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Hypoxia-inducible factor-2a promotes
tumor progression and has crosstalk with
Wnt/[3-catenin signaling in pancreatic
cancer
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Abstract

Background: Pancreatic cancer is a devastating disease that is characterized by persistent hypoxia. The roles of
hypoxia-inducible factor-2a (hif-2a) are different to those of hif-1q, although both are critical for tumor cells to
adapt to the hypoxic microenvironment. However, unlike the well-studied hif-1q, the role of hif-2a in tumors,
including pancreatic cancer, is poorly understood.

Methods: Herein, we used a mutated hif-2a (A530T) to figure out the problem that wild-type hif-2a is quickly
degraded which limits the study of its function. Using several cell lines, mouse models, and human tissues, we
obtained a general picture of hif-2a in pancreatic cancer progression.

Results: Functional assays revealed that hif-2a promotes epithelial-to-mesenchymal transition, enhances tumor
proliferation and invasion, increases stemness, facilitates angiogenesis, and up-regulates aerobic glycolysis. We
identified an interaction between hif-2a and 3-catenin, and found that hif-2a/B3-catenin complex formation
increased the activity of B-catenin and the protein stability of hif-2a. In vivo study confirmed the pro-oncogenic
role of hif-2a, whose expression correlated with those of E-cadherin, vimentin, Ki-67, and CD31, but not hif-1a. A
human tissue study showed that hif-2a was associated with lymph node metastasis, pathological grade, stroma
abundance, vascularization and patient survival. High expression of hif-2a was also identified as an independent
indicator of poor prognosis in patients with pancreatic cancer.

Conclusions: Our systematic study revealed the roles of hif-2a in pancreatic cancer, and may provide a novel
target for this highly malignant disease.
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Background

Pancreatic cancer is one of the most deadly cancers, and
there have been few advances in treatment in the past
decades [1]. Pancreatic cancer hardly responds to
chemotherapy or immunotherapy, and surgery is usually
not an option in most patients when diagnosed [2]. This
situation is probably due to the special tumor
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microenvironment of pancreatic cancer. Unlike most
other solid cancers, pancreatic cancer contains ample
stromal cells, lacks vascularization, and is companied by
persistent hypoxia within the tumor [3]. Hypoxia has
been reported to induce aggressive characteristics of
cancer cells in many types of cancer [4]. Therefore,
pancreatic cancer is assumed to survive in long-term
hypoxic conditions via special, but as yet unidentified,
mechanisms.

Hypoxia can induce pancreatic cancer cells to undergo
epithelial-to-mesenchymal transition (EMT) via several
mechanisms, in which hypoxia-inducible factor 1« (hif-
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la) always plays a pivotal role [5, 6]. Overexpression of
hif-1a correlates with lymph node metastasis and poor
prognosis in patients with pancreatic cancer [7]. How-
ever, studies suggested that hif-1a is mainly induced in
severe hypoxia to help cells resist temporary stress [8, 9].
In addition, hypoxia can induce angiogenesis to relieve
hypoxia, which is supposed to result in a persistently
moderate or recurrently unstable hypoxic microenviron-
ment within tumors [10]. Hif-2«, a homologous protein
of hif-1a, was found to be more sensitive to moderate
hypoxia and showed more enduring expression in hyp-
oxic conditions [11]. Unfortunately, the roles of hif-2a
in cancer are largely unknown, and the little evidence
that exists is controversial. For instance, some studies
showed that overexpression of hif-2a correlated with a
poor prognosis [12], while others hypothesized that hif-
2a was an indicator of good outcomes [13]. Similarly,
the roles of hif-2a in pancreatic cancer are also under
debate given the current limited data [14-16], and thus
require further investigation.

B-Catenin is a crucial protein determines the fate of
cancer cells, and has diverse functions. Wnt/p-catenin
and hypoxia signaling have complex crosstalk between
them [17, 18]. Previously, we confirmed that the inter-
action between hif-la and p-catenin facilitated hif-1a-
mediated EMT in liver cancer [19]. The interaction of
hif-2a and P-catenin has also been reported in renal
cancer [20]. However, the domains involved in the
interactions between [-catenin and hif-as were distinct,
leading to opposite effects on classic Wnt/B-catenin
signaling [20, 21]. In additional, complicated regulation
of B-catenin by hif-2a was identified and is critical for
early pancreatic tumorigenesis [22]. However, the effects
of the interaction between hif-2a and -catenin on pan-
creatic cancer have not been studied. Herein, we studied
the effects of hif-2a in pancreatic cancer systematically,
using cell lines, mouse models and human tissues. We
also assessed the mutual influences between [-catenin
and hif-2a signaling and its influence on tumor biology.

