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Abstract 

Background Colorectal cancer liver metastases (CRCLM) are associated with a poor prognosis, reflected by a five‑
year survival rate of 14%. Anti‑angiogenic therapy through anti‑VEGF antibody administration is one of the limited 
therapies available. However, only a subgroup of metastases uses sprouting angiogenesis to secure their nutrients 
and oxygen supply, while others rely on vessel co‑option (VCO). The distinct mode of vascularization is reflected by 
specific histopathological growth patterns (HGPs), which have proven prognostic and predictive significance. Never‑
theless, their molecular mechanisms are poorly understood.

Methods We evaluated CRCLM from 225 patients regarding their HGP and clinical data. Moreover, we performed 
spatial (21,804 spots) and single‑cell (22,419 cells) RNA sequencing analyses to explore molecular differences in detail, 
further validated in vitro through immunohistochemical analysis and patient‑derived organoid cultures.

Results We detected specific metabolic alterations and a signature of WNT signalling activation in metastatic cancer 
cells related to the VCO phenotype. Importantly, in the corresponding healthy liver of CRCLM displaying sprouting 
angiogenesis, we identified a predominantly expressed capillary subtype of endothelial cells, which could be further 
explored as a possible predictor for HGP relying on sprouting angiogenesis.

Conclusion These findings may prove to be novel therapeutic targets to the treatment of CRCLM, in special the ones 
relying on VCO.

Keywords Colorectal cancer liver metastases, Histopathological growth patterns, Vessel co‑option, Sprouting 
angiogenesis, Glycolysis, WNT signalling, Pentose phosphate pathway

Introduction
Colorectal cancer (CRC) five-year survival rates range 
from up to 90% in cases of locally limited tumors to 14% 
when disease has spread to distant organs [1, 2]. By far, 
the liver is the most common site of metastasis, observed 
in up to 75% of metastatic cases [3]. To date, different 
CRCLM HGPs have been defined and were shown to be 
of prognostic relevance for a patient’s outcome [4–6]. 
The three predominant CRCLM HGPs observed are 
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the desmoplastic HGP (dHGP), the replacement HGP 
(rHGP) and the rarely observed pushing HGP (pHGP) 
[6]. CRCLM having a dHGP have better survival rates 
compared to other HGPs [4, 5]. Besides their morpho-
logic characteristics, HGPs also distinctly differ in their 
main mechanism of blood supply, having relevant clinical 
implications regarding anti-angiogenic treatment [7, 8]. 
Both dHGP and pHGP CRCLM rely primarily on sprout-
ing angiogenesis (SA) [9, 10], a process commonly driven 
by angiogenic factors such as hypoxia-inducible factor-1 
(HIF-1) and vascular endothelial growth factor (VEGF) 
[11, 12]. In contrast, CRCLM displaying the rHGP pre-
dominantly utilize vessel co-option (VCO) to secure their 
oxygen and nutrient supply [8, 9] and increased cancer 
cell motility and adhesion have been suggested as driv-
ing factors of this process [7, 13]. Compared to angio-
genic HGPs, rHGP CRCLM show reduced susceptibility 
to anti-angiogenic treatment such as the VEGF-inhibitor 
bevacizumab [7].

To improve therapeutic strategies targeting VCO in 
the rHGP, in-depth molecular characterization of the 
interplay between cancer cells and the tumor micro-
environment is essential. Therefore, the identification 
of detectable biomarkers prior to resection for differ-
ing HGPs is critical given that they respond differently 
to anti-angiogenic treatment [7]. In this single-center 
study, we analysed a cohort of 225 patients according to 
their CRCLM HGP and correlated these data to their 
clinical outcomes. Since renin–angiotensin–aldoster-
one system (RAAS) inhibition was suggested to sof-
ten the fibrotic CRCLM stroma and to have an impact 
on tumor mechanical stiffness [14], we evaluated the 
overall survival (OS) of a subgroup of CRCLM patients 
under anti-RAAS medication. We also performed spatial 
(spaRNA-seq) and single-cell RNA sequencing (scRNA-
seq) analyses to determine cellular and molecular sig-
natures involved in the different CRCLM HGPs. We 
detected specific metabolic alterations and a signature 
of WNT signalling activation in metastatic cancer cells 
related to the rHGP phenotype. Of note is that in the 
corresponding healthy liver of dHGP CRCLM, we identi-
fied a predominantly expressed capillary subtype, which 
could be further explored as a possible predictor for 
dHGP. Our findings suggest to further exploit glycolysis 
and the WNT signalling pathway as possible targets for 
the treatment of rHGP CRCLM.

Methods
Patient cohort and histopathological characteristics
Patient samples
For analysis of clinical aspects, we established a retro-
spective cohort of 225 patients (summarized in Sup-
plementary Table  1) who underwent CRCLM resection 

between 1995 and 2015 at the University Medical Center 
Göttingen (UMG), Germany. From eight patients, 
two CRCLM were available, resulting in a total of 233 
CRCLM. The study was approved by the UMG Eth-
ics Committee (25/3/17). For PDOs, surgically fresh 
resected CRCLM tissue was derived from 10 patients 
between 2020 and 2021, of which five exhibited rHGP 
and five exhibited dHGP (Supplementary Table  12), as 
assessed retrospectively. Samples were collected at the 
UMG under ethical approval of the UMG (25/3/17 and 
23/4/22).

HGP scoring of CRCLM
HGP scoring of CRCLM was performed according to 
the international consensus guidelines [10] by two inde-
pendent evaluators using H&E slides containing an area 
of tumor-liver interface. The HGP were estimated as 
percentage proportions of the visible tumor-liver inter-
face. In the case of mixed HGP, all expressed HGP were 
rounded to 5% values. For further analysis, the CRCLM 
were categorized according to the main mechanism of 
blood supply, which the respective HGP relies on. There-
fore, dHGP and pHGP were summed up as a SA group, 
whereas the rHGP was classified as a VCO group. For 
clinical analysis, the exact cut-off values for each group 
are displayed in the figures. For IHC analysis, a cut-off 
value of ≥ 80% was chosen to include CRCLM in the SA 
or VCO group. For the MS-based metabolic profiling, 
cut-off values of 50% were used.

Spatial transcriptomics
Slide preparation, staining and imaging
The Visium Spatial Gene Expression for the FFPE Kit 
(10 × Genomics, PN-1000338) was used to generate 
sequencing libraries. Prior to section placement, tissue 
adhesion was assured using the Visium Tissue Section 
Test Slides (10 × Genomics, PN-1000347) and the RNA-
extraction of FFPE blocks was performed using RNeasy 
FFPE Kit (Qiagen, #73,504). For RNA quality evaluation, 
including determination of DV200, the Agilent 2100 
Bioanalyzer system with Agilent RNA 6000 Nano Kit 
(5067–1511) was used. All samples reached DV200 of at 
least 50%. Sections of 5 µm thickness were cut from the 
FFPE CRCLM from six patients (3 dHGP and 3 rHGP) 
and placed on the capture areas of the Visium Spatial 
Gene Expression Slide (10 × Genomics, PN-2000233). 
Each capture area with a size of 6.5 × 6.5  mm contains 
roughly 5000 unique gene expression spots with a diam-
eter of 55 µm. Following the manufacturer´s protocol, the 
sections were deparaffinized, H&E-stained, coverslipped 
and imaged at 40 × magnification with the Glissando 
Objective Imaging scanner (Objective Imaging Ltd, Cam-
bridge, UK). Tissue permeabilization and construction of 
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sequencing libraries were performed following the man-
ufacturer’s protocol (10 × Genomics, PN-1000338).

Reverse transcription, spatial library preparation 
and sequencing
Libraries were sequenced using the DNBSEQ™ technol-
ogy (BGI). Therefore, DNA Nanoballs (DNB) were gener-
ated and all samples were loaded on one flow cell using 
the DNBSEQ-G400 High-throughput Sequencing Set 
(BGI, 1,000,016,970). Two samples were pooled together 
on one sequencing lane. The MGISEQ-2000 sequencer 
(BGI) was used with the following settings: Paired-end 
run with 28 cycles for read1 (encoding spatial Barcode 
and UMI), 50 cycles for read2 (encoding the ligated probe 
insert), 10 cycles for the i5 index and 10 cycles for the i7 
index (identifying each sample) (PE28 + 50 + 10 + 10). 
The sequencing depth was 300  M reads per lane which 
equals a sequencing depth of 150 M reads per sample.

