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Abstract

Tyrosine kinase inhibitors (TKIs)-treatments bring significant benefit for patients harboring epidermal growth factor
receptor (EGFR) mutations, especially for those with lung cancer. Unfortunately, the majority of these patients
ultimately develop to the acquired resistance after a period of treatment. Two central mechanisms are involved in
the resistant process: EGFR secondary mutations and bypass signaling activations. In an EGFR-dependent manner,
acquired mutations, such as T790 M, interferes the interaction between TKIs and the kinase domain of EGFR. While
in an EGFR-independent manner, dysregulation of other receptor tyrosine kinases (RTKs) or abnormal activation of
downstream compounds both have compensatory functions against the inhibition of EGFR through triggering
phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling axes. Nowadays,
many clinical trials aiming to overcome and prevent TKIs resistance in various cancers are ongoing or completed.
EGFR-TKIs in accompany with the targeted agents for resistance-related factors afford a promising first-line strategy to
further clinical application.
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Background
EGFR is a transmembrane glycoprotein belonging to the
ErbB family of RTKs which includes ErbB-1 (EGFR),
ErbB-2 (HER2/neu), ErbB-3 (HER3), and ErbB-4 (HER4)
[1, 2]. Upon binding with ligands, EGFR is activated and
leads to the excitation of subsequent intracellular signal-
ing pathways, such as the PI3K/Akt and MAPK, which
are involved in the proliferation, differentiation, migra-
tion, and apoptosis of certain cells [3–5]. Consequently,
overactivation of EGFR signaling pathways is detected in
various malignant tumors, including non-small cell lung
cancer (NSCLC), breast cancer, head and neck cancer,
colon cancer, ovarian cancer, and the like [6–8].
To attenuate the effects that EGFR pathways take on

cancers, EGFR TKIs that bind the tyrosine kinase domain
of EGFR specifically and inhibit its activity are widely ad-
ministrated for clinical application. For instance, erlotinib
and gefitinib (small molecular EGFR-TKIs) are used to
treat patients with EGFR-mutant NSCLC and show sig-
nificant efficacy [9]. Nevertheless, cancer cells gradually
acquire resistance to these drugs, resulting in progression

and relapse [10]. Besides the transformation from NSCLC
into small cell lung cancer (SCLC) and the process of
epithelial to mesenchymal transition (EMT) [11], there are
the other two main mechanisms involving in the process
of resistance. Firstly, the genetically secondary EGFR mu-
tations could get rid of the inhibition of respective TKIs
[12, 13]. Secondly, activation of bypass survival tracks via
other RTKs or alternative downstream compounds also
account for the acquired resistance [14] (Fig. 1 and Fig. 2).
In this review, we mainly focus on the latter mechanism
and summarize the existing bypass tracks contributing to
TKI resistance via EGFR-independent manners.

EGFR-triggered signaling pathways in cancers
RTKs are a kind of receptor for various growth factors, cy-
tokines, and hormones. RTKs have a similar molecular
structure: an extracellular ligand-binding region, a single
hydrophobic transmembrane domain, and a cytoplasmic
protein tyrosine kinase region plus additional carboxy ter-
minal and juxtamembrane regulatory regions [3]. The RTK
family mainly consists of ErbBs, fibroblast growth factor re-
ceptors (FGFRs), insulin-like growth factor receptors
(IGFRs), vascular endothelial growth factor receptors
(VEGFRs), and hepatocyte growth factor receptors (HGFRs)
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[3]. Thereinto, EGFR is a paradigm and its intracellular
signaling pathways are relevant to the emergence and pro-
gression of various cancers, especially NSCLC. Binding with
a specific set of ligands, such as epidermal growth factor
(EGF), transforming growth factor-alpha (TGF-α),

amphiregulin, betacellulin, or epiregulin, EGFR would form
a homodimer by itself or form a heterodimer with other
ErbB family members. Subsequently, the dimerization of
EGFR would activate its cytoplasmic tyrosine kinases do-
main and then trigger a series of signal transduction [6, 15].

