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Abstract

Small non-coding microRNAs (miRNAS) are epigenetic regulators that target specific cellular mRNA to modulate
gene expression patterns and cellular signaling pathways. miRNAs are involved in a wide range of biological
processes and are frequently deregulated in human cancers. Numerous miRNAs promote tumorigenesis and cancer
progression by enhancing tumor growth, angiogenesis, invasion and immune evasion, while others have tumor
suppressive effects (Hayes, et al., Trends Mol Med 20(8): 460-9, 2014; Stahlhut and Slack, Genome Med 5 (12): 111,
2013). The expression profile of cancer miRNAs can be used to predict patient prognosis and clinical response to
treatment (Bouchie, Nat Biotechnol 31(7): 577, 2013). The majority of miRNAs are intracellular localized, however
circulating miRNAs have been detected in various body fluids and represent new biomarkers of solid and
hematologic cancers (Fabris and Calin, Mol Oncol 10(3):503-8, 2016; Allegra, et al,, Int J Oncol 41(6): 1897-912,
2012). This review describes the clinical relevance of miRNAs, INcRNAs and snoRNAs in the diagnosis, prognosis and
treatment response in patients with chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), acute
lymphocytic leukemia (ALL), acute myeloid leukemia (AML) and acute adult T-cell leukemia (ATL).

Background

Chronic lymphocytic leukemia (CLL)

CLL is characterized by slow growth and the accumulation
of incompetent CD5+, CD19+ and CD23+ B lymphocytes
in blood, marrow, and other lymphoid tissues. This disease
can be distinguished into aggressive and indolent subtypes
with deletion of chromosome 13q14 being the most com-
mon genetic alteration found at diagnosis.

miRNA signature in CLL

The miR-15/16 cluster, miR-34b/c, miR-29, miR-181b,
miR-17/92, miR-150, and miR-155 represent the most
frequently deregulated miRNAs reported in CLL, and these
microRNAs have been associated with disease progression,
prognosis, and drug resistance [1] (Table 1). Nearly
two-thirds of CLL cases presented a down-regulation of
miR-15a/16-1 expression. In fact, miR-15a and miR-16-
1 are located in the locus 13ql14.3, a genomic region
frequently deleted in CLL patient samples [2]. However,
additional mechanisms, such as overexpression of histone
deacetylases (HDACs), also down-regulateed expression of
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miR-15 and miR-16 [3]. An inverse correlation between
miR-15a/16-1 and BCL2 expression has been reported in
CLL, and inhibition of this microRNA expression in
leukemic cell lines led to increased BCL2 expression and
resistance to apoptotic signals. Comparative microarray
analysis in CLL patients with high or low levels of
miR-15a/16-1 identified a gene signature that contains
the anti-apoptotic BCL2 family member MCL-1, which was
associated with B-CLL cell survival and chemotherapy re-
sistance [4—6]. Down-regulated miR-15a and miR-16-1 in
CLL patients has been associated with a good prognosis,
consistent with previous reports that correlated 13q14.3
deletions with a favorable course of CLL [7].

The miR-29 family, which includes miR-29a, miR-29b
and miR-29¢, was also significantly down-regulated in a
subset of CLL patients and was associated with an unfavor-
able prognosis. miR-29b targets DNA methyltransferase
(DNMT) isoforms and inhibition of miR-29b expression
may lead to hypermethylation and epigenetic silencing of
several tumor suppressors [7] (Table 2). In addition, evi-
dence showed that miR-29 targets the oncogene T-cell
leukemia 1 gene, TCL1A, which was overexpressed in pa-
tients with unmutated immunoglobulin heavy chain vari-
able regions (IgVH) and involved in translocations and
inversions characteristic of mature T-cell prolymphocytic
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Table 1 microRNAs deregulated and associated with clinical outcome in human Leukemia

Poor prognosis

miR-15a/16-1, miR-17/92, miR-21, miR-148, miR-155, miR-
222

miR-26a, miR-29¢c, miR-130b, miR-146a, miR-148, miR-362-
Sp

let-7e, let-7i, miR-7, miR-9, miR-16, miR-33, miR-92a, miR-
100, miR-142-3p, miR-146a, miR-181a/c, miR-193a, miR-
198, miR-210, miR-215, miR-216, miR-335, miR-369-5p,
miR-496, miR-518d, miR-599, miR-633, miR-1290

let-7a-3, miR-9-5p, miR-26a,miR-29b,miR-29c, miR-34a
(TP53 unaltered), miR-124, miR-124-1, miR-126, miR-128—
1, miR-146a, miR-155, miR-155-5p, miR-181b, miR-181b-
5p, miR-188-5p, miR-191, miR-194, miR-196b, miR-199a,
miR-210, miR-219-5p, miR-220a, miR-320, miR-331, miR-
335, miR-375, miR-378, miR-644, miR-3151

miR-130b, miR-155 |

Favorable prognosis

miR-29, miR-34, miR-132, miR-150, miR-181b,
miR-212, miR-223, miR-650, miR-708

CLL

miR-10a, miR-23a, miR17-92, miR-30e, miR-
130a, miR-150, miR-199b, miR-203, miR-217,
miR-318, miR-320, miR-328, miR-451

CML

miR-10a, miR-18a, miR-27a, miR-124a,miR-126,
miR-128b, miR-134, miR-150, miR-151-5p, miR-
191, miR-214, miR-221, miR-222, miR-223, miR-
342, miR-345,miR-451, miR-454, miR-484, miR-
486, miR-487, miR-551a, miR-572, miR-580,
miR-624, miR-627, miR-708, miR-709

ALL

let-7a-2-3p, miR-10a, miR-20a, miR-25, miR-
29a, miR-29b, miR-34a (TP53 biallelic altered),
miR-96, miR-135a, miR-142, miR-150, miR-181,
miR-203, miR-204, miR-212, miR-409-3p

AML

ATL | miR-126, miR-145, miR-223

The figure represents a summary of miRNAs associated with a poor or a favorable prognosis in CLL, CML, ALL, AML and ATL. Highlighted in red and green are the
miRNAs that are found most frequently associated with an unfavorable or favorable outcome, respectively, across different human leukemias

leukemia (PLL). Transgenic mice that overexpressed TCL1
in B cells displayed a similar phenotype to aggressive forms
of human CLL [7].

Another genomic region frequently deleted in CLL
patients was found in the 11q region where a miR-34
cluster is located. In fact, down-regulation of miR-34a in
CLL has been associated with p53 inactivation, impaired
DNA damage response, and apoptosis resistance [8—10].
Since miR-34a also inhibited E2F1 and B-Myb [11], loss
of miR-34a expression may increase tumor cell prolifera-
tion. In contrast, the miR-17/92 polycistronic microRNA
cluster was overexpressed in several lymphoid malignan-
cies and inhibits the expression of the pro-apoptotic factor
Bim and the tumor suppressor PTEN [12]. Activation of
STAT3-induced IL-6 in tumor cells stimulates the expres-
sion of miR-17 and miR-19a, resulting in lower expression
of TLR7 and TNFa.

In addition, CLL patient cells expressing zeta-chain-
associated protein 70 kDa (ZAP-70) have demonstrated
significantly lower levels of miR-150 expression when
compared with ZAP-70-negative CLL cells. In CLL cells
miR-150 targeted forkhead box P1 (FOXP1) and GRB2-
associated binding protein 1 (GABI1), thereby reducing
B-cell receptor signaling [13].