Spatial transcriptomics data processing
After sequencing, libraries were de-multiplexed, mapped 
to the human transcriptome and aligned to overlaying 
H&E images using SpaceRanger software (10 × Genom-
ics) and the manual alignment tool (LoupeBrowser v5.1.0, 
10 × Genomics). All further steps were performed using 
the UniApp (Unicle Biomedical Data Science, Belgium).

Quality control
Across all patients, 22,272 tissue-covered spots were 
detected. Detailed quality metrics for every sample are 
shown in Supplementary Table  3. For quality filtering, 
spots with an expression of less than 200 genes/spot, 
ambiguous expression of canonical marker genes or loca-
tion on folded tissue were excluded, resulting in 21,804 
high quality spots included for further analysis.

Graph‑based clustering of single samples and cluster 
annotation
For clustering the spots of every single sample, data was 
auto-scaled and dimensional reduction was performed 
using principal component analysis (PCA). The first 30 
PCAs were visualized in t-Distributed Stochastic Neigh-
bour Embedding (t-SNE) with a t-SNE perplexity of 60 
and a learning rate of 200. Graph-based clustering was 
performed to cluster the spots according to their gene 
expression profile (clustering-resolution = 0.8, k-nearest 
neighbours = 10). Since every spot captures the tran-
scriptomics of several spatially overlaying cells, pre-
dominating cell types in every cluster were determined 
using canonical marker genes. In the case that clusters 
could not be identified by expression of canonical marker 
genes, clusters were annotated according to their mor-
phological appearance on the H&E slide. Clusters were 

further investigated by identifying the top 50 uniquely 
upregulated marker genes for each determined cluster.

Upset plots and Jaccard similarity PCA
Upset plots were generated using the R package “UpsetR” 
(v1.4.0). Jaccard similarity analysis [15] was calculated 
using a custom R script (provided by Unicle Biomedical 
Data Science, Belgium).

Data visualization
The UniApp (Unicle Biomedical Data Science, Belgium) 
was used for data visualization, including t-SNE plots, 
spatial plotting of spots on the H&E slide, heatmaps and 
dot plots. Heatmaps are based on cluster-averaged gene 
expression to account for cell-to-cell transcriptomic 
stochastics. In all heatmaps, data were auto-scaled for 
visualization.

Pathway mapping
First, differential expression analysis between two clus-
ters (cancer areas dHGP vs. cancer areas rHGP) was 
performed using limma (pmid25605792), as described 
previously (pmid29608177). Genes with adjusted 
p-value < 0.05 from selected canonical pathways derived 
from the KEGG database (WNT signalling pathway, 
M19428; Glycolysis/Gluconeogenesis, M11521; PPP, 
M1386) were shown. Logfold (A) of selected genes was 
scaled using the following equation:

For mapping, a colour scale with expression -0.5 to 0.5 
was used.

Single‑cell RNA sequencing analysis
scRNA‑seq sample collection, library preparation 
and sequencing
CRCLM and normal, non-transformed hepatic tissue 
(located as distant to the metastases as possible) from 
six patients with CRCLM (three dHGP and three rHGP) 
(Supplementary Table 13) were used for scRNA-seq. The 
HGP was determined retrospectively using H&E slides 
covering the tumor-liver interface at the margin of sam-
ple collection. For depletion of dead cells, specimens 
underwent single-cell dissociation with the gentleMACs 
Octo Dissociator (Miltenyi Biotec,130–095-937), cryo-
preservation at -80  °C and magnetic-activated cell sort-
ing (MACS) with Basic MicroBeads (Miltenyi Biotec, 
130–048-001). Using the Chromium single-cell sequenc-
ing solution (10 × Genomics), we performed single-cell 
separation, cDNA amplification and library construction. 
In detail, single-cell gel bead-in emulsions were gener-
ated using the 10 × Chromium Single Cell Controller 
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followed by library construction with the Chromium 
Next GEM Single cell 3´ GEM Library & Gel Bead Kit 
v3.1 (10 × Genomics, PN-1000123). The HS DNA Bio-
analyzer with the dsDNA Qubit Kit was used to measure 
cDNA and library concentrations.

Libraries were sequenced using the DNBSEQ™ tech-
nology (BGI), generating DNA Nanoballs (DNB) on 
a flow cell using the DNBSEQ-G400 High-through-
put Sequencing Set (BGI, 1,000,016,970). Two sam-
ples were pooled together on one sequencing lane. The 
MGISEQ-2000 sequencer (BGI) was used with the fol-
lowing settings: DNBseqPE100 + 100 + 10. The sequenc-
ing depth was 300  M reads per lane which equals a 
sequencing depth of 150 M reads per sample.

Quality control and data normalization
Raw data was demultiplexed, aligned to the human 
genome and implemented in a gene count matrix using 
CellRanger software (10 × Genomics). Detailed qual-
ity metrics are shown in Supplementary Table  14. For 
quality filtering, genes detected in fewer than three cells 
and cells with less than 150 detected genes per cell were 
excluded to catch quiescent low transcriptome cell types 
such as EC. Here, we first excluded cells in which > 70% of 
transcripts were derived from mitochondria (to include 
tumor cells with low RNA quantity, likely experienc-
ing leakage phenomena [16]), followed by manual qual-
ity control applied after the initial clustering. Therefore, 
clusters lacking expression of canonical marker genes or 
clusters expressing marker genes from distinct cell line-
ages (doublet removal) were removed in repetitive steps, 
totalizing 22,419 cells.

Graph‑based clustering and cluster annotation
For clustering, data was auto-scaled and dimensional 
reduction was performed using PCA. The first 20 PCAs 
were visualized in t-Distributed Stochastic Neighbour 
Embedding (t-SNE). Graph-based clustering was per-
formed to cluster the spots according to their gene 
expression profile (clustering-resolution = 1). The 
uniquely upregulated genes per cluster were identified 
using the function in the UniApp (Unicle Biomedical 
Data Science, Belgium) and carefully reviewed. Finally, 
the expression of canonical marker genes was also 
explored, so that major cell types for each cluster could 
be identified.

Bootstrap analysis
We applied hierarchical clustering with Euclidean dis-
tance and average linkage. We estimated the confidence 
of all branches of the tree by the bootstrap resampling 
approach from the R-package pvclust [17]. To ensure that 
biologically relevant branches that could not be directly 

resolved by bootstrapping were statistically separable 
(e.g. capillaries and and ACLs), we performed pair-wise 
differential analysis and confirmed that these clusters had 
at least ten genes that exceed a 0.2  log2fold enrichment 
with a FDR corrected p value < 0.05.

Data visualization
UniApp (Unicle Biomedical Data Science, Belgium) was 
used for data visualization, including t-SNE plots, heat-
maps and dot plots. Heatmaps were based on cluster-
averaged gene expression to account for cell-to-cell 
transcriptomic stochastics. In all heatmaps, data was 
auto-scaled for visualization. For cluster correlation, 
heatmaps were calculated with the value of tiles for self 
correlation defined as non applicable, to highlight the 
other correlations (in this cases no scaling was used). To 
ensure data accessibility to non-bioinformaticians, repro-
ducibility and resource value, we made our scRNA-seq 
data available for further exploration via an interactive 
webtool: https:// unicle. life/ porta ls/. Using this tool, users 
can interactively visualize gene expression and cluster-
ing on t-SNE, search marker genes for all subclusters and 
export gene expression data.

Gene set enrichment analysis
GSEA was used as implemented in the clusterPro-
filer package by comparing gene expression signatures 
between groups (pmid22455463). A collection of gene 
sets (PID, KEGG, REACTOME, BP) selected from the 
Molecular Signature Database (MsigDB v7.5.1 down-
loaded from https:// www. gsea- msigdb. org/ gsea/ msigdb/ 
https:// www. gsea- msigdb. org/ gsea/ msigdb/ was used. 
GSEA scores were calculated for sets having at least 10 
detected genes; all other parameters were default.

Integrative analysis of spaRNA‑seq and scRNA‑seq
Feature engineering
Gene sets containing the 30 and 150 most enriched 
marker genes of the identified ACL phenotype of ECs 
(scRNA-seq) were established and used for feature engi-
neering (Supplementary Table  20). Therefore, relative 
expression of those gene sets in each spot of the spaRNA-
seq data set was computed and spatially displayed on the 
H&E overlay using the function in the UniApp.

