjunction with protein A-peroxidase conjugate and
immunoreactive bands were detected using the enhanced
chemiluminescence system (Amersham) after exposure to
Hyperfilm ECL (Amersham). 5 µg of cell lysates were
equally analyzed by western blot, for changes in the
expression level of RAR and p-65 NFκB following the 24
h drug exposure.

Analysis of pro-metastastic MMP 9 and anti-metastatic 
TIMP 1 gene expression in response to at-RA and 
AGN193109 by real-time PCR
Total RNA was extracted from control and drug exposed
cells using Quaigen RNAeasy miniprep columns follow-
ing the manufacturers recommendations. Total RNA thus
obtained was quantified by UV absorption at 260/280 λ
(Genequant), and subjected to Northern blot analysis for
the expression of MMP9 and TIMP1 as previously
described. To enhance sensitivity, we utilized real time
PCR analysis to appreciate changes in RAR, RelA, MMP9
and TIMP1 message levels. Briefly, 1 µg of RNA was
reversed transcribed and diluted 5 fold in RNAse free
water. 2 µl of the cDNA thus obtained was PCR amplified
in a mix of 18 µl PCR supermix (GibcoBrl) plus the 2 µl of
fluorescent DNA intercalating dye SYBR green (1:3000)
Page 10 of 12
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using the real time PCR machine (Rotor-Gene 2000 Rob-
ocycler, Phenix research).

PCR primer pairs for MMP 9 were: 5'-TGAAACCAGAC-
CCCAGACTC-3' and 5'-TGA ACC ATA ACG CAC AGA
CC-3' and for TIMP 1 were: 5'-ATG CCC ACA AGT CCC
AGA AC-3' and 5'-TACGCCAGGGAACCAAGAAG-3' and
the PCR conditions were: Initial denaturing at 95°C for 2
min, followed by 40 cycles of 95°C denaturing for 45 s,
60°C annealing for 1 min and 72°C extension for 1 min.

Statistical analyses
Experiments were performed in triplicates and results are
expressed as a standard error of the mean. Statistical anal-
yses were done using the student t-test and ANOVA.
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