Another STAT3-activated microRNA, miR-155 [14],
has been overexpressed in cells and in circulating micro-
vesicles in CLL samples [14]. Induction of the onco-
miR-155 in the plasma of CLL patients correlates with
poor response to treatment and disease progression and,
consistent with this, patients who achieved complete
remission presented low levels of miR-155 in the plasma
[1]. In addition, the expression of miR-155 was increased
with disease progression from monoclonal B-cell lym-
phocytosis (MBL) to CLL and was higher in MBL and
CLL than normal controls [15]. Given this, high expres-
sion of miR-155 was associated with a poor clinical
prognosis in CLL [16, 17].

Finally with regard to miRNAs and CLL, miR-181b
was frequently down-regulated in CLL patients with
disease progression [18, 19] as it targets MCL-1 and
BCL2 [18], which are important for cancer cell sur-
vival, and low expression of this miRNA was associated
with poor prognosis as indicated by treatment-free sur-
vival (TES) [18, 19]. Interestingly, a recent study based
on whole genome sequencing of CLL patients identi-
fied 8 somatic mutations of miR-142 in five cases,
although the role of these mutants in CLL pathogen-
esis is unclear [20].
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Table 2 microRNAs deregulated in human leukemia and their predicted target genes

miR-148: PXR, DNMT1, CAND1, p27, HLA-C,
WNT10B, PTEN, MSK1, CDC25B, IGF-IR, IRS1, CCBR,
DNMT1, DNMT3, NR112, PPARA, RPS6KA

miR-155: FADD, IKKe, MyD88, Ripk, SHIP1, SOCS1,
TAB2, AID, Bach1, Bcl-6, C/EBPB, Ets1, HDAC4, Jarid2,
PU1, Smad2, Smad5, CTLA-4, MEIS1, GF1, c-MYC, c-
JUN, FOS, CTNNB1, TRIB2, WEE1, hMLH1, hMSH2,
hMSH6

miR-130b: PTEN, CYLD, NRP1, PPAR-y, MMP2,
DICER1, CSF-1, CCN3, TP53INP1, RUNX3, c-IAP1,
MCLA1

miR-146a: IRAK1, NUMB, IL-8, FADD, EGFR, CXCR4,
c-IAP1, MCL1, IRAK6, TRAF

miR-210: MNT, Casp8ap2, PTBP3/ROD1, E2F3, BNIP3,
AIFM3, EFNA3, VMP1, RAD52, PTPN1, HOXA1,
TP53I11

miR-335: RASA1, MT1-MMP, SIAH2, PAX6, Rb, p53,
MAPK, TGF-8, Wnt, ERBB, mTOR, Toll-like receptor

miR34: Notch, c-Myc, c-Met, Bcl-2, SIRT1, Survivin,
AR, MDM4, Src, YY1, HDAC1, SNAIL, E2F1, Myb,
TCL1, BCR-ABL

miR-150: MYB, FLT3, CBL, EGR2, AKT2, DKCA1,
Notch3, FOXP1, GAB1

miR-212: PXN, hnRNPH1, SIRT1, SOX4, SMAD2,
HBEGF, RBP2, MnSOD, PED, MeCP2

miR-223: NF-1A, IKKa, E2F1, STMN1, FBXW7, KRAS,
EGF, EGFR2, MMP9, SEPTING6, GLUT-4, IGF-1R,
RhoB, HSP90B1, IKAROS, PTEN, BIM, PHF6, NF1,
Foxo3, BMI1, IGF2

miR-10: MIB1, BDNF, KLF4, FLT1, HOXD10, HoxB1a,
HoxB3a, USF2

miR-203: NUAK1, Survivin, Bmi-1, LASP-1, Bcl-w,
TBKA1, IL-8, Slug, ADAMY, Yes-1, FGF2, SNAI2, Rap1A,
BCR-ABL

microRNAs most frequently deregulated in human leukemia (CLL, CML, ALL, AML and ATL) and their characterized target genes

miRNA expression and drug response in CLL patients

Higher expression of miR-650 and miR-708 has been as-
sociated with a favorable CLL prognosis [21] and affects
B-cell proliferation [22]. This is in part explained by the
fact that artificial miR-650 (MIMIC miR-650) reduced
CLL cell proliferation through targeting cyclin-dependent
kinase 1 (CDK1), inhibitor of growth 4 (ING4), and early
B-cell factor 3 (EBF3) [22]. In addition, ectopic expression
of miR-708 suppressed the NF-kB signaling pathway
through targeting IKKp and reduced the phosphorylation
of IkBa and expression of NF-«kB target genes [21]. On the
other hand, overexpression of miR-21, miR-148a, miR-155
and miR-222 in CLL patients was associated with poor
therapeutic response and prognosis [15-17, 23, 24]. For
example, the expression of miR-155 was higher in CLL
patients that failed to achieve a complete response to a
chemo-immunotherapy combination of fludarabine [24,
25], cyclophosphamide, and rituximab (FCR) [15], and it
was associated with poor clinical prognosis in CLL [16, 17].
Relapsed patients have higher miR-155 expression com-
pared to baseline despite reduced expression at the begin-
ning with response. Ectopic expression of miR-155
increases the response to B-cell receptor (BCR) ligation,

which may explain the oncogenic role of miR-155 in CLL.
Analyzing the gene expression profile reveals that miR-
148a, miR-222 and miR-21 may cause fludarabine resist-
ance through inhibiting the activation of p53-responsive
genes. Importantly, when the gene expression profile was
analyzed, p53 downstream genes were only detected in
fludarabine-responsive patients, but not resistant pa-
tients [24]. The mutation of TP53 in CLL was associated
with unfavorable treatment response and clinical outcome
[26], and in some CLL patients inactivation of TP53 corre-
lates with reduced miR-34 expression [27]. In addition to
miR-34, 3 other miRNAs-miR-182-5p, miR-7-5p and
miR-320c/d-have also been found as p53 targets in CLL
[28]. Moreover, miR-132 and miR-212 expression was
lower in progressive CLL patients compared with stable
CLL patients [29]. Gene expression profiling showed
that the miRNAs miR-132 and miR-212 affected the Rb
or TP53 signaling pathway, which may explain the clin-
ical observation [29].

The expression of miRNAs can be used as a biomarker
to monitor CLL progression. Lower expression of miR-
181b, miR-29¢ and miR-223 was associated with disease
progression in CLL patients and this correlates with
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unfavorable prognosis, such as shorter progression-free
survival and overall survival [23, 30-33]. Down-regulation
of miR-223 was correlated with the up-regulation of
HSP90B1, which was independently predictive of shorter
time to the first therapy in CLL patients with unmutated
IGHV [33]. The TCL1 oncogene is a target of the miR-29
family and in CLL patients low miR-29¢ expression was
associated with high TCL1 expression [30]. miR-150 was
highly expressed in both cellular and serum samples of
CLL patients [34]. It is interesting to note, though, that
low cellular but high serum expression of miR-150 was
associated with poor prognosis as indicated by tumor
burden, treatment-free survival and overall survival (OS)
[34]. This could be because lower expression of cellular
miR-150 may enhance cell survival and proliferation in
response to BCR signaling stimulation, which worsens
the patient prognosis [34]. Furthermore, high serum
miR-150 has been correlated with high lymphocytosis,
which contributes to high tumor burden and poor clinical
outcome [34].