In vitro functional assays
Primary CRCLM patient‑derived organoid isolation 
and culture
Establishment and culturing of PDOs were performed 
according to Sato et  al. 2011 [18]. Briefly, PDOs were 
cultured in Matrigel (Corning) using advanced DMEM/
F12 medium supplemented with 10 mM Hepes, 1X Glu-
tamax, 1X penicillin/streptomycin (10,000 U) (all from 

https://unicle.life/portals/
https://www.gsea-msigdb.org/gsea/msigdb/https://www.gsea-msigdb.org/gsea/msigdb/
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Gibco), 10 mM nicotinamide (Sigma), 10 µM SB202190 
(MedChem Express, Monmouth Junction, USA), 1X 
B27 (Gibco), 1X N2 supplement (Gibco), 500  nM A83-
01 (Tocris), 10% Noggin CM (made in house), 20% 
R-spondin conditioned media (CM) (made in house), 
1.25 mM N-acetylcysteine (Sigma) and 50 ng/ml human 
EGF (Gibco). 100  µg/ml Primocin (InvivoGen) was 
added to the medium only during extracting and passag-
ing PDOs for the first time. 10 µM Y-27632 (Adooq Bio-
sciences, Irvine, USA) were added to the medium after 
extraction and seeding of PDOs. PDOs were respectively 
stratified for HGP based on H&E slides from the corre-
sponding CRCLM.

TOP/FOP‑Flash reporter assay
TOP/FOP-Flash reporter plasmids containing intact 
or mutated Tcf/Lef binding sites (Addgene, 12,456; 
Addgene, 12,457) and Renilla plasmids (Promega, 
E2241) were co-transfected in H1299 cells using Lipo-
fectamine3000 (Invitrogen, USA; 15,282,465). Trans-
fected H1299 cells were treated with PDO supernatant 
(R-Spondin-reduced PDO tumor media conditioned by 
PDOs for two and seven days) for 16 h. The Dual Lucif-
erase® Reporter Assay System (Promega, E1910) was 
used to measure luciferase activities. The assay was per-
formed in triplicates. TOP/FOP-Flash values were nor-
malized to the Renilla values and to the number of viable 
cells in corresponding PDOs, generating the TOP/FOP-
Flash ratio.

Histology and immunostaining
First, FFPE samples of CRCLM were cut in 2-µm slides, 
deparaffinized in xylol (Carl Roth, Karlsruhe; Germany) 
and further subjected to descending series of ethanol 
(Carl Roth) (from 100 to 70% ethanol) following stand-
ard H&E staining protocol (3  min Meyer’s hematoxylin 
(Merck, Darmstadt, Germany) 2 × 2  min wash in desti-
lated water, 1  min eosin (Merck) incubation and final 
dehydration in increasing ethanol series (from 70 to 100% 
ethanol) and xylol (all Carl Roth)). For IHC, FFPE tissue 
was obtained from tissue micro-arrays blocks. Here, sam-
ples were deparaffinized in xylol, underwent a decreas-
ing series of ethanol and were washed in deionized water. 
Slides were then heated for 20 min at 100 °C in a steamer 
(Braum, Melsungen, Germany) in Tris–EDTA (pH 8,5). 
After which, samples were incubated for 15  min in 3% 
 H2O2 (in deionized water) to block endogenous peroxi-
dase activity and blocked with 5% bovine serum albumin 
(BSA) diluted in PBS for 10  min before washing with 
Tris-buffered saline containing 0.1% TritonX100 (TBST). 
Samples were then incubated with the primary antibod-
ies in an antibody diluent (Zytomed, ZUC025-100) with 
the following time periods and dilutions: LDHA (Thermo 

Fisher Scientific (TA500568), 1:200, 2 h); DKK1 (Bio-Rad 
(AHP1156) 1:100, 1  h), Ki67 (Invitrogen (MA5-14,520) 
1:500, 1  h); Hif1α (Acris Antibodies (AP20633PU-N) 
1:200, 1  h). After incubation, samples were washed two 
times for 5 min in TBST. Afterwards, samples were incu-
bated with secondary antibodies. For AMPKα staining, 
samples were incubated for 30 min at room temperature 
(RT) in rabbit anti-goat Immunglobulins/Horse Raddish 
Peroxidase (HRP), diluted in TBST (1:200). For LDHA 
and DKK1 staining, samples were incubated in Labelled 
Polymer Anti-Rabbit/HRP (Dako North America, CA, 
USA (K4002)) for 30  min and then washed two times 
each for 5  min in TBST. Bright-DAB (ImmunoLogic, 
NL) was applied for 8  min on the samples before being 
immersed for 1 min in hematoxylin and further washed 
in deionized water. Finally, samples were dehydrated by 
incubation in an ascending ethanol series and xylol for 
2  min. For mounting, Vitro-Clud® (Langenbrinck, Ger-
many) was applied before adding a cover glass.

RNA isolation and qRT‑PCR
PDOs were harvested for RNA extraction in PBS, cen-
trifuged at RT and the pellet was processed using the 
Quick™-RNA Miniprep Kit (Zymo Research; R1054). 
RNA samples were reverse-transcribed to complemen-
tary DNA (cDNA), and subsequently, qPCR was per-
formed as a one-step reaction using the SensiFAST™ 
SYBR® No-ROX One-Step Kit (Meridian Bioscience; 
BIO-72005) and the CFX384 real-time PCR system (Bio-
rad). Results were obtained from three technical repli-
cates per PDO line and normalized to the expression of 
Cyclophilin. Primers were produced by IDT™ (Integrated 
DNA Technologies BVBA, Belgium) and are listed in 
Supplementary Table 21.

Western blot
PDOs were harvested for protein extraction by mechani-
cal destruction in PBS, centrifuged and the pellet incu-
bated for 10 min in cell recovery solution (Corning, USA; 
354,253). Pellets were lysed using modified RIPA buffer 
(50  mM Tris pH 7.8, 250  mM NaCl, 30  mM EDTA, 
30 mM EGTA, 25 mM Sodium Pyrophosphate, 1% Triton 
X100, 0.5% NP-40, 10% Glycerol, 1  mM DTT) supple-
mented with protease inhibitor (Complete Mini Tables 
EDTA-free, Roche) and phosphatase inhibitor (PhosStop 
tablets, Roche) and then ruptured by passing through an 
insulin syringe (BD Microfine, BD, Germany). Lysates 
were centrifuged for 10  min at 4  °C and supernatants 
used for Western blot analysis. 30  µg protein per sam-
ple were subjected to 8% SDS-PAGE and transferred to 
0.45  µm PVDF-membranes (Cytiva, 10,600,023). Mem-
branes were blocked for 30 min at RT with 3% Notfat Dry 
Milk (Carl Roth, T145.3) prior to overnight incubation 
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with the following primary antibodies: active β-Catenin 
1:4000 (Millipore, #05–665), total β-Catenin 1:2000 (Cell 
Signaling Technology, #9587) and HSC70 1:2000 (Santa 
Cruz Biotechnology, #sc-7298). Membranes were then 
incubated with HRP-conjugated anti-rabbit IgG 1:10,000 
(Thermo Fisher Scientific, G-21234) or anti-mouse IgG 
1:2000 (Thermo Fisher Scientific, A-10668) secondary 
antibodies for 30  min at RT. Blots were developed with 
SuperSignal West Pico Chemoluminescence Substrate 
(Thermo Fischer Scientific, 15,513,766) and imaged with 
the ImageQuant LAS 4000 mini. The intensity of the 
bands was measured using ImageJ (NIH, Bethesda, MD) 
software. For quantification, intensity of the bands was 
normalized to a HSP70 loading control and p-values were 
calculated by comparing the HGPs.

Bulk transcriptomics analysis
Gene set enrichment analysis – dnLef and ACL signature
The (GSE151165) [19] data set was the only currently 
available bulk sequencing data set stratifying CRCLM 
for HGPs by browsing NIH GEO DataSets for the terms 
“Colorectal cancer liver metastases” and “HGP”. Raw 
RNA-seq count tables from the (GSE151165) data set 
were normalized using the TMM method [20] from the 
edgeR package in bioconductor (version 3.14) [20, 21]. 
For analysis of the dnLef signature, all samples from nor-
mal adjacent liver were excluded from the analysis. For 
analysis of the ACL signature, all samples from CRCLM 
were excluded from the analysis. Read counts from 
CRCLM or adjacent normal liver (six rHGP and nine 
dHGP) were compared using the gene set enrichment 
analysis software (GSEA, University of California San 
Diego and Broad Institute, USA) [22, 23] (version 4.1.0). 
Genes were ranked according to differences in expres-
sion between the two classes using the signal-to-noise 
ratio as the ranking metric. The permutation type was set 
to “gene set” and the number of permutations was set to 
1000. The normalized enrichment score (NES) calculated 
by the GSEA displays the level of over-representation of 
the defined gene set at the top or bottom of the ranked 
list, normalized in regard to the size of the gene set.