mTOR

RASP
PI3K

Akt

PIP2

EGFR

TKI

PIP3

P

RAF

MEK

ERK

MET
ErbB2

IGF1R

AXL
FGFR1

HGF

1
2

Invasion

Proliferation

P

3

ErbB3

P

4

IGF

IGFBP

P

5

P
P

Angiogenesis

6
7

CREB

Metastasis

mTOR

RASP
PI3K

Akt

PIP22

EGFR

TKI

PIP33

P

RAF

MEK

ERK

MET
ErbB2

IGF1R

AXL
FGFR1

HGF

1
2

Invasion

Proliferation

P

3

ErbB3

P

4

IGF

IGFBP

P

5

P
P

Angiogenesis

6
7

CREBCREB

Metastasis

Fig. 1 Secondary RTKs-induced EGFR-TKIs resistance. EGFR could trigger downstream PI3K/Akt and MAPK signaling axes which in turn stimulate
the transcription factors to drive the associated genes expression which are related with proliferation, angiogenesis, invasion and metastasis. TKIs
inhibit EGFR-drived signal transduction by interacting with the tyrosine kinase domain of EGFR. Other RTKs are involved in the development of
TKIs resistance via a EGFR-indepenfent way: 1. Amplification of MET activates PI3K through transactivating ErbB3; 2. HGF overexpression; 3. ErbB2
amplification; 4. ErbB3 activation; 5. IGF1R activation by IGF binding or IGFBP reduction; 6. AXL activation; 7. FGFR1 activation
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Fig. 2 Alternative downstream compounds-induced EGFR-TKIs resistance. 1. PTEN loss: suppressed HGR1 downregulates PTEN expression which
in general inhibits the PI3K/Akt activation. 2. PIK3CA mutation-drived abnormal activation of PI3K pathway. 3. BRAF mutation-drived abnormal activation
of MAPK signaling axis
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Two primary downstream signaling pathways of EGFR
are the PI3K/Akt/PTEN/mTOR and the RAS/RAF/
MEK/ERK (Fig. 1). Phosphorylated tyrosine kinase of
EGFR acts as a docking site for PI3K which can stimu-
late the generation of phosphatidylinositol-3,4,5-triphos-
phate (PIP-3) and promote the activation of Akt [16].
Subsequently, the mammalian target of rapamycin
(mTOR), a downstream target of Akt, is activated and
provokes the expression of associated proteins needed
for the cell cycle progression from the G1 to the S phase
[17]. Accordingly, overactivation of this pathway sup-
presses apoptosis and stimulates tumor growth [18, 19].
Moreover, ligands-EGFR binding drives the MAPK
signaling cascade. The dimerization of EGFR activates
RAS leading to the phosphorylation of RAF-kinases
which in turn phosphorylates MEK. And motivated
MEK could impel the activation of ERK inducing to the
production of subsequent cell cycle-associated tran-
scription factors (Myc, c-Fos, CREB, NF-κB). And
those functional transcription factors ultimately
stimulate the cumulation of cyclin D catalyzing the
division of cells [20].

EGFR-independent signaling pathways involved in
TKIs resistance
Secondary RTKs-induced TKIs resistance
MET amplification
MET, belonging to the RTKs family, is amplified and
relevant to the TKIs resistance in EGFR-dependent can-
cers, especially in lung cancer. In a gefitinib-sensitive
lung cancer cell line HCC827, focal amplification of
MET was found to stimulate ErbB3 phosphorylation
which in turn activated downstream PI3K/Akt signaling
axis compensating the inhibitory effect of gefitinib on
EGFR [21]. On the contrary, MET-specific short hairpin
RNA (shRNA) restrained MET expression and then
recovered the ability of gefitinib to retard PI3K/Akt
pathway [21]. Meanwhile, ErbB3-specific shRNA also
inhibited the phosphorylation of Akt and controlled the
advancement of cell cycle in resistant cells [21]. More-
over, of the 18 gefitinib/erlotinib–resistant lung cancer
patients, 4 (22%) with high level of MET were detected
[21]. NSCLC patients with classic EGFR-activating mu-
tations were reported to have concomitant MET amplifi-
cation leading to de novo clinical resistance [22]. Besides
lung cancer, MET amplification-drived therapeutic
resistance was also reported in other ErbB-dependent
cancers, such as colorectal cancer, esophagogastric can-
cer, ovarian cancer, and so on [23–25].
Referring to the mechanisms of MET amplification in