Methods

Cell culture and reagents

Pancreatic ductal adenocarcinoma (PDAC) cell lines
(PANC-1, BxPC-3, SW 1990 and MIA PaCa-2) and
human umbilical vein endothelium endothelial cell
(HUVEC) were obtained from the Shanghai Institute for
Biological Science (Shanghai, China). BxPC-3 and
HUVEC were cultured in Roswell Park Memorial Insti-
tute (RPMI)-1640 Medium (GE Healthcare Life Science,
Logan, UT, USA). PANC-1, SW 1990, and MIA PaCa-2
were cultured in high glucose Dulbecco’s modified
Eagle’s medium (DMEM; HyClone, Logan, UT, USA).
Both media were supplemented with 10% fetal bovine
serum (FBS; Thermo Fisher Scientific, Waltham, MA,
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USA) and 1% penicillin/streptomycin (Genom, Zhejiang,
China). All cells were maintained at 37.0 + 0.2 °C in a
humidified incubator with 5.0% CO,. Before exposure to
the hypoxic environment (1.0% O,), cells were seeded in
normoxic conditions and grown to approximately 60%
confluence, or as specifically needed. After 24 h of
serum-free culture, cells were exposed to a low-oxygen
environment in a hypoxic chamber (Thermal Tech,
Orlando, FL, USA) for the indicated duration.
Recombinant human Wnt3a was purchased from
Abcam (Cambridge, MA, USA), and used at 200 ng/ml
for 48 h. Sodium Chloride (NaCl) and Lithium Chloride
(LiCl) was purchased from Sigma-Aldrich (St. Louis,
MO, USA), and was used at 20 or 25 mM for 48 h.
Recombinant human vascular endothelial growth factor
(VEGF) was purchased from Peprotech (100-20A; Rocky
Hill, NJ, USA), and was used at 20 ng/ml for 48 h. Des-
ferrioxamine (DFO) was purchased from Sigma-Aldrich,
and used at 100 uM for 24 h. The hif-2a translation
inhibitor (CAS 882268-69-1) was purchased from
Millipore (Darmstadt, Germany). Hif-2a antagonist
(CAS 14422955-31-4) was purchased from Sigma-
Aldrich. Cycloheximide (CHX; CAS 66-81-9) was
purchased from Tocris Bioscience (Bristol, UK).

Cell viability and 5-ethynyl-2'-deoxyuridine (EdU) assays
Before either the Cell Counting Kit-8 (CCK-8) or the
EdU procedure, cells were seeded in 96-well plates at a
density of 3000 cells per well for specific treatment. Cell
viability was assessed using CCK-8 (Dojindo, Kumamoto,
Japan). Cells were incubated with CCK-8 working solu-
tion for 3 h, after which the absorbance was measured at
450 nm using an ELx808 microplate reader (BioTeck).
Relative cell viability was expressed as a proportion of
specific controls.

The EAU Apollo 488 In Vitro Kit was purchased from
Ribobio (Guangzhou, China) to examine cell prolifera-
tion. Medium supplemented with 20 uM EdU was added
to the cells, followed by incubation for 2 h at 37 °C
under 5.0% CO,. After fixation and neutralization ac-
cording to the manufacturer’s instructions, Apollo and
Hoechst 33,342 staining were performed, followed by
observation under an inversion fluorescence microscope
(Olympus IX51 Microsystems, Japan). The percentage of
EdU-positive cells was calculated from five random
fields in three wells.

Transwell assays

The invasion activity of tumor cells was evaluated by
their ability to pass through a gel matrix (Matrigel; BD,
Franklin Lakes, NJ, USA). Briefly, Matrigel solution was
diluted with FBS-free medium at a proportion of 1:5 to
coat the 6.5 mm diameter polycarbonate filters (8 um
pore) of the Transwell chambers (Corning, NY, USA) in
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24-well plates. With 40 ml working solution in every fil-
ter, the plates were placed at 37 °C for more than 5 h to
solidify. Tumor cells were seeded at a density of 2 x 10°
per chamber and cultured with FBS-free medium in the
upper compartments of the chamber for 48 h while the
lower compartment was filled with complete medium.
Non-invasive cells on the upper surface of the filter were
wiped off using a cotton swab, while the cells adhering
to the lower surface were fixed using 4% polyphosphate
formaldehyde (Beyotime, Shanghai, China). These cells
with stronger invasion potential were counted after
crystal violet staining (Beyotime). The experiments were
repeated for three times independently.