To create a customized gene signature, metabo-
lism-associated genes downregulated upon induc-
tion of a dominant-negative isoform of Lef1 in DLD-1 
colon cancer cells [24] (Supplementary Table  11) were 

compiled and expression was analysed in CRCLM from 
the GSE151165 [19] dataset (cancer tissue). Expression of 
the ACL signature (150 highest enriched genes), defined 
as described below (Supplementary Table  20), was ana-
lysed in adjacent healthy liver from the same data set.

Metabolomics
Mass spectrometry and metabolic profiling
Metabolites extraction was performed, in a mixture ice/
dry ice, by a cold two-phase methanol–water–chloro-
form extraction [25, 26]. The samples were resuspended 
in 800 μl of precooled methanol/water (5/3) (v/v) and 
200 µL of 13C yeast internal standard. Afterwards, 500 
μl of precooled chloroform was added to each sample. 
Samples were vortexed for 10 min at 4 °C and then cen-
trifuged (max. speed, 10min, 4 °C). The methanol–water 
phase containing polar metabolites was separated and 
dried using a vacuum concentrator at 4 °C overnight and 
stored at −80 °C. For the detection of polar metabolites 
by LC–MS, a Dionex UltiMate 3000 LC System (Thermo 
Scientific) with a thermal autosampler set at 4 °C, coupled 
to a Q Exactive Orbitrap mass spectrometer (Thermo 
Scientific) was used for the separation of metabolites. 
Samples were resuspended in 70 µL of water and 10 µL 
of sample were injected, the separation of metabolites 
was achieved with a flow rate of 0.25 ml/min, at 40 °C, 
on a C18 column (Acquity UPLC HSS T3 1.8 μm 2.1 × 
100 mm). A gradient was applied for 40 min (solvent A: 0 
H2O, 10 mM tributyl-amine, 15 mM acetic acid—solvent 
B:Methanol) to separate the targeted metabolites (0 min: 
0% B, 2 min: 0% B, 7 min:37% B, 14 min: 41% B, 26 min: 
100% B, 30 min: 100% B, 31 min: 0% B; 40 min: 0% B). 
The MS operated in negative full scan mode (m/z range: 
70–900) using a spray voltage of 4.9 kV, capillary temper-
ature of 320 °C, sheath gas at 50.0, auxiliary gas at 10.0. 
Data was collected and analyzed using the Xcalibur soft-
ware (Thermo Scientific). Results were finally normalized 
by protein content and 13C yeast internal standard. 

Quantification and statistical analysis
In addition to bioinformatical approaches described 
above for spaRNAseq and scRNAseq, all other statis-
tical analyses were performed using GraphPad Prism 
8.2.1 software (GraphPad Holdings LLC, USA), unless 
stated otherwise. For survival analyses, the log-rank test 

(See figure on next page.)
Fig. 1 Primary tumors localized in the rectum are more likely to develop rHGP CRCLM. (a) Graphical abstract of the experimental workflow. (b) 
Representative H&E images of rHGP and dHGP. T: tumor; L: liver; D: desmoplastic rim. (c) Kaplan–Meier curves: OS after CRCLM resection depending 
on the HGP (n = 225). (d) Kaplan–Meier curves: sub‑stratified OS after CRCLM resection depending on the percentage of dHGP (n = 225). (e) Left 
box charts: HGP distribution of CRCLM in the context of the localization of the primary tumor. Right bar plot: predominant HGP (after exclusion of 
CRCLM with 50% of each HGP), in the context of the localization of the primary tumor (p value by chi‑square test). (f) Kaplan–Meier curves: OS after 
CRCLM resection depending on the HGP and the application of therapeutic RAAS inhibition (RAAS‑I) in the pre‑treatment‑naive subgroup (n = 121). 
P values were calculated by two‑sided log‑rank test
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(Mantel-Cox) was used to calculate p values between 
groups and the Kaplan–Meier method was used to plot 
survival curves. Multivariate Cox Proportional Hazards 
analysis was performed with the variables dHGP (100%), 
pUICC, age, gender and localization using software R 
(version 3.6.3, URL https:// www.R- proje ct. org, Vienna, 
Austria), with package survival. Results were considered 
statistically significant when p values < 0.05.

Results
Primary tumors localized in the rectum are more likely 
to develop rHGP CRCLM resulting in a worse prognosis
We established a local cohort of CRCLM from 225 
patients (Fig. 1a, Supplementary Table 1a) and classified 
CRCLM according to their HGPs (Fig. 1b). Importantly, 
the distribution of both HGPs was equally present in the 
cohort (Fig. S1a). CRCLM exclusively showing the dHGP 
were termed “pure dHGP”. Consequently, CRCLM that 
exhibited variable percentages of other HGPs (replace-
ment or pushing) were named “not pure dHGP”. We next 
performed OS and multivariate cox proportional hazards 
analyses, which revealed a positive prognostic value of 
the pure dHGP in comparison to the not pure dHGP in 
our cohort (Fig. 1c and Supplementary Table 1b). Espe-
cially the subgroup of 121 patients who were pre-treat-
ment-naive (no systemic anti-tumor treatment, including 
chemotherapy and/or antibodies such as anti-VEGF and 
anti-EGFR for 6 months prior to CRCLM resection) con-
tributed to this trend (Fig. S1b, c). Further stratification 
according to different proportion percentages of dHGP 
clearly showed that 100% dHGP is associated with better 
survival than all subgroups with lower dHGP percentages 
(Fig. 1d). Subsequently, CRCLM HGPs were categorized 
according to their predominant type of blood supply. 
Thus, dHGP and pHGP were combined as CRCLM rely-
ing on SA, whereas rHGP was categorized as CRCLM 
relying on VCO.

We then evaluated whether different CRCLM HGPs 
would correlate with the localization of their respective 
primary tumors. Surprisingly, we found that primary 
tumors located in the rectum exhibited a higher rate of 
rHGP CRCLM. In contrast, CRCLM derived from pri-
mary tumors located in the cecum and colon ascendens 
showed a higher rate of dHGP and pHGP. A significant 
association was found when comparing these groups, 
excluding seven CRCLM with balanced mixed HGPs 
(50% dHGP and 50% rHGP) (Fig.  1e). No correlation 
was found when examining the relation between time of 
metastasis or gender with the HGP (Figure S1d, e).

In CRCLM, anti-RAAS medication is associated with 
an improved response to anti-angiogenic therapy by 
reducing activity of the metastases-associated fibroblasts, 
and thereby, reducing stiffness of the metastases [14]. 

Considering the distinct stromal composition in CRCLM 
with different HGPs [27], we evaluated the impact of 
anti-RAAS medication on the OS of patients with dif-
ferent HGPs CRCLM. For this purpose, we included 53 
patients receiving a baseline treatment with two different 
anti-RAAS medications, namely angiotensine-converting 
enzyme inhibitors and angiostensine II receptor I antago-
nist, and performed survival analyses by comparing pure 
dHGP versus not pure dHGP. Interestingly, therapeutic 
RAAS inhibition showed a clear trend towards improved 
OS within the group of patients with pure dHGP, whilst 
the group of patients with a not pure dHGP exhibited 
no differences in OS rates (Fig. S1f ). Similar findings 
were obtained when displaying the same analysis in the 
subgroup of 121 pre-treatment-naive patients. Strik-
ingly, in this subgroup, all patients who were treated 
with anti-RAAS medication and displayed a pure dHGP 
survived the five-year observation period after CRCLM 
resection, whereas no other subgroup reached this out-
come (Fig.  1f ). Moreover, when similar analyses were 
performed in systemically pre-treated patients (chemo-
therapy and/or antibodies such as anti-VEGF and anti-
epidermal growth factor receptor within 6 months prior 
to CRCLM resection), this effect on the survival rate was 
not observed (Fig. S1g).

Collectivey, these results show that CRCLM derived 
from tumors in the rectum are more likely to exhibit 
the rHGP, whilst tumors located in the cecum and colon 
ascendens presumably give rise to dHGP CRCLM. 
Moreover, anti-RAAS medication improves survival 
in pure dHGP patients, and especially those who are 
pre-treatment-naive.