TKI-resistant tumors, it was acknowledged that MET
amplification was pre-existed at low frequencies in
untreated HCC827 cells and NSCLC patients (approxi-
mately 4%) [26], and under the subsequently drug-

selective pressure, these cells appeared to be the
dominant clones holding MET amplification and led
to clinical gefitinib or erlotinib resistance [27]. Never-
theless, the reason why above mechanism has not
been reported in other EGFR mutant cell lines and
cancers is not clear so far.
Dual targeting of EGFR and MET may provide an effect-

ive approach to prevent the development of MET-
amplified EGFR TKI–resistant tumors [21]. Currently,
several advancing clinical trials are conducted to assess
the availability of combining the MET-targeted drugs
(MET-TKIs or MET-MAbs) with EGFR TKIs in the treat-
ment of EGFR-mutant tumor with MET-amplification
[28, 29].

Hepatocyte growth factor (HGF) overexpression
HGF, known as the ligand of MET, is primarily produced
by lung cancer cells [30] and stromal cells [31]. The
binding between HGF and MET induced various bio-
logical effects, such as mitogenic, morphogenic, and
antiapoptotic activities [32]. And the complex restored
the activation of PI3K/Akt pathway driving the TKI
resistance and contributing to the carcinogenesis, prolif-
eration, and metastasis in EGFR-mutant lung cancer
[33]. It was reported by Yano, S et al. that unlike the
MET amplification, HGF-induced MET activation, acting
as a specific mechanism of gefitinib resistance in lung
adenocarcinoma harboring EGFR-activating mutations,
motivated the PI3K/Akt signaling in an ErbB3-
independent manner [34].
HGF is not spontaneously secreted at a detectable

level in two gefitinib-sensitive lung adenocarcinoma cell
lines (PC-9 and HCC827 cells) [35]. By pretreatment
with HGF, these two cell lines were rescued from the
gefitinib-induced cell death via a dose-dependent man-
ner that the higher concentration of HGF overcome the
cell growth inhibitory effect of gefitinib [34]. Consist-
ently, this phenomenon was also showed in H1975,
A431 and HN11 cell lines [27]. In addition, a joint study
recruiting 97 tumor specimens from Japanese lung can-
cer patients with EGFR-mutation reported that HGF
overexpression was detected more frequently than other
factors (T790 M and MET amplification) in both 23
tumors with acquired resistance (61%) and 45 tumors
with intrinsic resistance (29%) [36]. The research implied
that HGF might play a crucial role in causing both
acquired and intrinsic resistance to EGFR-TKI.
Interestingly, HGF facilitated MET amplification

both in vitro and in vivo through upregulating pre-
existing MET-amplified clones [27, 37]. Therefore, ac-
tivation of MET signaling axis, either by amplification
or ligand stimulation, is a unique bypass resistance of
lung cancer cells to TKI. Simultaneous blockade of
the two approaches with EGFR-TKI and HGF-MET
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antagonists could resist the drug resistance and accel-
erate the successful treatment for lung cancer patients
to the full extent.