Transfection, siRNA and luciferase reporter assays
Transfections were performed using Lipofectamine 3000
(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer’s instructions. All experiments were performed
after the transfection medium was replaced by complete
medium after 24 h of treatment. The hif-2a overexpres-
sion plasmid with the G to A point mutation (p.A530T)
was a gift from Dr. Zhengping Zhuang from the Na-
tional Institutes of Health (NIH; Bethesda, MD, USA).

Hif-la siRNA (Thermo Fisher Scientific), Hif-2a
siRNA (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), p-catenin siRNA (Cell Signaling Technology,
Danvers, MA, USA) and negative-control siRNA (nc-
siRNA; Santa Cruz) were transfected into cells at
100 nM. Luciferase reporter assays were carried out in
24-well plates, and 100 ng of TOPFlashplasmid, FOP-
Flashplasmid (Millipore) or hypoxia response element
(HRE) reporter plasmids were also transfected. The HRE
reporter plasmid was a gift from BM Emerling (Addgene
plasmid #26731). Reporter activity was evaluated using
the dual luciferase reporter system (Promega, Madison,
W1, USA).

Immunoblotting, co-immunoprecipitation, immunofluor-
escence and immunohistochemistry
These experiments were performed as described previ-
ously [19]. The following primary antibodies were from
Cell Signaling Technology and were used at a 1:1000 di-
lution: anti-B-catenin, anti-E-cadherin, anti-vimentin,
anti-Slug, anti-Snail, anti-Oct-4, anti-Sox2, anti-Nanog,
and anti-glyceraldehyde-3-phosphate  dehydrogenase
(GAPDH). Other primary antibodies included anti-hif-
la (1:500; Abcam), anti-hif-2a (1:500; Abcam). The
secondary antibodies were goat anti-rabbit antibodies
conjugated with horseradish peroxidase (1:2000; Cell
Signaling Technology). For the CHX test, Image ] soft-
ware (NIH) was used to evaluate the photodensity of im-
munoblotting bands.

For the co-immunoprecipitation experiments, about
300 pg of protein extract supplemented with 1 pg of
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specific primary antibody or an isogenic control anti-
body, was incubated for 4 h at 4 °C and then for another
2 h after 10 ul of pre-rinsed protein-A/G sepharose
(Santa Cruz) was added. The samples were then centri-
fuged (1000 g), rinsed, and formulated as a sample by
adding 1x loading buffer for immunoblotting and
analysis.

For immunofluorescence staining, cells were fixed with
cold 4% polyphosphate formaldehyde for 15 min and
washed with PBS. Permeabilization was then performed
with 1% Triton for over 30 min, followed by blocking
with 5% bovine serum albumin (BSA) for 30 min at
room temperature. After washing, the cells were co-
incubated with anti-pB-catenin mouse antibody (1:200;
Cell Signaling Technology) and anti-hif-2a rabbit anti-
body (1:100; Abcam) at 4 °C overnight, and were further
incubated with the corresponding secondary antibodies
conjugated to different fluorescent dyes for 30 min in
the dark at room temperature. Counterstaining with
4’,6-diamidino-2-phenylindole (DAPI; 1:10,000; Sigma)
was carried out 3—5 min before observation under an
inversion fluorescence microscope (Olympus Optical,
Tokyo, Japan). Stained samples without primary anti-
body were used as negative controls.

For immunohistochemical staining, formalin-fixed,
paraffin-embedded PDAC tissue samples were cut into
5-um thick serial sections which were then incubated
with anti-hif-1a  (1:100), anti-hif-2a (1:100), anti-f-
catenin (1:100), anti-E-cadherin (1:100) or anti-vimentin
(1:100) antibodies, respectively. The slides were then
incubated with HRP-conjugated antibodies against
rabbit IgG using Histostain-Plus Kit (ZSGB-BIO,
Beijing, China). The sections were counterstained with
hematoxylin, and the slides were inspected under a
microscope (Leica, Heidelberg, Germany). Negative
controls were incubated with PBS instead of the
specific primary antibodies.