Spatial transcriptomic analysis of cancer areas reveals 
HGP‑specific features
To further evaluate the histological architecture and 
molecular features of HGP CRCLM, their tumor micro-
enviroment and surrounding hepatic tissue, we con-
ducted spaRNA-seq. Formalin-fixed-paraffin-embedded 
(FFPE) tissue was derived from six different patients 
(Supplementary Table 2), of which three presented with 
the rHGP (PT36, PT44, PT54) and three showed the 
dHGP (PT55, PT61, PT68). After quality control, 21,804 
tissue-covered spots across all patients were included in 
the analysis (Supplementary Table 3).

First, we analysed the entirety of high-quality spots per 
sample using graph-based clustering, which was visual-
ized via t-distributed stochastic neighbour embedding 
(t-SNE). The tissue type represented by each cluster was 
determined by analysing the top 50 marker genes and 
known canonical marker genes for the cell types present 
in every cluster (Supplementary Tables 4,5,6,7,8,9). Iden-
tification of tissue types was confirmed by overlaying 

https://www.R-project.org
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clusters on images of the corresponding hematoxylin 
and eosin (H&E)-stained tissue. Clustering of the dHGP 
PT61 and the rHGP PT54 is depicted in Fig. 2a-f and the 
remaining patients are shown in Fig. S2a-h. When visu-
alizing the entirety of spots from all patients together, 
we observed patient-wise clustering (Fig. S2i, j). Due to 
selection of the FFPE tissue slide, variable proportions of 
metastatic cancer areas versus healthy liver areas were 
identified in every sample (Fig. S2k). Finally, Jaccard simi-
larity principal component analysis (PCA) comparing 
marker gene sets of cancer areas and hepatocyte areas of 
all patients showed that hepatocyte areas grouped sepa-
rately from cancer areas, with additional HGP-wise sub-
grouping within the cancer areas (Fig. 2g).

To analyse HGP-specific features of cancer areas and 
hepatocyte areas, spots of all samples showing the same 
HGP and the same defined tissue type were combined. 
Differential expression analyses comparing cancer areas 
of rHGP and dHGP revealed established CRC cell mark-
ers, such as FABP1, CEACAM5, CLDN3, EPCAM and 
S100A10 [28] in the rHGP (Supplementary Spreadsheet 
1). Many of the detected marker genes are known to be 
involved in mechanisms enhancing the aggressiveness 
of cancer cells, such as epithelial-mesenchymal transi-
tion (EMT) (EFHD2, ATP1A1 [29], PRSS8 [30]), inva-
sion (S100A10 [30]), migration (S100A10, EPCAM [31]), 
poor prognosis (TIMP1 [32], EEF1A1 [33]) and glyco-
lysis (ALDH1B1, LDHA) (Fig.  2h). Interestingly, we also 
detected genes involved in WNT signalling activation. 
In detail, EPCAM is known to promote WNT signalling 
by stabilizing the WNT signalling co-receptor LRP6 and 
rescuing it from DKK2-induced removal from the mem-
brane [34]. Furthermore, knockdown of ACTB, which 
was upregulated in our rHGP cancer areas, is known to 
decrease expression of β-Catenin, the main nuclear effec-
tor of canonical WNT signalling [35] (Fig.  2h). Moreo-
ver, among the enriched genes in the group of cancer 
areas in the dHGP, we detected many genes known to 
enhance inflammatory reactions in cancer by promot-
ing the NFκB pathway (IKBKB, FKBP4 [36]), activating 
lymphocytes (TNFSF9, HLA-F) [37, 38] or recruiting 
neutrophils (DPEP1) [39] (Fig. 2h). By dysplaying a gene 
set enrichment analysis (GSEA) for metabolic gene sets, 
we detected upregulation of genes involved in glycolysis/

gluconeogenesis, the pentose phosphate pathway (PPP) 
and the antioxidative glutathione metabolism in rHGP 
cancer areas (Fig. 2i, Supplementary Spreadsheet 2).

Exploring enriched marker genes in cancer areas and 
hepatocyte areas of both patient groups, we observed 
hepatocyte areas identified by typical hepatocyte markers 
(FGG, HP, SDS,) of both HGPs to be rather congruent in 
comparison to cancer areas of both HGPs – a finding that 
was also confirmed by a marker gene intersection anal-
ysis visualized in dot plots (Fig.  2j, Fig. S2l-m and Sup-
plementary Spreadsheet 3). Moreover, we detected genes 
coding for metallothioneins (MT2A, MT1E) uniquely 
upregulated in hepatocyte areas of rHGP CRCLM, pos-
sibly indicating a higher capacity in protection against 
ROS. Remarkably, hepatocyte areas adjacent to dHGP 
CRCLM showed upregulation of genes involved in tumor 
suppression and metastasis inhibition such as G0S2, 
ITIH2 [40] and DCN [41]. Interestingly, DCN overex-
pression in hepatocytes has been shown to attenuate 
especially aggressive phenotypes of CRCLM in vivo [42] 
(Fig.  2j, Supplementary Spreadsheet 4 and Supplemen-
tary Table 10).

In summary, our spaRNAseq results showed an 
increase of markers promoting tumor agressiveness and 
activation of WNT signalling in cancer areas of the rHGP, 
whilst markers of inflammatory reactions were upregu-
lated in cancer areas of the dHGP. Strikingly, tumor sup-
pressors were upregulated in hepatocyte areas adjacent 
to dHGP CRCLM that were detectable even though we 
observed high inter-patient heterogeneity (Fig. 2j).

Upregulation of canonical WNT signalling in rHGP CRCLM
Since we detected upregulation of several genes associ-
ated with WNT signalling activation in cancer areas of 
rHGP CRCLM, we further compared the activity of the 
canonical WNT signalling pathway in CRCLM of both 
HGPs. Using the differential gene expression analysis 
between cancer areas of both HGPs in our spaRNA-seq 
data, we mapped genes of the canonical WNT signalling 
pathway (Supplementary Spreadsheet 1). We observed 
an upregulation of CTNNB1 and other genes involved 
in CTNNB1 stabilization (CSNK2A1, CSNK2B, DVL2, 
DVL3,) in rHGP cancer areas. In contrast, genes cod-
ing for major components of the β-Catenin destruction 

Fig. 2 Spatial investigation of cancer areas reveals HGP‑specific features. (a) representative t‑SNE plot: spots of PT61 clustered via unsupervised 
Louvain clustering, biologically annotated. (b) Heatmap of 50 uniquely upregulated genes per cluster. (c) H&E staining of PT61 and overlayed 
Louvain‑clustering. (d) representative t‑SNE plot: 2,554 spots of PT54 clustered via unsupervised Louvain clustering, biologically annotated. (e) 
Heatmap of 50 uniquely upregulated genes per cluster. (f) H&E staining of PT54 and overlayed Louvain‑clustering. (g) Jaccard similarity PCA on 
the pairwise Jaccard similarity coefficients between the marker genes of cells from cancer and hepatocytes area clusters in the samples from 
six different patients. (h) Volcano plot: DEA of cancer areas (dHGP vs rHGP), positive enrichment in dHGP. (i) Waterfall plot: GSEA comparing 
differentially expressed genes in cancer areas of dHGP vs cancer areas of rHGP (using KEGG metabolism, KEGG cellular processes as gene sets). (j) 
Heatmap and dot plot: top 20 uniquely upregulated marker genes of pooled spots for cancer areas and hepatic areas according to the HGP

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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complex (APC, APC2, AXIN1, AXIN2) were upregulated 
in the dHGP. Furthermore, the majority of WNT signal-
ling targets (CCND3, CCND2, CCND1, JUN, MMP7, 
FOSL1, PPARD, CCN4) were upregulated in the rHGP 
(Fig.  3a). Regarding secreted WNT signalling agonists 
and receptors, no clear trend in expression between the 
HGPs was observed, prompting us to explore the expres-
sion of WNT signalling antagonists. Among these, DKK4 
was upregulated in the dHGP (Fig. 3a).

LEF1 is a key mediator of WNT signalling and is known 
to contribute to CRC progression and poor progno-
sis [43]. We therefore explored a signature of genes that 
were previously reported to be downregulated in CRC 
cell lines upon suppression of the canonical WNT signal-
ling transcription factor LEF1 (Supplementary Table 11). 
We detected that the majority of those genes are upregu-
lated in cancer areas of the rHGP, thereby suggesting an 
expression signature associated with WNT signalling via 
LEF1 (Fig. 3b).