ErbB2/HER2 amplification
In recent years, there are some inconsistent views
concerning the influence of ErbB2 dysregulation on
the susceptibility of tumor cells to EGFR-TKIs in
NSCLC [38–40]. Traditionally, several preclinical and
clinical studies focusing on EGFR-positive (including
EGFR mutant, high gene copy number and overex-
pression) NSCLC patients suggested that increased
copy number of ErbB2 gene was susceptible to gefi-
tinib therapy and was correlated with better response
rate, disease control rate, and survival preclinical
studies reported that gefitinib has a prominent anti-
proliferative effect on tumors with ErbB2 overexpres-
sion [41–43]. Nevertheless, ErbB2 copy number is not
the necessary and the unique factor influencing anti-
tumor effect of gefitinib in NSCLC patients. A multi-
variate analysis certified that EGFR mutation, by
contrast, is a more crucial factor for beneficial clinical
outcomes in gefitinib-treated NSCLC patients than
ErbB2 and EGFR copy numbers [44]. Intriguingly, in
a current study, ErbB2 amplification was recognized
as an unacknowledged mechanism mediating the
acquired TKIs resistance of NSCLC with the absence
of the EGFR T790 M mutation [45]. Of 26 EGFR-
mutant lung adenocarcinoma patients with acquired
resistance to gefitinib or erlotinib, 3 (12%) were de-
tected with ErbB2 amplification by FISH analysis [45].
In order to verify the potential correlation, wild-type
ErbB2 cDNAs was introduced to the TKI-sensitive
cell lines (PC-9 and HCC827) and then the ErbB2
amplification (> 50-fold above baseline) resulted in the
resistance to erlotinib [45]. Moreover, under the treat-
ment with erlotinib, inhibition of ErbB2 with small
interfering RNAs (siRNAs) impeded the growth of
PC-9, HCC827, and H3255 cell lines without EGFR
T790 M [45]. Afatinib, a TKI targeting both EGFR
and ErbB2, in combined with anti-EGFR antibody could
remarkably attenuate the ErbB2 signaling and in turn
resumed the sensitivity of lung cancer and colorectal can-
cer to TKIs in vitro and in vivo [45, 46].

ErbB3/HER3 activation
It was elucidated that the resistances to EGFR- or
ErbB2-TKIs during the treatment of several malignancies
were initiated by ErbB3 [47–50]. ErbB3 is a unique
member of ErbB family in that it was regarded as an
inactive kinase. However, ErbB3 can be transactivated
and transphosphorylated by forming a heterodimers with
other ErbB members [51]. Functionally, ErbB3 plays a
compensatory role in supplanting the TKIs-inhibited

EGFR or ErbB2 to trigger and sustain the activation of
typical PI3K/Akt signaling pathway in vitro and in vivo
[47]. Unlike the EGFR and ErbB2 motivating the PI3K
through the adaptor proteins, ErbB3 could bind the p85
subunit of PI3K to activate PI3K directly, implicating the
priority and prevalence of the ErbB3-drived resistance in
TKIs-treated tumors [52].
ErbB3-induced drug resistance is primarily mediated

by three methods. At first, as mentioned above, MET
amplification was known to endow ErbB3 signaling with
persistent activation and contribute to the resistance to
gefitinib in lung cancer cell lines [21]. Besides, it was
demonstrated that the ErbB2-ErbB3 heterodimer was
responsible for the stimulation of downstream oncogenic
signaling in ErbB2+ breast cancer cells [53]. When the
ErbB2 was undermined significantly by TKIs, signaling
activities buffering the inhibitory effects of TKIs on
ErbB2 were recovered through upregulating the produc-
tion of ErbB3 and weakening the activity of ErbB3 phos-
phatase so that lead to the resistance to gefitinib and
erlotinib [47]. Third, by binding with its ligand heregulin
(HRG) or neuregulin 1 (NRG1), ErbB3 formed a hetero-
dimer with another ErbB receptor. Consequently, the
ligand-receptor complex strongly triggered PI3K/Akt
axis mediating the resistance to anticancer kinase inhibi-
tors in various cancers [54–56]. For example, among
nine HER2-amplified breast cell lines, eight were resist-
ant to the lapatinib by applying ErbB3 ligand NRG1 [56].
And Xia et al. suggested that acquired resistance to lapa-
tinib in the HER2+ breast cancer can be driven by auto-
crine induction of HRG [57]. On account of above
mechanisms, inactivating ErbB3 is identified as an
encouraging approach to resist drug resistance [58].