Enzyme-linked immunosorbent assay (ELISA)

The supernatants were collected and stored at -80 °C.
Concentrations of matrix metalloproteinase-9 (MMP-9)
and VEGEF in the conditioned media were detected using
ELISA kits (R&D Systems, Minneapolis, MN, USA)
according to the manufacturer’s instructions.

Flow cytometry

After specific treatment, pancreatic cancer cells were
stained with fluorochrome-conjugated monoclonal anti-
bodies for CD133 (Miltenyi Biotec, Teterow, Germany)
or an isotype control antibody (Miltenyi Biotec). Apop-
tosis assay was performed using the Annexin V FITC
Apoptosis Detection KIT (BD Biosciences). Flow cyto-
metric analysis was performed on a BD FACSCanto II
system (BD Biosciences).
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Fig. 1 Hif-2a mediated hypoxia induced EMT in pancreatic cancer. a Morphology changes of PDAC cells after undergoing hypoxia for 48 h. b PDAC
cells underwent hypoxia showed expression changes of hypoxia-related (hif-1a, hif-2a), EMT-related (3-catenin, Snail, Slug, E-cadherin, vimentin), and
stemness-related (Oct-4, Sox2, Nanog) genes. ¢ Early and late accumulation of hif-a proteins after different duration of hypoxia. d DFO mimicked hypoxia
and induced EMT in PANC-1 and SW 1990 cells. e Regulation of hif-2a level changed vimentin expression in PANC-1 cells. f Overexpression of
degradation-resistant hif-2a (A530T) increased invasion capacities of the PDAC cells, and inhibition of hif-2a decreased their invasion abilities. *, P < 0.05
as compared to pcDNA3 or DFO + nc-siRNA
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Fig. 2 Hif-2a enhanced the activity of 3-catenin. a Wnt-3a induced B-catenin promoted EMT while siRNA inhibited -catenin blocked EMT in
PANC-1 cells. b DFO promoted EMT, which was partially reversed by 3-catenin interference by siRNA. ¢ Hif-2a (A530T) promoted EMT, which was
partially reversed by (3-catenin interference by siRNA. d Hif-2a (A530T) transfection enhanced transcription activity of 3-catenin in PANC-1 and SW
1990 cells regardless of oxygen availability. Knockdown of hif-2a reduced -catenin activity as measured by luciferase reporter assays. *, P < 0.05;
** P < 001; ** P <0001, as compared to pcDNA3, NaCl, or nc-siRNA. Representatives of three independent experiments
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independent experiments

Fig. 3 Complex formation of hif-2a/B-catenin and its influence on each other. a Overexpression of hif-2a induced nuclear translocation of 3-catenin in
PANC-1 cells. b Co-existence of hif-2a and 3-catenin in PANC-1 cells. ¢ Interaction of hif-2a and (-catenin was noticed in PANC-1 cells. d The half-life of
hif-2a was increased when B-catenin was up-regulated by LiCl. Cycloheximide was used to block protein biosynthesis. Densitometry was used to compare
the degradation degree of the protein. e Increased -catenin expression by LiCl enhanced HRE activity, and knockdown of 3-catenin decreased HRE activity
in normoxic or hypoxic conditions as indicated. *, P < 0.05; **, P < 0.01; ***, P < 0001, as compared to pcDNA3, NaCl, or nc-siRNA. Representatives of two

Mouse models

The Ethics Committee of the Second Affiliated Hos-
pital of Zhejiang University School of Medicine
(SAHZJU) approved the study protocol for the use of
experimental animals. Male Balb/c nude mice (18-
22 g) were purchased from Shanghai Experimental
Animal Center (Shanghai, China). To assess role of
hif-2a in tumor progression, each mouse was injected
subcutaneously with 250,000 treated PANC-1 or SW
1990 cells suspended in 200 pL of medium. Mice
were sacrificed after 6 weeks, and the xenograft vol-
ume was monitored by weight. Pathological scores
were evaluated independently by a pathologist,
according to the expression degrees of indicated
proteins as described previously [19].

Metabolic phenotype assessment

The basal metabolic level and metabolic phenotype were
detected by using a Seahorse XFe96 Analyzer (Seahorse
Bioscience, North Billerica, MA, USA). PANC-1 cells
were seeded in a 6-well plate, and transfected with
pcDNA3 or the hif-2a overexpression plasmid. After
48 h, cells were seeded at 2,5000 per well with eight
wells per group for the experiments. Stress assessment
was performed using 10 uM of oligomycin and 20 uM of
Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone
(FCCP). Experiments were performed according to the
instructions of the XF cell energy phenotype test kit
(Seahorse Bioscience).