For cross-data set validation, we extended our analy-
sis to the only publicly available data set of bulk RNA-
sequencing including information on HGPs CRCLM 
[19], which is composed of liver metastases tissue from 
six dHGP and nine rHGP CRCLM. Notably, GSEA 
revealed an enrichment of the LEF1-affected gene sig-
nature in the rHGP, corroborating our findings in the 
spaRNA-seq data set (Fig. 3c).

We next focused on analysing extracellular WNT 
antagonists since upstream WNT signalling mediators 
might possibly explain the differential regulation of WNT 
signalling between the HGPs. Therefore, we performed 
immunohistochemistry (IHC) on CRCLM FFPE sections 
for DKK1, the most extensively explored component of 
the DKK family of WNT signalling antagonists. Remark-
ably, DKK1 protein levels were found to be significantly 
increased in dHGP CRCLM (Fig. 3d-e).

We then investigated WNT ligand secretion using 
patient-derived organoids (PDOs) from CRCLM dis-
playing either a predominantly rHGP or a dHGP (Sup-
plementary Table  12). For this purpose, we collected 
CRCLM PDO supernatants after cultivation for two 
and seven days and performed a TOP/FOP-Flash WNT 
signalling reporter assay. Corroborating our previous 
findings (Fig.  3d-e), supernatants collected from rHGP 

CRCLM PDO supernatants after seven days showed an 
increased luciferase activity when compared to dHGP 
CRCLM PDO ones (Fig. 3f ). These results strongly indi-
cate increased WNT ligand secretion in rHGP CRCLM 
PDOs, which can lead to upregulated canonical WNT 
signalling in both autocrine and paracrine manners [44]. 
Strengthening this hypothesis, Western blot analysis per-
formed with PDO lysates showed an increased expression 
of active and total β-Catenin in the rHGP PDOs (Fig. 3g-
h). This finding was orthogonally confirmed by qRT-PCR 
analysis for DKK1 and DKK4 expression performed with 
RNA extracted from CRCLM PDOs with differing HGPs 
(Fig. 3i). Interestingly, LRP6, which is known to be upreg-
ulated by DKK1 and downregulated by WNT3A [45], was 
also increased in PDOs RNA extracts from desmoplastic 
CRCLM (Fig. 3j) [45].

Taken together, these results reveal a higher activity of 
the canonical WNT signalling pathway in replacement 
CRCLM, whereas desmoplastic CRCLM express higher 
amounts of WNT signalling antagonists of the DKK pro-
tein family.

Metabolic profiles of CRCLM according to their HGP
Since the WNT signalling pathway is known to upregu-
late aerobic glycolysis via the key enzymes pyruvate car-
boxylase and pyruvate dehydrogenase kinase [24, 46, 
47], we further evaluated enzymes and metabolites of 
glycolysis and the branching PPP in both HGPs. There-
fore, we mapped differentially expressed genes from the 
different cancer areas of the spaRNA-seq data involved 
in the respective pathways. Although some regulatory 
glycolytic enzymes, such as HK1, PFKFB3, PFKM were 
found upregulated in dHGP, the vast majority, including 
the key regulating enzyme PKM, was also upregulated 
in the rHGP CRCLM (e.g. ALDOA, ALDOB, ALDOC, 
GAPDH, LDHA) (Fig. 4a). As a branching pathway of gly-
colysis, we also detected upregulation of genes involved 
in the PPP in rHGP CRCLM (PGLS, PGD, RPIA, PRPS1, 
PRPS2). Furthermore, genes promoting cellular antioxi-
dant defence (G6PD, GSR) were also upregulated in the 
rHGP CRCLM, thereby suggesting higher ROS scaveng-
ing capacity in the rHGP (Fig. 4b).

To further corroborate the unique metabolic identi-
ties of the CRCLM and to enhance the resolution of our 

(See figure on next page.)
Fig. 3 Upregulation of canonical WNT signaling in rHGP CRCLM. (a) Canonical WNT signaling pathway mapping: significant differentially expressed 
genes mapped according to the KEGG WNT signalling pathway. Colour coded according to scaled log fold change values. (b) Dot plot: significant 
differentially expressed genes regulated by LEF1. Mapped with expression percentages and colour coded according to scaled log fold change 
values. (c) GSEA: bulk sequencing data from CRCLM showing a gene signature regulated by LEF1 upregulated in rHGP (n = 6 rHGP vs n = 9 dHGP). 
(d) IHC staining: DKK1 (brown) in CRCLM (n = 130, cut‑off 80% angiogenic or vessel‑coopting HGP). (e) Violin plot: quantification of d. (f) Scatter plot: 
TOP/FOP‑Flash WNT reporter assay with conditioned media from PDOs (n = 5 rHGP vs n = 3 dHGP). (g) Western blot: active and total ß‑Catenin in 
protein lysates of PDOs (n = 5 rHGP vs n = 5 dHGP). (h) Western blot quantification of g. (i) qRT‑ PCR analysis for DKK1 (n = 6 rHGP vs n = 4 dHGP) 
and DKK4 (n = 4 rHGP vs n = 5 dHGP) in PDO‑derived RNA. (j) Bar plot: RT‑PCR analysis for LRP6 (n = 4 rHGP vs. n = 5 dHGP) in PDO‑derived RNA. P 
values were calculated by unpaired t‑test
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Fig. 4 Metabolic profile of CRCLM. (a) Dot plot: significant differentially expressed genes involved in glycolysis and PPP mapped with expression 
percentages. (b) Pathway mapping: significant differentially expressed genes mapped according to the KEGG signaling pathway. Colour coded 
according to scaled log fold change values. (c) Violin plots: selected metabolites of glycolysis measured by mass spectrometry (n = 29 or n = 62). 
(d) Violin plots: selected metabolites of the pentose phosphate pathway measured by mass spectrometry (n = 62). (e) IHC staining: LDHA (brown) 
in CRCLM (n = 130, cut‑off 80% angiogenic or vessel‑coopting HGP). (f) Violin plot: quantification of e. (g) Scatter plot: quantification of IHC Ki67 
staining (n = 10 rHGP vs n = 10 dHGP in triplicates). (h) Scatter plot: quantification of IHC HIF1a staining (n = 10 rHGP vs n = 10 dHGP in triplicates). P 
values were calculated by unpaired t‑test
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molecular profiling to a single-cell level, we conducted 
scRNA-seq. Fresh tissue was derived from six different 
patients (Supplementary Table  13), of which three pre-
sented with the rHGP (PT44, PT54, PT59) and three 
showed the dHGP (PT52, PT55, PT61). Samples were 
taken from the metastases and healthy liver tissue. After 
quality control, 22,419 cells across all patients were 
included in the analyses (Supplementary Table 14).

Graph-based clustering, which we visualized via t-SNE, 
was used to group the entirety of cells. The cell-type 
identity represented by each cluster was determined by 
analysing the top 50 marker genes and known canonical 
marker genes for the cell types present in every cluster 
(Supplementary Table 15). Cell proportions, in relation to 
the total detected cells per patient, were calculated with 
immune cells being predominantly present within dHGP 
samples, whilst cancer cells, cholangiocytes, endothelial 
cells (ECs), fibroblasts and hepatocytes were predomi-
nantly detected in rHGP samples (Fig. S3a-f ).

To verify metabolic molecular differences between can-
cer cells of the two differing HGPs, all cancer cells were 
subclustered. In total, 8803 cancer cells were included. 
Graph-based clustering, visualized via t-SNE, returned 
six independent clusters, two of which showed an acti-
vated phenotype expressing high levels of ribosomal 
genes. These clusters were mainly comprised from one 
patient each (Fig. S4a-e, Supplementary Table 16).

We next performed differential expression analysis 
(DEA) between cancer cells excluding the activated phe-
notype clusters since they masked the DEA due to high 
ribosomal gene counts (Supplementary Spreadsheet 5). 
We investigated changes between genes related to glyco-
lysis and PPP, resulting in a similar expression pattern as 
in the spaRNA-seq data set, with both pathways upregu-
lated in rHGP (Fig. S5a,b).