IGF1R activation
Activation of IGF1R is another mechanism conferring
the acquired resistance against gefitinib to EGFR-
amplified and EGFR-mutant cancer cell lines [58]. And
the signaling mediated by IGF1R participated in the
early stage of TKIs-resistance [59].
In gefitinib-resistant A431 squamous cancer cells, sus-

tained PI3K signaling in the presence of gefitinib was a
result of IGF1R-induced signal transduction [60]. Con-
current inhibition of EGFR and IGF1R obstructed the
initiation of resistance to gefitinib treatment and reverse
the resistant phenotype both in A431 cell line and tumor
xenografts [60]. The consistent phenomenon was also
found in another gefitinib-resistance cell line model, the
head and neck HN11 cells [60]. In the sight of the mo-
lecular mechanism, gene expression profiles of the
resistant cell line models showed that IGF binding
proteins-3 (IGFBP-3) and IGFBP-4, known as negative
regulators interfering IGF-IGF1R binding and owning
IGF-independent growth inhibition activities, were
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responsible to the IGF1R-triggered drug resistance [60–
62]. The reduction of EGF caused by the EGFR-TKIs
treatments downregulated the expression of IGFBP-3
and IGFBP-4. This might lead to the maintenance of
IGF1R-induced PI3K/Akt signaling confronting the
TKIs-mediated EGFR blockade [60]. Undoubtedly,
addition of IGFBP-3 to the A431 cells resensitized the
effects of gefitinib and retorted the resistance phenotype
[60]. Recently, Zhou et al. pointed out that IGF1R
induced acquired resistance of NSCLC cells against
EGFR-TKIs mainly via stimulating EMT process trig-
gered by upregulated Snail expression and repressed E-
cadherin expression [63].
Albeit above preclinical researches showed the potent

correlation between the IGF1R activation and TKIs
resistance, there was insufficient study focusing on this
trend in clinical patients. It has been reported that the
high frequency of IGF1R (39–84%) was detected in
patients with various cancers [64–67], however, further
study is needed to determine the explicit proportion of
high IGF1R expression patients among those having
TKIs resistance. To sum up, all these findings provide
potential therapeutic targets to surmount TKIs resist-
ance in EGFR-mutant cancers and enhance the efficiency
of TKIs treatments.

Other bypass RTKs
AXL, a subfamily member of RTKs, is correlated with cell
survival, proliferation, metastasis, and phagocytosis [68,
69]. The increased abundance of AXL and its ligand
(GAS6) was found in EGFR-TKI resistant NSCLC speci-
mens at the frequency of 20% and 25%, respectively [70].
The aberrant activation of AXL was showed to be re-
quired for the development of erlotinib resistance in
EGFR-mutant NSCLC models both in vitro and in vivo
via Akt, MAPK or NF-κB downstream signaling [70].
What’s more, this process driven by AXL may be corre-
lated with some histological changes, such as EMT [71].
Besides NSCLC, overactivation of AXL was also impli-
cated to the emergence of acquired resistance to imatinib
in gastrointestinal stromal tumors and to lapatinib in
HER2 positive breast tumor [72, 73]. Inhibition or knock-
down of AXL either in the A549 cell line or in a xenograft
model exhibited a decreased tumor growth rate and a re-
stored chemosensitivity [74, 75]. Collectively, synthetical
treatment combining with representative TKIs and AXL
inhibitors to patients with acquired resistance may be a
promising strategy to enhance the therapeutic efficacy.
Another RTK, FGFR1, formed an autocrine loop with its
ligand FGF2 and was identified as an alternative pathway
mediating the resistance to EGFR-TKI in a PC-9 cell line
model [76]. Meanwhile, inhibition of FGFR1 or FGF2
retarded the growth of resistant PC-9 cells and resensi-
tized the cells to gefitinib-treatment.