Chronic myeloid leukemia (CML)

CML is a hematopoietic malignancy characterized by ab-
normal expansion of immature hematopoietic progenitor
cells in the bone marrow and increased levels of myeloid
cells in the peripheral blood. The genetic hallmark of
CML is a t (9;22) (q34;q11) reciprocal translocation, also
called 'Philadelphia chromosome'. This translocation re-
sults in a BCR-ABL fusion gene that leads to constitutive
tyrosine kinase activation [35].

miRNA signature in CML

The most frequently deregulated miRNAs in chronic
myeloid leukemia include miR-10a, miR-17/92, miR-150,
miR-203, and miR-328 [36]. miR-17/92 can be both a
tumor suppressor and an oncogene depending on the
tumor context. The tumor suppressor function of miR-
17/92 is mostly explained through targeting pro-survival
proteins BCL2, STAT5 and JAK2. On the other hand,
targeting of the CDK inhibitor CDKNI1A (p21) may ex-
plain the oncogenic role of miR-17/92. In a clinical set-
ting, miR-17/92 is up-regulated in early chronic-phase
(CP), but not in blast-crisis (BC) CML CD34 (+) cells
when compared with normal CD34 (+) cells. In addition,
both BCR-ABL and c-Myc up-regulated the expression
of miR-17/92 in BCR-ABL-positive cell lines, suggesting
it may be used as a therapeutic target [37].

A critical step for the progression to CML blast crisis
stage is the down-regulation of miR-328, which is ob-
served in a BCR-ABL dose- and kinase-dependent man-
ner. Ectopic expression of miR-328 in cell lines restored
differentiation of leukemic blasts by induction of the
survival factor PIM1 and inhibition of the hnRNP E2
interaction with the hematopoietic transcription factor
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CEBPA. The differentiation arrest observed during the
blast phase of CML required the activity of hnRNP E2, a
poly (rC)-binding protein, which behaves as a transla-
tional regulator [36, 38].

Finally, expression of miR-130a and miR-130b, controlled
by BCR-ABL, down-regulated the expression of CCN3, a
growth inhibitory protein [39]. Some miRNAs, miR-203
and miR-451, inhibit ABL and BCR-ABL expression dir-
ectly [40]. Consistent with this notion, miR-203 is fre-
quently silenced by monoallelic loss and hypermethylation
of the remaining allele [41]. Another consistency found in
CML patients is the reduction of miR-150 and miR-10a ex-
pression [42, 43]. CML patients displayed inverse expres-
sion levels of miR-150 and the transcriptional activator
MYB, which correlates with BCR-ABL (fusion gene) tran-
script levels [44], while down-regulation of miR-10a was as-
sociated with increased proliferation by overexpression of
the upstream stimulatory factor 2 (USF2) [42]. More re-
cently, miR-362-5p was found to act as an oncomiR by
down-regulating GADD45a, which in turn activated the
JNK1/2 and P38 signaling in CML patient samples [45].

miRNA expression and drug response in CML patients
As discussed above, the expression of miRNAs can be
used as a biomarker to monitor CML progression as
well. For example, the expression profile of some miR-
NAs can predict the Imatinib therapy response in CML
patients [46]. Expression of miR-26a, miR-29¢, miR-130b
and miR-146a was higher in patients with an Imatinib
response than in patients with Imatinib-resistant treat-
ment [47]. The potential targets of the miRNAs listed
above are c-IAP-1 and MCL1, which are important for
tumor cell survival following treatment, while miR-23a,
miR-30a, miR-30e, miR-203, miR-320 and miR424 are
known to target BCR-ABL [48-52]. Down-regulation of
BCR-ABL reduced activation of the pro-survival PI3K/
AKT and NF-«B signaling pathway in CML [48]. As a re-
sult, high expression of miRNAs targeting BCR-ABL
sensitized the CML cells to Imatinib treatment, sup-
pressed proliferation and induced apoptosis [49].
Similarly, loss of miR-217 and miR-199b expression has
been correlated with resistance to ABL tyrosine kinase
inhibitors [53, 54]. Molecular mechanisms underlying
these effects are partly explained by the fact that ectopic
expression of miR-217, in tyrosine kinase inhibitor-
resistant K562 cells, resulted in reduced expression of
DNMT3A and increased the sensitivity of tumor cells to
tyrosine kinase inhibitors [54]. It should be noted that the
tyrosine kinase inhibitor (TKI) Dasatinib affected miR-let-
7d, miR-let-7e, miR-15a, miR-16, miR-21, miR-130a and
miR-142-3p expressions, while Imitanib affected miR-15a
and miR-130a levels [47]. Consistent with the notion that
miR-130a can act as a tumor suppressor by targeting
BCL2 and MCL-1 expression, lower expression of miR-
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130a is associated with poor prognosis as indicated by
shorter overall survival and treatment-free survival in CML
patients [55]. Importantly, low expression of miR-148b was
found in a subset of CML patients with stable complete
molecular responses after stopping Imatinib treatment [56].
Using IPA software (Ingenuity System), Ohyashiki found
several potential target genes of miR-148b: cholecystokinin
B receptor (CCBR), DNA methyltransferase 1 (DNMT1),
DNMTS3, nuclear receptor subfamily 1, group 1, member 2
(NR112), peroxisome proliferator-activated receptor alpha
(PPARA), ribosomal protein S6 kinase, and polypeptide 5
(RPS6KA). Among those target genes, DNMT1 and
DNMT3 are known to regulate the expression of FOXO3,
which is important for T-regulatory (Treg) cell devel-
opment. Low expression of miR-148b may cause up-
regulation of DNMT and down-regulate the Treg activity,
just as Imatinib is known to inhibit Treg activity [56]. These
studies suggest that the expression of specific miRNAs can
be used to determine a subgroup of CML patients that can
safely stop TKI treatments.

Acute lymphoblastic leukemia (ALL)

ALL is a lymphoid malignancy affecting the B or T lineages.
Distinct microRNA signatures are reported in different
ALL subtypes and can be used for the diagnosis and
classification of ALL. ALL can be divided into T-cell,
MLL-rearranged, TEL-AMLI1-positive, E2A-PBX1-positive,
hyperdiploid ALL, BCR-ABL-positive, and “B-other” ALLs.
Studies of the distinct microRNA signatures of ALL sub-
types can be used for the diagnosis and classification of the
disease [57].

miRNA signature in ALL

The B and T lineages of ALL can be distinguished based
on relative expression of miR-148, miR-151, miR-424,
miRNA-425-5p, miRNA-191, miRNA-146b, miRNA-128,
miRNA-629, and miRNA-126. In addition, miRNA-708
was found highly expressed in TEL-AML1, BCR-ABL,
E2A-PBX1, hyperdiploid, and B-other cases [57, 58]. The
miRNA signature in hyperdiploid and TEL-AML1-positive
patients partly overlap, suggesting a common underlying
biology. Analyses of over 430 miRNAs in 50 clinical T-ALL
samples revealed a common signature: miR-223, miR-19b,
miR-20a, miR-92, miR-142-3p, miR-150, miR-93, miR-26a,
miR-16 and miR-342 [59]. Interestingly, miR-19b,-20a,
-26a, -92 and —223 can cooperate with Notch to induce
leukemia in a mouse T-ALL model [59]. These five
miRNAs have been shown to target T-ALL tumor sup-
pressors such as IKAROS, PTEN, BIM, PHF6, NF1
and FBXW?7 [60]. The expression pattern of these
miRNAs can be used as a biomarker to distinguish the
B and T lineages of ALL. Higher expression of miR-128b
and lower expression of miR-223 has independently been
reported for human ALL cell lines and ALL cells isolated
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from pediatric patients [61]. In a different study, single
nucleotide polymorphism (SNPs) analyses of precursor
miRNAs (pre-miRNA) and miRNA-processing genes re-
vealed eleven SNPs associated with ALL susceptibility
[62]. Among them, eight are located at six miRNA biogen-
esis pathway genes (TNRC6B, DROSHA, DGCRS, EIF2Cl,
CNOTI1, and CNOT6) and three at miRNA genes (miR-
612, miR-499, and miR-449b). Interestingly, miRNA-612
and miRNA-499 have significant correlations with ALL
susceptibility [57]. In addition, miRNA profiles can be
useful to distinguish myeloid or lymphoid lineages of
leukemia. De Leeuw et al. identified miRNA-23a, miRNA-
27a, miRNA-199b, miRNA-221, and miRNA-223 as the
most lineage-discriminative miRNAs between AML and
ALL [63, 64]. AML patients present down-regulation of
let-7b and miRNA-223 and overexpression of miRNA-
128a and -128b compared to ALL. In agreement with
these results, Wang et al. [65] identified miR-23a,
miR-27a, miR-27b, miR-150, miR-199a, miR-199b,
miR-221 and miR-340 as miRNAs differentially expressed
in patients with ALL when compared to AML.