To validate these in silico findings, we performed mass 
spectrometry (MS) with fresh-frozen CRCLM bulk tissue 
from both HGPs. Again, we observed upstream metabo-
lites of glycolysis (Glucose 6-phosphate, Fructose 6-phos-
phate, Glycerone-phosphate), which were significantly 
enriched in rHGP CRCLM (Fig. 4c). Moreover, metabo-
lites of the PPP (Ribose 5-phosphate, D-Sedoheptulose 
7-phosphate and Xylolose 5-phosphate) were also upreg-
ulated in rHGP CRCLM (Fig. 4d). Additional IHC analy-
ses of CRCLMs from both HGPs confirmed upregulation 
of lactate dehydrogenase A (LDHA) in cancer cells of 
predominantly rHGP CRCLM (Fig. 4e,f ).

Since the PPP is known to be upregulated during 
tumorigenesis, providing cells with structural nucleo-
tide components [48], we explored the proliferative state 
of CRCLM in both HGPs by dysplaying IHC staining 
for Ki67. Unexpectedly, Ki67 was increased in dHGP 
CRCLM, suggesting that in rHGP, the PPP promotes cel-
lular antioxidant defence rather than the supply of struc-
tural nucleotide components (Fig.  4g). Furthermore, 
proliferation as well as lower oxygen supply are potential 
drivers of glycolysis [49], which prompted us to addition-
ally perform IHC staining for HIF1α, aiming to expose 
possible causes for enhanced glycolysis. In line with Ki67, 
HIF1α was found to be more strongly expressed in dHGP 
CRCLM samples (Fig. 4h), possibly explaining the larger 
areas of necrosis observed in dHGP CRCLM of our 
spaRNA-seq data as well as indicating a possible role in 
the induction of SA.

In conclusion, these results show that CRCLM patients 
displaying the rHGP exhibit enhanced glycolysis and 
PPP activation, which is associated with malignant pro-
gression and worse prognosis [50, 51]. Importantly, this 
intrinsic metabolic state seems to be independent of 
tumor cell proliferation or hypoxia.

Phenotype of endolthelial cells detected in corresponding 
healthy liver tissue by scRNA‑seq
After examining cancer areas and single cancer cells of 
CRCLM for their alterations in WNT signalling pathway 
and metabolic changes, we postulated that ECs of metas-
tases with different blood supply mechanisms would 
likely express distinct transcriptomic signatures.

We therefore analysed a subset of 2,654 ECs collected 
from the corresponding healthy liver of six different 
CRCLM patients. Unsupervised Louvain-clustering, 
which we visualized via uniform manifold approxima-
tion and projection (UMAP), was used to cluster the ECs 
(Fig.  5a). The phenotype identification was determined 
by analysing the top 50 marker genes and known canoni-
cal marker genes for the cell types present in every clus-
ter (Fig.  5b,c and Supplementary Table  17). Relevantly, 
the detected activated-capillary-like (ACL) cell popula-
tion expressed canonical capillary marker genes, while 
also exhibiting a distinctly unique expression pattern on 
their own. Moreover, hepatic capillaries identified using 
previously described marker [52] do not express this 
additional set of genes (Fig. 5c). We next performed hier-
archical clustering and bootstrap analysis to verify the 

(See figure on next page.)
Fig. 5 Specific capillary subtypes in corresponding healthy liver from patients with CRCLM. (a) UMAP plot: 2,654 analysed endothelial cells from 
healthy liver. Clusters identified via unsupervised Louvain clustering and biologically annotated. (b) Box plots and UMAP plots: quantification for 
each marker gene of the biologically annotated clusters. (c) Heatmap showing expression of canonical marker genes per cluster. (d) Correlation 
heatmap of annotated clusters. Hierarchical clustering location for row and column; confidence of branches estimated via bootstrapping (p = 0.05). 
(e) Bar plots: normalized cell amount and distribution of the origin of the analysed healthy liver endothelial cells
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identified clusters as distinct phenotypes (Fig.  5d). For 
biologically relevant clusters that were not represented 
by bootstrapping (capillaries and ACL), we confirmed 
statistical separation using DEA (Supplementary Spread-
sheet 6). For each phenotype, a normalized expression 
percentage was calculated (Fig. 5e).

Capillary heterogeneity in corresponding normal liver 
tissue of patients with different CRCLM HGPs
Subsequently, we conducted further analysis on these 
similar capillaries and ACL subgroups (Fig.  6a). Two 
clusters were predominantly formed by ECs collected 
from two single patients, whilst the two remaining cap-
illary clusters were composed of cells from all six indi-
vidual patient samples. The previously identified ACL 
cluster was mainly comprised of ECs derived from all 
three dHGP patients (Fig. 6b). Therefore, we performed 
marker gene analysis for enriched genes expressed for 
all capillary subclusters (Fig.  6c and Supplementary 
Table  18). Strikingly, the cytoskeletal filament vimen-
tin was observed to be upregulated, when directly com-
paring all identified capillary subgroups. As vimentin is 
known to play a critical role in EC differentiation [53], 
cell adhesion and endothelial sprouting [54], we assumed 
that the ACL cells engage in processes that support the 
formation of functional vessels and endothelial barrier 
integrity needed for vascular homeostasis and vessel 
formation.

To better understand the involvement of vimentin 
in the context of cellular pathways, we performed DEA 
and GSEA comparing canonical capillaries to the new 
described ACL (Fig.  6d and Supplementary Spread-
sheet 6). Among the significant and most upregulated 
pathways in ACL cells, the MSigDB pathways “estab-
lishment of endothelial barrier”, “regulation of EC dif-
ferentiation” and “EC development” were top ranked 
(Supplementary Table 19). Within the included genes of 
these specific gene sets, NOTCH4 and CTNNB1 appear 
within the most upregulated ones, indicating that this 
novel phenotype indeed has an underlying expression of 
genes canonically known to be involved in regulating SA 
(NOTCH4) [55, 56] and EC barrier function (CTNNB1) 
[57] (Supplementary Spreadsheet 6). Additionally, closer 
examination of the upmost regulated genes (Vimentin, 

CLEC14A, ADAMTS1 and EMP1) and their available 
literature shows a interconnection with angiogenic pro-
cesses. Vimentin, a cytoskeletal filament well-known 
for its regulation on cell shape, migration and invasion 
[58], and a hallmark for epithelial-mesenquimal transi-
tion (EMT) has important roles in angiogenesis [59–62]. 
CLEC14A, a regulator of sprouting angiogenesis is con-
sidered a tumor endothelial marker, and its blocking has 
shown to decrease vascular density and the ability of 
sprouting angiogenesis [63]. Murine haploinsuficiency 
of ADAMTS1, a desintegrin and metallopeptidase with 
described angiogenic-related functions causes thoracic 
aortic aneurysms and dissections similar to Marfan syn-
drome [64], while silencing of the poorly investigated 
small hydrophobic membrane-associated protein EMP1 
inhibis cancer cell proliferation, migration, and affects 
VEGF-C expression in nasopharyngeal cancer, reducing 
angiogenesis [65, 66].

As we identified a neovascular cluster expressing 
canonical marker genes (Fig. 5c), we interpret this find-
ing as a novel capillary subgroup with assumed heteroge-
neity between the different HGPs. Thus, suggesting that 
independent from the classical SA phenotype, the normal 
hepatic parenchyma appears to host a microenviron-
ment that possibly promotes vessel sprouting. Addtion-
ally, dysplaying cross-data set validation, we confirmed 
the enrichment of the ACL phenotype in healthy dHGP 
liver by dysplaying GSEA on independent bulk sequenc-
ing data from rHGP and dHGP [19] using the enriched 
marker genes of the ACL cluster (Fig. 6e, Supplementary 
Table 20).

Finally, we investigated the spatial distribution of this 
phenotype by constructing a gene set containing the 30 
most enriched marker genes from the ACL phenotype data 
set (Supplementary Table 20) and then displayed it on the 
spaRNAseq data set. We confirmed the presence of this 
gene set in the corresponding healthy liver tissue with a rel-
ative enrichment of these capillaries in dHGP. Remarkably, 
this signature was absent in the tumor tissue (Fig. 6f).