Abnormal activation of downstream compounds
Phosphatase and tensin homolog (PTEN) loss
PTEN, acting as a tumor inhibitor, negatively regulates
the PI3K/Akt signaling cascade by converting PIP-3 back
to PIP-2 [77, 78]. The loss of PTEN decreased erlotinib-
induced apoptosis and induced erlotinib-resistance in
EGFR-mutant cells via reactivation of Akt and EGFR
[79, 80]. In the gefitinib-resistant PC-9 cell line model,
reduced PTEN expression was relevant with increased
Akt phosphorylation [81]. On the other hand, along with
the high PTEN expression, the therapeutic efficacy of
gefitinib and erlotinib was restored in the gefitinib-
sensitive NSCLC PC-9 cell line. And knockdown of
PTEN with siRNA in PC-9 cells contributed to acquired
resistance to gefitinib and erlotinib [81]. Retrieval of
PTEN expression also enhanced the sensitivity of pros-
tate cancer cells to EGFR inhibition [82]. Furthermore,
low expression of PTEN was detected in metastases
samples from gefitinib-refractory NSCLC patients [81].
Mechanically, the transcription factor, EGR1, is

responsible to the abnormal expression of PTEN. By a
nuclear translocation manner, EGR1 played a positive
role in regulating PTEN expression [83]. However, this
manner was found to be suppressed in resistant cell
models and be recovered in the revertant models [81]. It
is clear that the expression of PTEN can be controlled
by downregulated EGR1 at a transcriptional level.

PIK3CA and BRAF mutations
Mutational activation of the downstream signaling com-
ponents, such as PI3K/Akt or MEK/ERK, which was
independent on the EGFR was identified as a novel
mechanism of TKIs resistance [84, 85]. PIK3CA gene en-
codes the catalytic subunit of PI3K and has occasionally
mutation in lung cancer [84]. In a vitro study, PIK3CA
mutation which led to sustained PI3K/Akt signaling con-
ferred the resistance of EGFR-mutant HCC827 cells to
gefitinib [86]. Whereafter, Sequist, LV et al. firstly dem-
onstrated PIK3CA mutations in 5% EGFR-mutant pa-
tients with acquired resistance to EGFR-TKIs [84].
Combining TKI and PI3K inhibitor has been introduced
to therapeutic intervention in cancers harboring PIK3CA
mutations.
Additionally, BRAF, known as a member of RAS sig-

naling pathway genes, was reported to be involved in
pro-mitogenic activity and acquired resistance to EGFR
TKIs in lung cancer and colorectal cancer through acti-
vating the MAPK signaling axis [87, 88]. BRAF muta-
tions were generally existed in malignant melanoma
(30%–40%), whereas it only accounted for approximately
1% of NSCLC [85]. Nevertheless, the small proportion
of BRAF mutations resulted in negative results (poor
prognosis) and provided cognition about mechanisms of
acquired resistance to EGFR-TKIs in lung cancer [85].
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Mechanisms of resistance to third generation
EGFR-TKIs
Nowadays, the third generation EGFR-TKIs, including
osimertinib, rociletinib (CO-1686), HM61713 (BI
1482694), ASP8273, EGF816, and PF-06747775, were
widely introduced to replace the first generation EGFR-
TKIs to overcome the status of drug resistance [89–92].
A recent clinical trial (NCT02151981) showed that
AZD9291 significantly improved objective response rate
(ORR) and PFS in T790 M-mutant NSCLC patients who
had disease progression on first-line EGFR-TKIs [93].
Subsequently, patients were also resistant to these TKIs
after 10 months of treatment, suggesting that additional
mechanisms may reduce the efficacy of these inhibitors
[13]. In vitro experiment identified three major mutants
of EGFR (L718Q, L844 V, and C797S) in resistant cell
clones. Among them, C797S mutation was a key factor
conferring resistance to the third-generation inhibitors
in the existence of del 19 [13].
Moreover, bypass tracts including amplifications of

other tyrosine kinases or abnormal activation of down-
stream compound also mediated the resistance to third-
generation TKIs. HER2 and MET amplifications led to