miRNA expression and drug response in ALL patients

Epigenetic deregulation is one of the mechanisms re-
ported to accelerate ALL disease progression. miR-124a
was methylated in 59 % of ALL patients and down-
regulation of miR-124a increased the expression of
CDK6 resulting in phosphorylation of retinoblastoma
(Rb) and increased cell proliferation. As a result, hyper-
methylation of miR-124a in ALL patientscorrelated with
a higher relapse and mortality rate and can be used as
an independent prognostic factor for disease-free survival
(DFS) and overall survival in the multivariate analysis [66].
microRNA analysis from different studies showed that ex-
pression of miR-10a, miR-134, miR-214, miR-221, miR-
128b, miR-484, miR-572, miR-580, miR-624 and miR-627
was significantly correlated with a favorable clinical out-
come [61, 65, 67]. In contrast, deregulation of the expres-
sion of miR-9, miR-33, miR-92a, miR-142-3p, miR-146a,
miR-181a/c, miR-210, miR-215, miR-369-5p, miR-335,
miR-454, miR-496, miR-518d, and miR-599 was associated
with an unfavorable long-term clinical outcome in ALL
patients [65, 67-73]. Low expression of miR-151-5p and
miR-451, and high expression of miR-1290 or a combin-
ation of all three, predicted inferior relapse-free survival
(RFS) in pediatric B-ALL [74]. Importantly, activation of
NOTCH intracellular domain (NCID) signaling led to
transcriptional repression of miR-451 and miR-709, two
tumor suppressor microRNAs in T-ALL. In fact, ICN1 de-
creased expression of these miRNAs by promoting the
degradation of the tumor suppressor E2A, which induced
the transcription of miR-451 and miR-709. Myc was dir-
ectly repressed by both miR-451 and miR-709. In addition,
miR-709 inhibited the expression of Akt and Ras-GRF1
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oncogenes. Consistent with this, repression of miR-451
and miR-709 expression was involved in the initiation and
maintenance of mouse T-ALL [75]. Furthermore, different
independent analyses identified relapse-related miRNAs.
When globally analyzed the relapse-related miRNAs-miR-
7, miR-100, miR-216 and let-7i—were up-regulated, and
miR-486, miR-191, miR-150, miR-487 and miR-342 were
down-regulated in early relapse ALL patients [76]. In
addition, overexpression of miR-708, miR-223 and miR-
27a has been associated with lower relapse-free survival in
patients [77], possibly through regulation of FOXO3,
BMI1 and E2F1. Expression of miR-126, miR-345, miR-222,
and miR-551a were reduced in ALL patients with central
nervous system (CNS) relapse compared to non-CNS-
relapsed ALL patients [76]. Furthermore, higher expression
of miR-7, miR-198 and miR-633 was found in patients with
CNS relapse compared with non-CNS-relapsed ALL [76].
Interestingly, target prediction analysis revealed that some
deregulated miRNAs might target neuron function- and
neurotransmitter-related genes. For example, Glioma
Tumor Suppressor Candidate Region Gene 1 (GLTSCR1),
Synaptotagmin (STY1), neuronatin (NNAT) and Synaptic
Ras GTPase-activating protein 1 (SYNGAP1) are putative
targets of miR-126, miR-222, miR-198 and miR-633, re-
spectively [76]. However, a defined role of these miRNAs
in the genesis of CNS leukemia is still unclear.
Glucocorticoids can be used to treat ALL because they
induce apoptosis in lymphoid lineage cells [78]. In ALL
patients, sensitivity to prednisone treatment is an im-
portant indicator for treatment outcome [76]. While
miR-16 was lower in ALL patients with low leukocytes
and good cytogenetic characteristics [79], higher expres-
sion of miR-16 was found in patients with corticosteroid
resistance [79] and correlated with shorter disease-free
survival and overall survival, possibly by modulating
BCL-2 [80]. The expression of miR-223 and the miR-15/
16 family was increased in ALL patients treated with sys-
temic glucocorticoid monotherapy [61, 78]. In contrast,
the expression of miR-548d-1 and miR-106b ~ 93 was re-
duced after ALL patients were treated with glucocorticoids
[78]. Differential expression of miR-18a, miR-532, miR-
218, miR-625, miR-193a, miR-638, miR-550 and miR-633
can be used as a marker to predict prednisone response in
pediatric ALL patients [76]. For example, high miR-18a
but low miR-193a expression is associated with good
prednisone response. Although up-regulation of miR-128a
[81, 82] and miR-128b [61] is frequently found in childhood
ALL patients, poor prednisolone response is often as-
sociated with lower miR-128b expression, while higher
expression of miR-128b correlated with a longer disease-
free period [61]. Consistent with this finding, miR-128b
sensitized MLL-AF4 acute lymphocytic leukemia cells to
glucocorticoid treatment [83]. miR-128b is an important
glucocorticoid sensitizer in MLL-rearranged ALL and
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displays a cooperative effect with miR-221. Both miRNAs
are commonly down-regulated in MLL-ALL compared
with other types of ALL [84]. The chimeric mRNAs,
MLL-AF4 and AF4-MLL, which are involved in the initi-
ation of the disease, are important targets of miR-128b. In-
hibition of miR-128b expression resulted in reduced
steroid sensitivity through increasing expression levels of
both oncogenic fusion proteins, however the mechanism
used by MLL-AF4 and AF4-MLL to induce resistance to
glucocorticoids is not defined. In addition, miR-221 tar-
gets CDKN1B, which is transcriptionally activated by
both the fusion proteins and the wild type MLL [83].
CDKNIB is an important cell-cycle regulator; induction
of CDKN1B by MLL-AF4 and MLL might be involved
in the resistance to certain chemotherapy drugs by in-
ducing quiescence [85].

Increased miR-708 expression was detected in child-
hood ALL with a good response to prednisone and with
better remission status after 15-day and 33-day chemo-
therapy protocol [77]. The expression of let-7e was gen-
erally reduced in pediatric ALL patients [81, 82], but
higher expression of let-7e has been associated with
positive minimal residual disease (MRD) at day 14 after
treatment [82]. However, further studies are needed to
confirm the relationship between let-7e and ALL clinical
outcomes because of the small sample size (7 = 12).