Discussion
rHGP CRCLM dysplaying VCO are characterized by a 
worse prognosis and by an impaired response to anti-
angiogenic treatment when compared to dHGP CRCLM 

Fig. 6 Capillary heterogeneity between HGPs in corresponding healthy liver from patients with CRCLM. (a) UMAP plot: 2,008 endothelial cells 
previously identified as capillary cells. Clustered via unsupervised Louvain clustering and biologically annotated. (b) UMAP plot: 2,008 analysed 
capillary cells. Colour coded for the HGP of sample of origin. (c) Heatmap showing 10 uniquely upregulated marker genes per cluster. (d) Waterfall 
plot: GSEA comparing capillary clusters 1 and 2 pooled vs ACL (using PID, KEGG, REACTOME, BP as gene sets). (e) GSEA: bulk sequencing data from 
corresponding healthy liver of CRCLM showing an upregulated signature of 150 marker genes of the ACL cluster in dHGP (n = 9 dHGP vs n = 6 
rHGP). (f) Spatial overlay: spatial expression of a gene set of the 30 most enriched genes in ACL showing a relative enrichment in dHGP. Scale bars 
500 µm

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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dysplaying SA [4, 67, 68]. Since rHGP CRCLM require a 
wider surgical margin, a liquid biomarker diagnostic tool 
to determine the HGP of CRCLM without pathological 
work-up would be important not only for systemic ther-
apy decisions, but also for surgical strategies [69]. Thus, 
to identify new possible therapeutic targets for biomarker 
candidates in general and rHGP CRCLM in particular, 
we characterized differing features of the main HGPs in 
the present study.

We validated the observation of improved OS in pure 
dHGP CRCLM [4, 70]. Thus, the pure dHGP can be 
considered as a positive prognostic marker, whereas any 
amount of non-desmoplastic HGP is associated with 
impaired survival rates. The beneficial OS for dHGP in 
general and in a pre-treatment-naive subgroup of patients 
in particular along with the loss of this benefit in the pre-
treated subgroup is in line with the results obtained by 
Galjart et  al. [4]. Interestingly, liver metastases derived 
from other primary tumors than CRC also display HGPs 
that are morphologically similar to the ones described for 
CRCLM and seem to have a comparable prognostic value 
[71, 72]. Taken together, these findings underscore the 
prognostic relevance of the HGP.

In CRCLM, anti-RAAS medication is associated 
with an improved response to anti-angiogenic therapy 
through reduced mechanical activity of the metastases-
associated fibroblasts [14]. Considering the different 
composition of the stroma in CRCLM with different 
HGPs [9, 10], we performed survival analyses considering 
the HGP and the application of anti-RAAS medication. 
Interestingly, the application of anti-RAAS medication 
is associated with a trend for improved OS in patients 
with pure dHGP, which can be explained by the asso-
ciation of RAAS activity in the promotion of SA [42, 73, 
74], a prominent feature of dHGP CRCLM. Importantly, 
we observed that anti-RAAS medication was associated 
with improved survival in the subgroup of pre-treatment-
naive patients with pure dHGP.

Additionally, we observed a higher occurrence of 
the rHGP in CRCLM originating from  primary rec-
tal  tumors as well as a tendency towards exhibition of 
the dHGP in CRCLM originating from the cecum and 
colon ascendens primary tumors. Previous studies have 
already characterized prognostic and molecular dif-
ferences between right- and left-sided CRC primary 
tumors, such as increased microsatellite instability in 
right-sided tumors and more frequently occurring APC 
and TP53 mutations in left-sided tumors. To add to this 
characterization, this study has revealed that right-sided 
primary tumors are associated with CRCLM displaying 
sprouting angiogenesis, whereas primary tumors origi-
nating from the sigmoid and rectum  tend to develop 
CRCLM with VCO.

A high concordance between CRC primary tumors and 
their matched liver metastases has been reported on a 
genetic and mutational level, even if they differ in regard 
to their transcriptome and proteome [75, 76]. Compar-
ing the mutational status in right- and left-sided CRC 
primary tumors also revealed that location-associated 
differences in APC mutations have an impact on the fine-
tuning of canonical WNT signalling in CRC primary 
tumors. These differences are in parallel with the WNT 
signalling differences that we have observed in the two 
main HGPs of CRCLM when considering their origin 
from proximal or distal colon in our single-centre cohort 
[77].

In our spaRNA-seq data set, we observed activation of 
the WNT signalling pathway in different HGPs. As one of 
the most frequently mutated pathways in CRC, aberrant 
WNT signalling in both tumor cells and in the TME has 
an impact on carcinogenesis, tumor growth, metastasis 
and OS [78]. Our findings of DKK1 expression enhance-
ment in dHGP CRCLM could shed light on the biologi-
cal mechanisms dictating the differences between growth 
patterns. In this context, it was recently shown that WNT 
antagonists released by CRC organoids could trigger 
strong desmoplastic reactions in vivo [79], and therefore, 
promote the fibrotic reaction observed in dHGP. Further 
in vivo CRCLM setups, using DKK1-overexpressing cells 
could deeper our understanding in this process. Moreo-
ver, our WNT signalling findings are in line with recently 
proposed theories for specific metastatic histological fea-
tures and growth patterns such as “histostasis” [80] and 
“histokinesis” [6].

Indeed, dHGP CRCLM resemble primary CRCs from a 
morphological point of view (‘histostasis’) since this type 
of CRCLM has differentiated, crypt-like structures that 
are also present in most primary CRCs. These crypt-like 
structures resemble crypts of the normal mucosa of the 
large intestine, suggesting that inhibition of WNT signal-
ling plays a role in the establishment of these structures 
[81]. In rHGP CRCLM, cancer cells at the tumor-liver 
interface are arranged in solid nests, thereby not mir-
roring the morphology of primary CRCs (‘histokinesis’). 
Thus, the results of the current study showing increased 
WNT signalling related to rHGP could, at least in part, 
explain the lack of crypt-like structures in rHGP CRCLM.

Importantly, WNT signalling has already been shown 
to promote VCO in other cancer entities. In detail, 
WNT7A/B secretion by Olig2 + oligodendrocyte precur-
sor-like glioma cells was observed to promote VCO and 
to be upregulated in response to anti-angiogenic treat-
ment [82]. Furthermore, WNT7B was highly expressed 
in invasive cancer cells dysplaying VCO in a renal can-
cer lung metastasis mouse model [83], indicating a role of 
WNT signalling in VCO across different cancer entities.
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Of interest is that we observed that cancer cells from 
the rHGP display an intrinsic strong glycolytic profile, 
which is strongly associated with a more aggressive phe-
notype [50, 51]. This observation is further supported by 
a previous report that a higher baseline glucose uptake 
of CRCLM was detected in non‐dHGP patients, when 
compared with dHGP patients [84]. Accordingly, the 
rHGP is associated with the activation of the PPP, which 
plays a role in antioxidant defence, thereby suggesting 
higher resistance to ROS in rHGP CRCLM. Since ROS 
can induce cancer cell death [85], higher ROS resist-
ance could lead to survival benefits of cancer cells, and 
thereby, contribute to the more aggressive phenotype of 
rHGP CRCLM.

To compare the different HGPs of CRCLM, a previous 
study has only conducted bulk RNA sequencing analyses 
[86] rather than a detailed analysis of different involved 
cell types at a single-cell level. To directly fill this gap, we 
performed scRNA-seq from CRCLM paired with their 
corresponding macroscopically healthy liver tissue. On 
the transcriptomic level, we observed a type of capillary-
like ECs enriched in healthy liver tissue derived from 
dHGP CRCLMs, compared to healthy livers showing 
rHGP CRCLM. Those capillary-like ECs showed upreg-
ulation of gene signatures for EC and vascular forma-
tion. This finding could be of crucial diagnostic interest 
in predicting the HGP since hepatic biopsies containing 
healthy liver regions could be further analysed in regard 
to this EC’s transcriptional signature.

Finally, our study provides a publicly available tool for 
data exploration through the Unicle webtool (https:// uni-
cle. life/ porta ls/) to ensure data accessibility to non-bioin-
formaticians, analysis reproducibility and resource value. 
In conclusion, our findings suggest that glycolysis, the 
WNT signalling pathway and the evaluation of capillary-
like ECs signatures could be further exploited as possible 
targets for the treatment of rHGP CRCLM.

Conclusions
In this study we have detected specific metabolic altera-
tions and a signature of WNT signalling activation 
in metastatic cancer cells related to the VCO pheno-
type. Importantly, in the corresponding healthy liver of 
CRCLM displaying sprouting angiogenesis, we identified 
a predominantly expressed capillary subtype of endothe-
lial cells, which could be further explored as a possible 
predictor for HGP relying on sprouting angiogenesis. 
Together, our data shed light on new therapeutical tar-
gets in CRCLM relying on VCO.
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