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Abstract
Background Current diagnostics for the detection of pancreato-biliary cancers (PBCs) need to be optimized. We 
therefore propose that methylated cell-free DNA (cfDNA) derived from non-invasive liquid biopsies serves as a novel 
biomarker with the ability to discriminate pancreato-biliary cancers from non-cancer pancreatitis patients.

Methods Differentially methylated regions (DMRs) from plasma cfDNA between PBCs, pancreatitis and clinical 
control samples conditions were identified by next-generation sequencing after enrichment using methyl-binding 
domains and database searches to generate a discriminatory panel for a hybridization and capture assay with 
subsequent targeted high throughput sequencing.

Results The hybridization and capture panel, covering around 74 kb in total, was applied to sequence a cohort of 
25 PBCs, 25 pancreatitis patients, 25 clinical controls, and seven cases of Intraductal Papillary Mucinous Neoplasia 
(IPMN). An unbiased machine learning approach identified the 50 most discriminatory methylation markers for the 
discrimination of PBC from pancreatitis and controls resulting in an AUROC of 0.85 and 0.88 for a training (n = 45) and 
a validation (n = 37) data set, respectively. The panel was also able to distinguish high grade from low grade IPMN 
samples.

Conclusions We present a proof of concept for a methylation biomarker panel with better performance and 
improved discriminatory power than the current clinical marker CA19-9 for the discrimination of pancreato-biliary 
cancers from non-cancerous pancreatitis patients and clinical controls. This workflow might be used in future 
diagnostics for the detection of precancerous lesions, e.g. the identification of high grade IPMNs vs. low grade IPMNs.
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Pancreatic cancer is the eleventh most common cancer 
type and the seventh leading cause of cancer deaths [1]. 
The 5-year survival rate is only up to 12% [2], however, 
at present there is no diagnostic biomarker available with 
sufficient diagnostic power for early and reliable diag-
nostics [3]. Pancreatic ductal adenocarcinoma (PDAC) is 
most often detected as secondary finding or when unspe-
cific symptoms appear which typically occur in advanced 
tumor stages [4]. Additionally, those symptoms (e.g. jaun-
dice) can be similar for various cancers including distal 
bile duct, pancreatic (head), and ampullary cancers. If 
local treatment is possible, pancreaticoduodendectomy 
(Whipple procedure) is the surgical treatment of choice. 
This indicates the reasonability to aim for a combined 
diagnostic approach for those pancreato-biliary cancers. 
The discrimination between pancreatic cancer and other 
pancreatic diseases such as pancreatitis, known as a risk 
factor for malignant transformation and pancreatic can-
cer itself, can be challenging [5].

To this end, a robust biomarker with good accessibil-
ity (e.g. non-invasive), specificity and sensitivity is a 
prerequisite to discriminate between cancers of pancre-
ato-biliary origin (hereafter PBC), including bile duct, 
pancreatic, and ampullary cancers as well as non-malig-
nant diseases. Such a biomarker could help to facilitate 
clinical decision-making regarding adequate surgery 
or therapy (e.g. radiation, chemotherapy or endoscopic 
cholangiopancreatography). A promising class of bio-
marker candidates for highly sensitive and specific diag-
nostic approaches represents circulating cell-free DNA 
(cfDNA) which can be isolated from blood plasma. In 
this context, analyzing epigenetic modifications includ-
ing methylation of cfDNA reveals “cancer-specific 
signatures” [6, 7]. Consequently, we aimed to specifi-
cally enrich methylated cfDNA using a methyl-binding 
domain with subsequent high-throughput sequencing 
(cfMBD-Seq) from plasma of PBC as well as pancreati-
tis patients in this proof of concept study (Fig. 1A). Based 
on these analyses, we identified differentially methylated 
regions (DMRs) as targets with potential discrimination 
power of different pancreatic diseases. Finally, we vali-
dated our target regions by the establishment of a corre-
sponding hybridization and capture approach as a robust 
and more economical procedure for clinical translation 
(Fig. 1B). More information about the used materials and 
methods can be found in the Supplementary Methods 
(Additional File 1).

Results and discussion
We developed a workflow for the discrimination of PBCs 
from non-cancerous pancreatitis samples and clini-
cal controls, by analyzing the epigenetic landscape of 
cell-free DNA in human patient plasma samples of 115 
individuals in total that were included in our study (Sup-
plementary Table 1; Additional File 2 and Supplemen-
tary Fig. 1; Additional File 3). Most PBC patients of this 
study were at stage II (41%) and stage III (38%), while less 
patients were at early stages (3% stage 0 and 9% stage I) 
and stage IV (9%). Additional information about clinical 
characteristics, neoadjuvant therapy, staging, grading, 
and resection margin of PBC patients are summarized in 
Supplementary Tables 2 and 3 (Additional File 4 and 5). 
A characterization of pancreatitis patients (Supplemen-
tary Table 4; Additional File 6) and IPMN patients (Sup-
plementary Table 5; Additional File 7) are also provided.