Acute myeloid leukemia

AML presents abnormal miRNA expression diversely
expressed in the different subtypes. Both the t (8;21) and
inv (16) chromosomal aberration are associated with the
formation of novel chimeric fusion genes that involve
the core-binding factor (CBF) complex, an important
regulator of hematopoiesis, providing the designation
CBE-AML [86].

miRNA signature in AML

A distinct miRNA signature is characterized by an alter-
ation of miR-29, miR-125, miR-142, miR-146 and miR-155
expression, which has been reported to play a role in AML
progression and pathogenesis [87]. miR-29 family members
miR-29a, miR-29b, and miR-29¢ have acted as oncogenes
and tumor suppressors in myeloid malignancies [88]. miR-
29b targeted DNA methyltransferase DNMT3A, DNMT3B,
and Spl (a transcriptional regulator of DNMT1) [89].
Inhibition of miR-29b promoted DNA hypermethylation in
AML and contributed to methylation status in AML cells,
suggesting its potential role as a therapeutic target in AML.
In addition, miR-29a and miR-29b affected the expression
of genes involved in apoptosis, cell cycle progression,
and cellular proliferation. Consistent with this, altered
expression of MCL-1 and CDK6 was reported in
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primary AML blasts following ectopic expression of
miR-29b [88]. Interestingly, injection of precursor miR-
29b oligonucleotides in mice engrafted with K562 cells re-
duced their tumor sizes [87].

The miR-125 family includes miR-125a/miR-99b/let-
7e, miR-125b-2/miR-99a/let-7c-1, and miR-125b-1/miR-
100/let-7a-2 located on human chromosomes 19, 21,
and 11, respectively. The miR-125 family is involved in
self-renewal, both in hematopoietic stem cells (HSC)
and Megakaryocyte-Erythroid Progenitor Cells (MEC)
[90]. Overexpression of miR-125 enhances the develop-
ment of an MPN-like phenotype, which progresses to
AML. In acute myeloid leukemia, miR-125b was signifi-
cantly overexpressed in patient blasts and can promote
the transformation of normal hematopoietic cells into
malignant cells in an in vitro and in vivo model. In
addition, miR-125b targeted tumor suppressor BCL2-
antagonist/killer 1 (Bakl) to promote AML cell prolifer-
ation and inhibit cell apoptosis [91]. miR-125b is located
on chromosome 21 and involved in the development of
a rare subtype of AML, acute megakaryocytic leukemia
(AMKL), especially in patients with Down’s syndrome
(DS). The trisomy chromosome 21, typical of DS, was
associated with overexpression of miR-125b in both DS-
and non-DS-related AMKL patients [92]. Similarly,
down-regulation of miR-146a promoted AML disease
progression by TRAF6-mediated induction of NF-«B
[93] and miR-142 promoted the development of lymph-
oid and myeloid leukemia and was found recurrently
mutated in AML [94].

miR-155 is located on human chromosome 21 in the
B-cell integration cluster (BIC) gene [95], which cooper-
ates with c-Myc to induce lymphomas [95]. In addition,
miR-155 inhibited the cell-cycle regulator WEE1 and the
mismatch repair genes hMLH1, hMSH2, and hMSHS,
resulting in an increase in spontaneous mutation rates
in hematopoietic stem and progenitor cells (HSPC) and
solid tumor cell lines [87, 96, 97]. Interestingly, the ex-
pression level of miR-155 was the same as normal bone
marrow in Fms-like tyrosine kinase 3 (FLT3)-wildtype
AML and higher miR-155 expression was limited to
FLT3-ITD mutation AML [98]. In FLT3-wildtype AML
cells, miR-155 induced myelomonocytic differentiation
and apoptosis [99] by targeting MEIS1, GF1, ¢-MYC,
JARID2, cJUN, FOS, CTNNB1 and TRIB2. The discrep-
ancy between different subgroups of AML is most likely
dependent on the disease context or tissue type.

MicroRNAEs in the diagnosis of AML

Up-regulated let-7a-2-3p has been associated with a favor-
able prognosis, longer overall survival and event-free sur-
vival in cytogenetically normal AML [100]. High let-7a-2-3p
expression was associated with reduced expression of onco-
gene JDP2 and leukocyte immunoglobulin-like receptor
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(LILRA5/6, LILRB2/3), which are correlated with poor
prognosis in cytogenetically normal acute myeloid leukemia
(CN-AML) patients [100]. In addition, up-regulated let-
7a-2-3p was correlated with down-regulation of the
ERBB signaling pathway and JAK-STAT signaling path-
way. High miR-181 expression is also associated with a
better clinical outcome in CN-AML [101, 102] through
reverse regulation of toll-like receptors and interleukin-
1B. In addition, miR-181 contributed to a better clinical
outcome in cytogenetically abnormal AML patients
[103] by regulation of HOXA7, HOXA9, HOXA11, and
PBX3. Drug resistance is the main reason for AML re-
lapse and poor prognosis and, since miR-181b can in-
crease AML drug sensitivity through down-regulation
of HMGB1 and MCL-1, it is not surprising that miR-
181b was down-regulated in relapsed and refractory
AML patients [104].

MicroRNA expression associated with favorable prognosis
in AML

In analysis of the expression of the meningioma 1 (MN1)
gene and MN1-associated microRNA in Chinese adult de
novo acute myeloid leukemia (AML) patients, Xiang
found that increased expression of MN1 was associated
with reduced miR-20a expression and increased miR-181b
expression. In addition, miR-20a up-regulation was also
associated with a higher complete remission rate and lon-
ger overall survival [105]. In contrast, high miR-181b ex-
pression was found in patients with a lower complete
remission rate, shorter relapse-free survival and shorter
overall survival [105].

Cytogenetic risk factors and molecular markers are
important factors for AML prognosis [106]. Expression
signatures of a minimum of two (miR-126/126*), three
(miR-224, miR-368, and miR-382), and seven (miR-17-
5p and miR-20a, along with the aforementioned five)
miRNAs could correctly distinguish CBF, t (15;17), and
MLL-rearrangement AMLs, suggesting that these micro-
RNAs may cooperate with specific translocation in
leukemogenesis [107]. In fact, KIT-mediated up-regulation
of miR-17, which targets RUNX1-3'UTR, mimicked the
effects of the CBF-AML fusion protein [108]. The expres-
sion of miR-29a was lower in the bone marrow of
pediatric AML patients compared with normal controls
[109], and reduced miR-29a expression was associated
with unfavorable karyotypes and shorter relapse-free and
overall survival in pediatric AML patients [109]. Import-
antly, the association of miR-29a and prognosis was more
apparent in intermediate-risk cytogenetic AML patients
[109]. The same is true for miR-29b in that AML patients
with low miR-29b expression had an unfavorable overall
survival [110].

Analyses of 238 intermediate-risk cytogenetic AML
patients showed that reduced expression of miR-135a
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and miR-409-3p is associated with a higher risk of relapse
[106], while higher miR-142 expression was associated
with a better overall survival in these same patients [111].
miR-142 was highly expressed in mature hematopoietic
cells and had an essential role during T-lymphocyte devel-
opment although its role in leukemogenesis is unclear.

Another miRNA associated with a favorable prognosis
was miR-34a, a microRNA regulated in a p53-dependent
and -independent manner. In AML patients with com-
plex karyotype, p53 status played a role in determining
miR-34a’s role in clinical prognosis. Up-regulation of
miR-34a expression was correlated with unfavorable
overall survival in TP53 (unaltered)-AML with complex
karyotype, but was correlated with favorable overall survival
and chemotherapy sensitivity in TP53 (biallelic altered)-
AML with complex karyotype [112]. In analyzing p53 path-
way genes, Riicker didn’t find a correlation between p53
pathway genes and miR-34a expression, which indicated
p53-independent miR-34a induction [112].