poor response to CO-1686 and were detected in patients
who had disease progression on CO-1686 or osimertinib
treatment [94, 95]. Besides, in an AURA trial, re-biopsy
tissues of 4 NSCLC patients with acquired resistance to
osimertinib showed different mechanisms of resistance,
including FGFR1 amplification, PTEN deletion, MAPK1
and Akt3 overexpression, and SCLC transition [96].
KRAS alteration resulting in increased RAS signaling
existed in relapsed biopsy tissues and mutant KRAS
transduced cells which were both less sensitive to third
generation TKIs [95, 97]. Blocking alternative pathways
may provide a promising strategy for improving the drug
sensitivity and overcoming the resistance to third gener-
ation TKIs.

Conclusions and perspectives
Currently, the mechanism study on the resistance to
EGFR-TKIs has attracted broad attention. There are two
major ways involving the initiation and development of
resistance to TKI. One is the secondary mutations of
EGFR which alter the drug target site of EGFR so that
prevent effective interaction with TKIs [9, 98]. Another
is activation of bypass tracts via an EGFR-independent

Table 1 The EGFR-independent mechanisms of EGFR-TKIs resistance and relevant clinical trials

Mechanism Frequency Agents Clinical Trials Phase Status Reference

Secondary RTKs

MET amplification 5%–22% Crizotinib NCT02737501 (NSCLC)
NCT00932893 (NSCLC)

III
III

Ongoing
Has results

[21, 84, 102, 103]

Tivantinib (ARQ197) NCT01244191 (NSCLC)
NCT01575522 (breast cancer)

III
II

Completed
Has results

Cabozantinib (XL184) NCT00596648 (NSCLC)
NCT01834651 (prostate cancer)

I/II
II

Completed
Has results

Capmatinib (INC280) NCT01870726 (glioblastoma)
NCT03040973 (solid tumors)

I/II
IV

Completed
Recruiting

Onartuzumab (METMab) NCT01456325 (NSCLC) III Completed

LY2875358 NCT01874938 (gastric cancer) II Completed

MSC2156119J NCT01014936 (solid tumors) I Has results

HGF overexpression 29%–61% Rilotumumab (AMG102) NCT01233687 (NSCLC) I/II Has results [36, 104]

ErbB2 amplification 12%–37% Afatinib NCT02044380 (NSCLC) III Has results [45, 105]

Lapatinib NCT00320385 (breast cancer) III Has results

Trastuzumab NCT01419197 (breast cancer)
NCT00004883 (NSCLC)

III
II

Has results
Completed

ErbB3 activation 17%–52% MM-121 NCT00994123 (NSCLC) I/II Has results [48, 106]

IGF1R activation 39–84% Linsitinib (OSI-906) NCT01533181 (SCLC) II Has results [64–67]

Figitumumab NCT00673049 (NSCLC) III Has results

AXL activation 20% TP-0903 NCT02729298 (solid tumors) I Recruiting [70]

FGFR activation 10%–20% BGJ398 NCT01928459 (solid tumors) I Completed [107, 108]

Alternative downstream components

PTEN loss 9% Ipatasertib NCT02301988 (breast cancer) II Completed [109]

PIK3CA mutation 5% BYL719 NCT01708161 (solid tumors) I/II Completed [84]

BRAF mutation 1% Dabrafenib NCT01619774 (melanoma) II Has results [85, 110]
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manner, such as motivating other RTKs or dysregulating
downstream signaling components.
Based on the recognition of above resistant mecha-

nisms, new clinical trials covering phase I-IV are emer-
ging to provide therapeutic interventions adapting for
patients with refractory or recurring cancers by inhibit-
ing the alternative pathways [99–101] (Table 1). Some of
these trials had favorable results and now are available
for clinical application. Moreover, new generation of
TKIs are on their way to evade the resistance and
enhance the therapeutic efficiency. Further clinical
evaluation is required to offer individualized treatments
for those specific patients.
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