Acquisition of human tissue

Formalin-fixed, paraffin-embedded PDAC tissue samples
were obtained from the SAHZJU. All the patients with
PDAC underwent curative resection between 2010 and
2015, and samples from these patients were used for im-
munochemistry analysis. This project was approved by
the Ethics Committee of the SAHZJU.

Statistical analysis

Data are presented as the mean + standard deviation
(SD) or standard error of the mean (SEM), as appropri-
ate. Statistical calculations were performed using Prism
6 software (GraphPad, San Diego, CA, USA), or as
otherwise indicated. Statistical analyses were performed
using the F test following a two-tailed unpaired Student’s
t-test, except for in vivo data, which were analyzed using

a paired Student’s t-test. Protein half-life curves were
generated using a one-phase exponential decay model.
Best-fit lines and their 95% confidential intervals for im-
munochemistry results of xenografts were calculated
using linear regression. Survival data were analyzed
using Kaplan-Meier curves and a log-rank test. Univari-
ate and multivariate analyses were performed using SPSS
software (v22.0, IBM Corp, Bethesda, MD, USA). For all
tests, a P value less than 0.05 was considered statistically
significant.

Results
Hif-2a was associated with hypoxia-induced EMT in
pancreatic cancer
Initially, we used our previous model to mimic hypoxia-
induced EMT in four pancreatic cancer cell lines [19].
As expected, hypoxia induced morphological changes of
the cells, especially BxPC-3 and SW 1990 cells (Fig. 1a),
accompanied by decreased expression of E-cadherin and
increased expression of vimentin (Fig. 1b). However,
when tracing the expressions of hif-1a and hif-2a during
hypoxia, we noticed that hif-la rapidly increased and
peaked before 12 h after initiation of hypoxia, while the
protein level of hif-2a gradually increased up to 72 h
after initiation of hypoxia (Fig. 1c). DFO was also used
to mimic hypoxia, and overexpression of hif-2a and
down-regulated E-cadherin and up-regulated vimentin
were observed (Fig. 1d). Although [-catenin was re-
ported to mediate EMT in pancreatic cancer [23, 24], we
detected either no change or even a trend of down-
regulation of B-catenin following hypoxia (Fig. 1c and d).
To investigate the specific role of hif-2a in pancreatic
cancer, we excluded the influence of hif-1a by selectively
modifying hif-2a expression. Plasmids encoding a stabi-
lized type of hif-2a (A530T), which is resistant to prolyl
hydroxylase-dependent degradation [25], was used to
up-regulate hif-2a. In PANC-1 cells, overexpression of
hif-2a significantly enhanced the expression of vimentin,
while inhibition of hif-2a by a short interfering RNA
(siRNA) induced a reduced level of vimentin in
hypoxic conditions (Fig. 1e). Consistently, the cell mi-
gration ability was increased by hif-2a overexpression
and reduced by hif-2a interference (Fig. 1f). These
results implicated that hif-2a was able to regulate
EMT in pancreatic cancer.
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Nanog in PANC-1 and BxPC-3 cells

Fig. 4 Hif-2a promoted malignant characteristics of pancreatic cancer cells. a-b Overexpression of hif-2a enhanced cell viability and proliferation ability
of PDAC cells, while hif-2a knockdown decreased the viability and proliferation ability of cells exposed to DFO. ¢ Hif-2a positively regulated secretion of
PDAC cell-derived MMP-9 and VEGF. ¥, P < 0.05; **, P < 0.01; ***, P < 0001, as compared to pcDNA3 or DFO + nc-siRNA. d Hif-2a overexpression
increased proliferation of HUVECs. VEGF was used as the positive control. *, P < 005, as compared to pcDNA3 or vehicle control. @ PANC-1 cells with
hif-2a overexpression showed higher activity of aerobic glycolysis but without any change in oxidative phosphorylation (left panel). The cells also had
limited glycolysis potential under stress (right panel). ***, P < 0.001, as compared to pcDNA3. f Up-regulation of hif-2a increased the number of CD133*
PANC-1 cells. Down-regulation of hif-2a inhibited DFO-induced increase of CD133 cells. g Overexpression of hif-2a up-regulate expression of Oct-4 and

Activity of B-catenin was up-regulated by hif-2a
Consistent with previous reports [23, 24], B-catenin was
sufficient to induce EMT in pancreatic cancer. Up-
regulation of B-catenin by Wnt3a was associated with in-
creased expression of vimentin and reduced expression
of E-cadherin, while inhibition of -catenin using siRNA
led to the opposite results (Fig. 2a). However, hif-2a-
mediated EMT in pancreatic cancer was abolished when
[B-catenin expression was inhibited (Fig. 2b and c),
suggesting that hif-2a regulated EMT in a [-catenin-
dependent manner.