Furthermore, miR-96 is down-regulated in newly diag-
nosed AML patients and is associated with a higher
white blood cell (WBC) count, bone marrow blast count,
and lower hemoglobin and platelet count. Importantly, the
expression of miR-96 increased after patients were treated
with standard cytarabine plus daunorubicin induction
chemotherapy [113]. When analyzing the relapse-free sur-
vival and overall survival, low expression of miR-96 was
associated with shorter RFS and OS [113].

miR-204 expression was reduced in AML patients
and low miR-204 expression was correlated with short
patient survival [114]. After patients received induction
chemotherapy (daunorubicin plus cytarabine), high ex-
pression of miR-204 was associated with complete re-
mission [114]. miR-204 targeted HOXA10 and MEIS1
genes [115], which perturb myeloid differentiation and
might lead to AML. In addition, increased expression
of miR-212, miR-25 and/or miR-203 has been associ-
ated with a favorable overall survival, event-free and
relapse-free survival in AML patients independent of
cytogenetic subtypes [65, 116-118]. The reason why
these miRNAs are associated with a favorable prognosis
is unclear, although miR-25 is reported to be involved
in cell migration and dissemination by targeting av-
and a6-integrin. Ectopic expression of miR-25 resulted
in inhibition of migration in high motility cells [119].
Interestingly, AML patients with high expression levels of
miR-212 displayed a significant enrichment of genes in-
volved in the immune response. Consistently, CCL3 and
CCL4 were found up-regulated in high miR-212 expres-
sion cases and, as genes that belong to the CCL2-4/
CXCL1/8 class of chemokines, they are involved in T- and
NK-cell chemotaxis. An enhanced chemotaxis of immune
cells might contribute to their anti-leukemic effects and
result in a better response to chemotherapy treatment in
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patients with high miR-212 expression [65, 116—118]. Fi-
nally, miR-223 was found to inhibit cellular growth in
leukemia cells by targeting Insulin-Like Growth Factor 2
(IGF2) [120].

miRNA expression associated with unfavorable prognosis in
AML

Different studies identify miRNAs deregulated in AML,
which are associated with an unfavorable prognosis.
miR-378 was increased in 31 % of AML patients and
was associated with lower hemoglobin levels and shorter
relapse-free survival [121]. There was a positive correl-
ation between miR-155 expression and white blood cell
(WBC) count, serum lactate dehydrogenase (LDH), C-
reaction protein (CRP) value in peripheral blood (PB),
and miR-25 and miR-196b expression in AML [122].
miR-126 was highly expressed in hematopoietic stem
cells and leukemic stem-like cells and in AML patients
high miR-126 expression was correlated with poor survival,
higher chance of relapse and induced higher expression of
stem cell-related genes [123, 124]. In vitro, overexpression
of miR-126-5p increased the phosphorylation of Akt and
caused cytarabin resistance. Increased miR-124, miR-128-1,
miR-194, miR-219-5p, miR-220a and miR-320 expression
are associated with increased risk in AML, however the role
of microRNAs in the development of AML is unclear
[101]. The expression of miR-320d was increased in AML
patients [125] and higher expression of miR-124-1 was as-
sociated with shorter overall survival and relapse-free sur-
vival [126]. Along these lines, AML patients with worse
overall and event-free survival were known to have higher
expression of miR-191 and miR-199a [127].

In de novo AML patients, miR-9-5p and miR-155-5p
were independent unfavorable prognostic factors [117].
miR-155 was up-regulated in AML patients compared to
normal controls [122, 125] and this high expression was
associated with the aforementioned unfavorable prog-
nosis, including lower complete remission rate and
shorter disease-free survival and overall survival in
AML [117, 122, 128]. The deregulation of miR-155 was
associated with a gene expression profile enriched for
genes involved in apoptosis, nuclear factor-kappaB acti-
vation, and inflammation [128].

Analyzing 53 AML patients, increased expression of
miR-26a, miR-29b, miR-146a, and miR-196b was associ-
ated with an unfavorable overall survival [65]. The role
of miR-196b was further supported by analyzing 238
intermediate-risk cytogenetic AML patients, whereby
high miR-196b and miR-644 expression was associated
with shorter overall survival [106]. In 40 non-M3 AML
patients, high expression of miR-26a, miR-29b and miR-
146a was associated with short overall survival [65]. It is
worth noting that miR-146a expression was reversely cor-
related with prognosis in both ALL and AML patients
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[65] while the opposite role of miR-29b in AML prognosis
has been reported. miR-29b expression was inversely asso-
ciated with MLLT11 expression, which is a poor prognos-
tic biomarker for AML patients. Low miR-29b and
elevated MLLT11 expression are found in patients with
poor overall survival [110], but whether the cooperation
between miR-29b and MLLT11 caused the poor prognosis
needs to be further confirmed.

Reduced miR-188-5p expression was associated with a
favorable prognosis as indicated by longer overall sur-
vival and event-free survival in cytogenetically normal
AML patients [100]. Low miR-188-5p expression was as-
sociated with up-regulation of FOSB, small nucleolar
family (SNORD50A, SNORD105, SNORD11B) and zinc
finger protein in AML patients. FOSB is known to regu-
late cell proliferation and differentiation by acting as a
cofactor for the JUN family. Up-regulated miR-3151 was
found in AML patients with an unfavorable prognosis,
such as short overall survival and leukemia-free survival,
and higher relapse risk [129, 130]. High expression of
miR-3151 was associated with a low expression of genes
involved in transcriptional regulation, posttranslational
modification, and cancer pathways, such as FBXL20 and
USP40 [130]. High miR-3151 expression was associated
with high miR-501-5p and low miR-590, miR-135a, miR-
100*, miR-186* and let-7a* expression, however the signifi-
cance of this association is unknown [129]. The expression
of let-7a-3 was increased in 25 % of de novo AML patients
and was associated with shorter overall survival and
relapse-free survival [131] in AML patients with complete
remission. Further studies are needed to confirm the role
of let-7a-3 and let-7a-2-3p in AML.

miRNA expression and drug response in AML patients
Higher expression of miR-29b was found in older AML pa-
tients with single-agent decitabine response compared with
non-response patients [132]. The ability of miR-29b to tar-
get DNA methyltransferases may explain the role of miR-
29b in decitabine response. miR-29¢ expression was higher
in AML patients compared with healthy controls and was
associated with poor survival [133]. Reduced miR-29c ex-
pression was associated with complete remission after ini-
tial treatment (intensive chemotherapy: daunorubicin plus
cytarabine or low dose chemotherapy (low dose cytarabine
or azacitidine)). Higher miR-29c expression was associated
with relapse after patients achieved complete remission.
Importantly, low miR-29¢ expression was associated
with better response to azacitidine treatment and re-
mission achievement in elder AML patients who were
not suitable for intensive chemotherapy [133].

The increased expression of miR-181a was associated
with a higher complete remission rate, longer overall sur-
vival and disease-free survival [102, 103] in AML patients
treated similarly with intensive induction chemotherapy
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and consolidation with autologous peripheral blood stem-
cell transplantation on Cancer and Leukemia Group B
(CALGB) protocols 9621 and 19,808. Recent evidence has
shown that miR-181a is a negative regulator of NF-«B sig-
naling in diffuse large B-cell lymphoma (DLBCL). Overex-
pression of miR-181a decreased tumor cell proliferation
and survival, suggesting its role as a prognostic marker
[134]. In addition, after AML patients received double in-
duction and one consolidation therapy, increased miR-
181b expression was associated with worse complete
remission rates, relapse-free survival and overall survival
in adult patients with de novo AML [105]. In vivo study
showed the capability of miR-181b to reduce leukemic cell
expansion and to increase survival of treated mice. miR-
181b affected the expression of TCL1, Bcl2 and Mcl1 anti-
apoptotic factors, and reduced the levels of Akt and
phospho-Erk1/2 [135].