Given that neither hypoxia nor hif-2a overexpression in-
creased the level of B-catenin in our conditions (Figs. 1c, d,
and 2c), we speculated that hif-2a might regulate the tran-
scriptional activity of B-catenin. Indeed, hif-2a positively
regulated [B-catenin activity in PANC-1 and BxPC-3 cells
cultured in both normal and hypoxic conditions (Fig. 2d).
Taken together, these results suggested that regulation of -
catenin activity was responsible for hif-2a-mediated EMT
in pancreatic cancer.

B-catenin reduced degradation of hif-2a and its transcrip-
tional activity

The co-existence of hif-2a and [-catenin was observed in
pancreatic cancer cells, especially those with hif-2a over-
expression, which resulted in nuclear translocation of B-
catenin (Fig. 3a and b), suggesting that the transcriptional
activity-dependent role of -catenin was facilitated by hif-
2a in these cells. Co-immunoprecipitation confirmed the
physical interaction between hif-2a and [-catenin (Fig.
3c). Intriguingly, overexpression of [B-catenin improved
the stability of endogenous hif-2a protein by significantly
increasing its half-life, resulting in a higher level of hif-2a
within the cells (Fig. 3d). Correspondingly, up-regulation
of B-catenin by LiCl elevated HRE activity, whereas de-
creased HRE activity was found when [-catenin was
inhibited by siRNA (Fig. 3e). These findings suggested that
a high level of B-catenin maintained the abundance and
activity of hif-2a in pancreatic cancer.

Hif-2a increased the proliferation, metabolic shift, and
stemness of pancreatic cancer cells

[B-Catenin is closely associated with cell proliferation and
stemness; therefore, we tested whether hif-2a affected

these characteristics of pancreatic cancer. In all three cell
lines tested, overexpression of stabilized hif-2a signifi-
cantly improved cell viability, which was inhibited by hif-
2a interference in DFO-mimicked hypoxia (Fig. 4a). The
same effects of hif-2a were also found in EdU assays
(Fig. 4b), suggesting that hif-2a could enhance pancreatic
cancer cell proliferation. However, hif-2a had no effect on
apoptosis of these malignant cells (data not shown). Fur-
thermore, as target genes of hif-2a [26, 27], secretion of
VEGF and MMP9 were both enhanced by hif-2a overex-
pression and inhibited by hif-2a knockdown (Fig. 4c). This
paracrine signaling might stimulate vascularization and
support tumor cell proliferation, as indicated by increased
proliferation of HUVEC cells (Fig. 4d).

Cancer cells tend to shift from oxidative phosphoryl-
ation to glycolysis even when sufficient oxygen is avail-
able, which is termed the “Warburg effect” [28]. Cancer
cells are believed to benefit from this metabolic shift by
acquiring sufficient biosynthetic capability for their
proliferation. We observed that overexpression of hif-2a
elevated aerobic glycolysis without significant changes in
mitochondrial respiration (Fig. 4e, left panel). Notably,
hif-2a overexpression changed the metabolic potential of
these cells profoundly (Fig. 4e, right panel). In addition,
overexpression of hif-2a increased the proportion of
CD133 positive cells (Fig. 4f). Correspondingly,
stemness-associated proteins Nanog and Oct-4 were up-
regulated when hif-2a was highly expressed, although
the level of Sox2 was unchanged (Fig. 4g). These results
suggested a possible role of hif-2a in maintaining the
stemness of certain cancer stem cells.