While up-regulation of miR-20 was associated with
higher complete remission rates and overall survival
[105], miR-204 expression was reduced in AML patients
and low miR-204 expression was correlated with short
patient survival [114]. After patients received induction
chemotherapy (daunorubicin plus cytarabine), high ex-
pression of miR-204 was associated with complete remis-
sion [114]. A possible explanation is that mir-204 inhibits
cell proliferation by targeting the transcription factor
SOX4, which was reported in T-cell acute lymphoblastic
leukemia [136].

miR-331 is up-regulated in AML patients and AML
patients with longer complete remission after induction
chemotherapy had reduced miR-331 expression [137]. In
agreement with this notion, miR-331 promoted prolifer-
ation and metastasis in other cancer types by targeting
PHLPP, resulting in stimulation of protein kinase B
(AKT) [138]. miR-335 was up-regulated in pediatric AML
patients both in bone marrow and serum [139], and high
serum miR-335 was associated with poor relapse-free and
overall survival after patients received 10 days of induction
chemotherapy [139]. In addition, high expression of miR-
335 in the bone marrow was indicative of poor Ara-C-
based chemotherapy response, lower relapse-free survival
and overall survival in AML patients [140]. Interestingly,
miR-335 was reported to be involved in the regulation of
target genes in several oncogenic signaling pathways, such
as p53, MAPK, TGF-b, Wnt, ERbB, mTOR, Toll-like re-
ceptor and focal adhesion [141]. High expression of the
miR-10 family was associated with complete remission
after AML patients received induction chemotherapy
[142, 143]. Finally, the role of miR-10 is still unclear in an
AML context.

Adult T-cell Leukemia (ATL): signature and prognosis
ATL is a fatal malignancy of mature CD4+, CD25+ T
lymphocytes induced by the retrovirus Human T-cell
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leukemia virus (HTLV)-1 [144, 145]. Several studies have
reported deregulated microRNAs in ATL patient samples
and HTLV-1-transformed cells, among them miR-155,
miR-146a, miR-150, and miR-223 were found up-regulated
and miR-31 and miR124a down-regulated [146—-149].

The expression of miR-223 is known to affect T lym-
phopoiesis and granulocytosis with up to 20 % of acute
ATL patients being diagnosed with the latter, which may
be linked to high miR-223 expression [146]. Similar ef-
fects of miR-150 have been reported. Ectopic expression
of miR-150 in hematopoietic stem cell progenitors re-
duced mature B cells and enhanced T lymphopoiesis. In
HTLV-1-transformed cells, Tax can up-regulate the ex-
pression of miR-146a via the NF-xB dependent signaling
pathway and the potential targets for miR-146a are
IRAK6 and TRAF, which are involved in immune re-
sponse [147]. miR-31 was down-regulated in ATL via
epigenetic regulation and it caused up-regulation of its
target gene, NIK, which activated the NF-xB signaling
pathway and caused apoptosis resistance [148]. Interest-
ingly, a recent study demonstrated that the virus-encoded
protein HBZ targets the expression of DICER, thereby
modulating the expression of a subset of microRNAs [150].
Deregulation of miR-146a, miR-155, miR-150 and miR-223
was reported to affect cellular proliferation [151-153] and
alteration of miR-31, miR-130b and miR-93 were involved
in apoptosis resistance [154], suggesting a possible role of
miRNA expression in ATL progression and pathogenesis.
Differential analyses of microRNA expression in non-
infected healthy individuals, chronic ATL patients and
acute ATL patients revealed an increased number of
up-regulated miRNAs in acute ATL patients when
compared with chronic ATL patients [155]. Among
these, increased miR-155 expression correlated with disease
progression from HTLV-1 carrier to chronic ATL and
then to acute ATL [155]. Both STAT3 and Myb, which
transcriptionally up-regulate miR-155, were activated in
HTLV-I-transformed cells and ATL samples [149, 156, 157].
miR-155 plays a role in dendritic and T-cell interaction,
which is important for early stage infection. In addition,
miR-155 also promotes T-helper type 1 (Thl) versus
type 2 (Th2) differentiation, which can explain the sus-
ceptibility to parasite infection, such as Strongyloides
in ATL patients [146]. On the other hand, let-7 g was
highest in healthy donors and its expression was signifi-
cantly reduced in an HTLV-1 carrier, and chronic and
acute ATL patient samples [155]. For clinical outcomes,
high miR-155 and low miR-126 was associated with a
poor prognosis [155]. High miR-155 can reduce TGFBR2
function and increase tumor growth. On the other hand,
low miR-126 increased the expression of EGFL7, Crk or
SLC7A5, which promote tumor growth. High miR-130b
and low miR-145 and miR-223 expression in aggressive-
type ATL were associated with shorter overall survival.
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Among miR-130b, miR-145 and miR-223, only miR-145
can act as an independent risk factor for ATL prognosis
by a multivariate prognostic analysis. An in vitro study
showed that overexpression of miR-145 in ATL cells re-
duced cell proliferation [158]. A recent study demon-
strated that epigenetic silencing of miR-124-1 resulted in
STAT3-mediated Piml kinase activation and increased
tumorigenic potential [149].

Role of circulating RNA

The majority of miRNAs are cellular miRNAs, how-
ever an emerging class of circulating miRNAs has been
described. Circulating miRNAs have been observed in
various body fluids [159] and are involved in cellular
proliferation, differentiation and disease progression or
diagnosis (Table 3). There are several advantages to
analyzing circulating RNA instead of malignant cellular
RNA. First, body fluids like urine and saliva are easier
to collect than malignant cells. Furthermore, exosomes
in urine are stable for up to a week at room temperature
[160]. Second, in addition to malignant cells, circulating
RNA can affect the microenvironment and other distant
organisms.

Circulating miRNA and cellular miRNA expression
profiles may also differ. For instance, analyses of miRNA
in CLL plasma suggested the presence of miR-155, but
intracellular miR-155 was not detected. Plasma miR-
155 can be used to predict overall survival in CLL pa-
tients and this difference may come from the plasma
pool of miRNAs having various cellular sources [15].
Finally, deregulation of miRNA expression can happen
at early stages of tumorigenesis and measuring circulat-
ing miRNA levels can be useful for early cancer detec-
tion and improving patient survival [161]. In addition,
malignant cells are usually reduced after treatment,
whereas the circulating RNAs can still be detected.

Recent evidence showed elevated expression of the miR-
29 family (miR-29a, miR-29b and miR-29c), miR-150 and
miR-155 in CLL-derived exosomes compared to healthy
donors [162]. The plasma expression of miR-29a and miR-
150 was associated with absolute lymphocyte count in the
blood [163]. The miR-29 family was significantly down-
regulated in a subset of CLL patients and was associated
with an unfavorable prognosis [7]. miR-150 was highly
expressed in cellular and serum samples of CLL patients
[34] and, interestingly, low cellular expression of miR-150
but high serum expression of the same was associated with
poor prognosis as indicated by tumor burden, treatment-
free survival and overall survival [34]. The expression of
miR-155 was increased with disease progression from
monoclonal B-cell lymphocytosis (MBL) to CLL and was
higher in MBL and CLL than normal controls [15]. In
addition, high plasma miR-155 expression was associated
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Table 3 Circulating microRNAs in human leukemia
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Circulating miRNA Expression in patients Association with Predict Predict Disease Predict Drug
blood cell count prognosis progression response
miR-29 up in CLL exosome Yes Yes - -
miR-150 up in CLL exosome, low in Yes Yes - Yes
AML plasma
miR-155 up in CLL exosome, up in Yes Yes Yes Yes
AML plasma

miR-181b-5p up in AML plasma - Yes - Yes
miR-210 up in AML serum - Yes - Yes
miR-375 up in AML serum - Yes - -
miR-511 up in B-ALL plasma - - - -
miR-222 up in B-ALL plasma - - - -
miR-34a up in B-ALL plasma - - - -
miR-199a-3p low in B-ALL plasma - - - -
miR-223 low in B-ALL plasma - - - -
miR-221 low in B-ALL plasma - - - -
miR-26a low in B-ALL plasma - - - -
let-7d low in AML plasma - - - -
miR-339 low in AML plasma - - - -
miR-342 low in AML plasma - Yes - -
let-7b up in AML plasma - - - -
miR-523 up in AML plasma - - - -
miR-328 low in AML plasma Yes Yes - -

The table reports the circulated microRNAs that have been identified in human leukemia (CLL, CML, ALL, AML and ATL) and their role in prognosis, disease

progression, drug response or association with blood cell count

with CLL patients poorly responding to fludarabine, cyclo-
phosphamide, and rituximab (FCR) chemotherapy [15].
Therefore, high expression of miR-155 was associated with
more aggressive disease and poorer clinical prognosis in
CLL [16, 17].