Hif-2a promoted tumor growth and EMT in mouse
models

To confirm the role of hif-2a in vivo, we first used an
SW 1990 xenograft mouse model. Overexpression of sta-
bilized hif-2a promoted tumor growth, with significantly
higher tumor weights (Fig. 5a). Inhibition of hif-2a using
siRNA was associated with decreased tumor growth in
the same mouse model (Fig. 5b). In parallel, a similar
result was found when the PANC-1 xenograft mouse
model was used (Fig. 5¢). We then analyzed the expres-
sions of certain proteins in the xenograft tissue. Hif-2a
was positively correlated with the expression of
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vimentin, ZEB-1, Ki67, and CD31

Fig. 5 Hif-2a promote tumor progression in mouse models. a SW 1990 cells transfected with pcDNA3 or hif-2a (A530T) were injected subcutaneously
as pairs in mice. The xenografts were much bigger when hif-2a (A530T) was transfected. ***, P < 0.001. b Nc-siRNA or sihif-2a was transfected to SW
1990 cells and a similar mouse model with a was generated. The xenografts with sihif-2a weighted lighter than nc-siRNA controls. **, P < 0.01. Dash
lines indicate averages of tumor weight. ¢ A similar mouse model with b was performed for PANC-1 cells instead of SW 1990 cells. Hif-2a knockdown
inhibited xenograft growth. *, P < 0.05. Dash lines indicate averages of tumor weight. d Sixteen xenografts from mice in a and b were harvested and
immunochemistry was performed for several proteins. Expression of vimentin, ZEB-1, Ki-67, and CD31 was positively correlated with hif-2a, while
E-cadherin expression was negatively correlated with hif-2a. Bar, 110 um. e Correlation analyses of expression between hif-2a and hif-1a, E-cadherin,

vimentin, Ki-67, CD31, and negatively correlated with
the expression of E-cadherin (Fig. 5d and e), indicating
that hif-2a facilitated EMT and promoted tumor growth
in the mouse model. Intriguingly, unlike hif-2«, the
level of hif-la was relatively high in all xenografts,
and no correlation was detected between hif-2a and
hif-1a (Fig. 5e), suggesting that other mechanisms of
hif-2a induction exist besides hypoxia.

Overexpression of hif-2a correlated with poor prognosis
in patients

We tested hif-2a expression and its clinical relevance in
human pancreatic cancer tissue. Hif-2a overexpression
was detected in around 70% of samples, and was signifi-
cantly correlated with high stroma abundance, high
tumor grade, and short distance between vessels and
tumor cells (Table 1, Fig. 6a-c). A borderline increased
risk of lymph node metastasis was also found
(P = 0.052). Importantly, high expression of hif-2a could
be an independent factor for prognosis with a hazard
ratio of 2.7 (Table 2). Patients with pancreatic cancer
had much better overall survival if low expression of hif-
2a was confirmed, although the proportion of such
patients was relatively low (Fig. 6d). Additionally, several

Table 1 Correlation between hif2a expression and
clinicopathological information in 90 pancreatic cancer patients

Hif-2a low Hif-2a high P value
Lymph node metastasis® 0.052
No 16 35
Yes 5 28
Stroma abundance < 0.001
Low 8 5
High 13 64
Pathological grade® 0011
/1 13 55
1% 7 5
Vascular distance® 0.006
Far 13 18
Short 7 41

Six patients were excluded due to absence of relative data
PTen patients were excluded due to absence of relative data
“Eleven patients were excluded due to absence of relative data

successive sections were further checked to identify the
co-existence of certain proteins. High expression of hif-
2a was correlated with high levels of (-catenin and
vimentin, without significant differences in hif-1a
expression (Fig. 6e).

Discussion
Pancreatic cancer is characterized by poor vascularization.
However, unlike other solid tumors, pancreatic cancer
cells undergo persistent hypoxia because of the highly
proliferated stromal cells and abundant extracellular
matrix [29]. Hif-la-mediated hypoxia adaption has been
used frequently to explain the survival advantage of cancer
cells under hypoxic conditions [7, 30]. Unfortunately, hif-
la behaves more like a stress response protein to protect
cells against acute threats. Although hif-1a is accumulated
in the tumor microenvironment, it is probably a passive
phenomenon and is not the main mechanism responsible
for chronic or persistent hypoxia. Consistent with previ-
ous studies [11, 31], we found that hif-2¢, rather than hif-
la, showed a chronic response pattern, which was more
compatible with the observed chronic metabolic changes
of cancer cells in continuous hypoxia [32]. Here, we
identified several roles of hif-2a in pancreatic cancer, and
in particular, investigated its crosstalk with B-catenin.
Hif-2a is highly homologous with hif-1a, and their
target genes largely overlap. However, distinct or even
opposing roles of the two proteins in tumor progression
have been reported recently [33]. Although hif-2a was
considered as a pro-tumor factor in digestive system
cancers including pancreatic cancer [14, 16, 34], some
investigators reported a better prognosis in pancreatic
cancer patients with hif-2a overexpression [15]. Thus,
the functional effects of hif-2a in pancreatic cancer
require in-depth study. Unfortunately, it is difficult to
differentiate the specific effects of hif-2a from those of
hif-1a because both proteins can be easily accumulated
under hypoxic conditions. In addition, hif-2«a is sensitive
to oxygen and is quickly degraded, making traditional
overexpression strategies difficult. In this study, we used
an A530T mutated hif-2a whose function was not im-
paired but whose half-life was three times longer than
that of wild-type hif-2a [25]. Although no such mutation
on hif-2a has been reported in pancreatic cancer,
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pancreatic cancer cells harbor a high level of hif-2«a pro-
tein [16] because of the special tumor microenvironment
that is difficult to mimic in vitro. Our strategy succeeded
in highlighting the roles of hif-2a in not only prolifera-
tion and migration, but also in cancer stem cell renewal
and angiogenesis.

The interaction between hif-2a and [-catenin has
been noticed in renal carcinoma [20]. Here, we con-
firmed the hif-2a/p-catenin complex formation in
pancreatic cancer. However, hif-la can also interact
with B-catenin [19], making the interactions among
these three proteins extremely complicated. The hif-

la/B-catenin complex increases the transcriptional ac-
tivity of hif-la [21], while hif-2a/B-catenin enhances
B-catenin transcription [20]. However, interaction be-
tween hif-la and p-catenin compromised B-catenin
activity [19-21], which was improved by the inter-
action between hif-2a and [-catenin, as confirmed
here and in a previous study [20]. The domains of f3-
catenin responsible for interaction with the two hif-as
are different. Although both hif-as use their N-
termini (aa 1-344 in hif-la [21] and aa 1-67 in hif-
2a [20]) to bind PB-catenin, the C-terminus (aa 530-
781%° or aa 531-722%' according to different studies)
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Table 2 Univariate and multivariate analyses indicated factors for patient survival

Variable Univariate analysis Multivariate analysis

HR P value HR (95% Cl) P value
Age (= 60/< 60) 1.057 0.833 -
Gender (male/female) 1.907 0.025 1.582 (0.882-2.839) 0124
Disease stage (1/2) 0.568 0.033 0.661 (0.384-1.136) 0.134
Hif-2a (high/low) 2214 0.028 2693 (1.189-6.097) 0018
Stroma (high/low) 1221 0.585 -
TNM stage (I + I/l + V) 0.638 0.207 -
Microvascular density (high/low) 0977 0937 -
Tumor location (head/body or tail) 0.851 0.463 -
Nerve invasion (yes/no) 1.239 0411 -

and N-terminus (aa 1-259 [20]) of p-catenin are
involved in the interactions with hif-la and hif-2q,
respectively [20, 21]. The detection of hif-la/p-ca-
tenin/hif-2a complex in pancreatic cancer (data not
shown) also suggested a noncompetitive interaction
between hif-1a and hif-2a for -catenin binding.

Unexpectedly, we found that hif-2a/p-catenin could
stabilize hif-2a and increase its transcriptional activity,
although the mechanism was not identified. The N-
terminal end, but not the oxygen-dependent degrad-
ation domain, of hif-2a interacts with p-catenin; we
presumed that an untypical mechanism exists to
block of hif-2a degradation, which requires further
investigation. This finding, however, implied a
positive-feedback regulation between hif-2a and -
catenin, which might be critical in carcinogenesis and
the development of pancreatic cancer. In fact, Crisci-
manna et al. discovered that the mutual regulation of
the two proteins plays an important role during early
pancreatic tumorigenesis [22]. In their study, an early-
stage decreased and late-stage increased pattern of
hif-2a expression favored tumor initiation that devel-
oped from pancreatic intraepithelial neoplasia [22].
Therefore, the p-catenin-dependent stabilization of
hif-2a might explain why the level of hif-2a increases
in the late stage.

Conclusions

Taken together, this study revealed a pro-tumor role of
hif-2a in pancreatic cancer, both in vitro and in vivo.
Hif-2a enhances tumor proliferation, invasion, stemness
and angiogenesis. We found that hif-2«a interacts with p-
catenin, leading to elevated classic Wnt/{3-catenin activ-
ity. Moreover, we also revealed that formation of the hif-
2a/B-catenin complex stabilizes hif-2a and facilitates its
transcriptional activity. Finally, we reported poor prog-
nosis in patients with high hif-2a expression, making
hif-2a a possible target for pancreatic cancer therapy.
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