There was a positive correlation between miR-155
expression and white blood cell count, serum lactate
dehydrogenase (LDH) and C-reaction protein (CRP)
value in peripheral blood in AML patients [122]. High
miR-155 expression was associated with an unfavorable
prognosis, such as lower complete remission rate and
shorter disease-free survival and overall survival in
AML patients [117, 122, 128]. Using TagMan miRNA
microarray and quantitative real-time RT-PCR, Fayyad-
Kazan found that the expression of let-7d, miR-150,
miR-339, and miR-342 was down-regulated, and let-7b,
and miR-523 was up-regulated in AML patient plasma
compared to normal controls. Up-regulation of miR-
150 and miR-342 after treatment was associated with
AML patients with complete remission [164]. In addition,
circulating miR-155-5p and miR-181b-5p were up-
regulated in AML patients when compared with normal
controls [125]. Up-regulated circulating miR-181b-5p was

associated with shorter overall survival [125] and was
found in patients with a lower complete remission rate,
shorter relapse-free survival and shorter overall survival
[105]. Other circulating miRNAs can also act as bio-
markers for AML prognosis. For instance, miR-210 was
up-regulated in the bone marrow and serum of AML pa-
tients compared with normal controls. Reduced serum
miR-210 expression was found in patients with complete
remission, while high miR-210 expression was correlated
with poor relapse-free survival and overall survival in
AML patients [165]. Similarly, the expression of miR-375
was higher in the serum and bone marrow of pediatric
AML patients and was associated with unfavorable karyo-
types and poor prognosis as indicated by shorter relapse-
free survival and overall survival [166]. Like miR-29a
[109], the association of miR-375 and prognosis was more
apparent in intermediate-risk cytogenetic AML patients
[166]. Plasma miR-511, miR-222, and miR-34a were up-
regulated in B-ALL patients compared with normal con-
trols, whereas plasma miR-199a-3p, miR-223, miR-221, and
miR-26a were lower in B-ALL patients [167]. Together
these studies clearly demonstrate that detection of cir-
culating miRNAs has significant value for detection of
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disease progression and can also serve as an indicator
of therapeutic response.

Clinical significance of other non-coding RNAs: IncRNA
and snoRNAs

In addition to microRNA, other non-coding RNAs have
been reported to play a role in human leukemias. Long
non-coding RNAs (IncRNAs) are RNA molecules longer
than 200 nucleotides with undefined open reading frames
involved in gene expression regulation. A small subset of
IncRNAs have been reported in leukemia and an IncRNA
expression profile correlated with treatment response and
survival in AML patients [168]. The X-inactive specific
transcript Xist IncRNA, involved in epigenetic regulation
of transcriptionally inactive chromatin, was overexpressed
in some leukemias [169]. NOTCH-regulated IncRNA
LUNARI (leukemia-induced non-coding activator RNA)
has been shown to have oncogenic effects in T-ALL and
has been demonstrated to increase IGFIR mRNA expres-
sion and IGF1 signaling [170]. Another NOTCH-related
IncRNA, RP11-611D20.2 (NOTCH-associated IncRNA in
T-ALL (NALT)), has been found to be overexpressed in
pediatric ALL and may play a role in the leukemia stem
cell compartment [171]. In CML patients with BCR-ABL
translocation, deregulation of two IncRNAs has been de-
scribed: the Beta Globin Locus 3 (BGL3) IncRNA [172]
and the imprinted H19 IncRNA [173]. Little is known
about the function of these IncRNAs in CML. BGL3
IncRNA has been shown to increase the expression levels
of the tumor suppressor PTEN by acting as a competing
endogenous RNA (ceRNA) [174]. In contrast, IncRNA
H19, which is transcriptionally activated by the oncogene
c-Myc [173], has been shown to inhibit the expression of
the onco-suppressor let-7 microRNA family [175]. In
AML patients, IncRNA IRAIN [176], which is transcribed
from the IGF1R imprinted locus, is down-regulated in pa-
tients with high-risk AML, while urothelial carcinoma-
associated 1 (UCA1) IncRNA is specifically up-regulated
in AML [177], although its role in the pathogenesis is un-
clear. Finally, the IncRNA B-ALL-associated long RNAs-2
(BARL-2) was found to affect B-ALL patient response
to corticosteroid treatment [178]. By using small RNA
sequencing, Blume found that long non-coding RNAs
(IncRNAs) nuclear enriched abundant transcript 1
(NEAT1) and long intergenic non-coding RNA p21
(lincRNA-p21) are p53 targets in CLL when cells re-
spond to DNA damage. The induction of NEAT1 and
lincRNA-p21 were important for p53-dependent cell
death after DNA damage [28].

Another class of non-coding ncRNAs, the small nucle-
olar snoRNAs, is also affected in cancers and leukemia.
Elevated levels of SNORD112-114 snoRNAs have been
found in acute promyelocytic leukemia (APL) [179]. In a
different study, Affymetrix GeneArray screening identified
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snoRNA SNORA70F as significantly down-regulated in
poor prognostic subgroups of CLL patients. In addition,
high expression of SNORA74A and SNORD116-18, and
low expression of SNORD56, were associated with shorter
progression-free survival (PFS) in these patients [180].
Although IncRNA and snoRNA are not as greatly studied
as miRNA, they are likely to play an increasing role in the
future and eventually become a part of patients’ genetic
signatures for individualized targeted medicine.

Conclusions

Cellular and circulating miRNAs are aberrant in various
human cancers [181-184] and can be used as markers for
disease diagnosis, progression, treatment response and
clinical outcome. The advance in Next-Generation Se-
quencing has provided us more details on how miRNA
and IncRNA deregulation lead to leukemia onset and pro-
gression. Since each miRNA or IncRNA regulates multiple
genes and signaling pathways, it is believed that the effects
of miRNAs and IncRNAs are the combinational output.
Therefore, it is important to determine the critical signal-
ing pathway leading to leukemia and identify potential
therapeutic treatments. However, there is a silver lining.
For example, miR-34 is known to target more than 24 dif-
ferent oncogenes involved in cell proliferation, drug resist-
ance and metastasis. In 2013, Texas—based Mirna
Therapeutics launched it phase clinical trial for a miR-34
mimic: MRX34 [185]. The broad effect of MRX34 may
prevent drug resistance, which is commonly observed in
clinical treatment, and restore cell signaling pathways back
to normal. For miRNAs and IncRNAs upregulated in
leukemia, small interfering RNAs and antisense oligonu-
cleotides are showing promising results in targeting
lymphoma and solid tumors. Although the delivery of a
miRNA mimic, small interfering RNAs and antisense oli-
gonucleotides to patients is still challenging, future tech-
nical improvements will provide more opportunities for
treatment.
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