Although CA19-9, a well-established marker for pan-
creatic cancers, is routinely used in the clinics, the 
median was below the clinical threshold of 37 U/ml for 
the non-PDAC PBC subgroup (Supplementary Table 
1; Additional File 2). To define target regions for a diag-
nostic panel based on hybrid capture sequencing to 
discriminate between clinically relevant conditions 
including pancreato-biliary cancer (PBC), pancreatitis, 
and controls, empirical cfMBD-Seq data were generated 
from 11 PDAC patients, 6 non-PDAC cancer patients, 8 
pancreatitis patients, 4 clinical controls, and 12 healthy 
controls for diagnostic DMR selection (from cohort C1, 
see Supplementary Fig. 1; Additional File 3). PDAC and 
non-PDAC cohorts were considered as one group (PBC) 
because of similarity in surgical treatment and/or symp-
tomatology. Sequencing data displayed a non-random 
distribution across the genome and an accumulation of 
methylated cfDNA fragments in distinct regions includ-
ing CpG islands and promoters (Supplementary Fig. 2A; 
Additional File 8). In a next step, we identified differ-
entially methylated regions (DMRs) between samples 
from PBC (pancreatic ductal adenocarcinoma (PDAC) 
combined with non-PDAC) and pancreatitis as well as 
from controls and healthy individuals that were merged 
for each group, respectively (Supplementary Fig.  2B; 
Additional File 8). Additionally, data of sorted cancer 
cells from seven corresponding patients (EpCAM+ cells 
of PBC patients) were also inspected for corresponding 
cancer specific signals. DMRs ranked under the identi-
fied top 120 showed already promising performance for 
discrimination of PBCs, pancreatitis and healthy (Supple-
mentary Fig. 3; Additional File 9).

Keywords cfDNA, Next-generation sequencing, Pancreato-biliary cancer, Pancreatitis, Non-invasive diagnostics, 
Hybridization and capture, Methylation, cfMBD-Seq, DMRs, IPMN
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In this context, the three subgroups that make up the 
PBC group showed no subtype-specific grouping by PCA 
analysis (Supplementary Fig. 4; Additional File 10), indi-
cating similar methylation patterns between PDAC and 
non-PDAC cancer samples. In addition, already pub-
lished regions from two reviews (Henriksen and Thorla-
cius-Ussing, 2021 [8] and Al Shaheri et al., 2021 [9]) were 
selected to complement the target panel. Moreover, tis-
sue DMRs identified from public pancreatic tumor and 
normal tissue samples (TCGA, GSE49149) also contrib-
uted to the selection of regions specific for PBC. Finally, 
the panel comprised 233 DMRs covering roughly 74 kb in 
total which were used for hybrid capture enrichment (see 
Supplementary Table 6; Additional File 11 and Supple-
mentary Fig. 5; Additional File 12).

Using our panel for hybrid capture enrichment, we 
sequenced 15 PBC, 15 controls, and 15 pancreatitis. 
Sequencing data of this identification cohort C2 (see 
Supplementary Fig.  1, Additional File 3) were used to 
confirm the diagnostic potential of the identified puta-
tive biomarkers for discrimination of PBC, pancreati-
tis, and controls. To this end, samples were selected to 
exclude gender, age, and body-mass-index as confound-
ing factors (Supplementary Fig.  6; Additional File 13). 
The hybrid capture enrichment panel comprised 9544 
quality-filtered single CpGs, of which the most informa-
tive and discriminatory 50 CpGs were identified using 
an unbiased machine learning approach (see next para-
graph) to further optimize the discriminatory power 
(Supplementary Table 7; Additional file 14). 60.0% of 
these 50 most discriminatory DMCs (30/50) were found 

Fig. 1 General workflow. A: DNA was isolated of liquid and solid biopsies derived from different patient cohorts. Sequencing libraries were prepared that 
underwent methyl-binding domain (MBD) enrichment. The enriched fragments were sequenced by means of NGS to generate MBD-Seq data. B: CfMBD-
Seq data together with already published regions from literature and public tissue data were used to identify differentially methylated regions (DMRs) 
that served for the design of a targeted panel. The panel was used for hybridization and capture with subsequent sequencing to enable high-throughput 
identification of different patient subgroups
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in promoters or their direct proximity (distances to pro-
moter: 29/30 < = 1 kb, 1/30 1.6 kb), 22.0% (11/50) in dis-
tal intergenic regions, 14.0% (7/50) in introns, and 4.0% 
(2/50) of DMCs in exons. Remarkably, 12 of the identi-
fied DMCs were found to have a direct link to cancer. For 
example, eight DMCs were found in the promoter region 
of the APC regulator of WNT signaling pathway (APC) 
which is already known to be mutated in most human 
colorectal cancers. Another two DMCs with potential 
link to pancreatic cancer were found in the promoter 
region of COL4A1, which is a gene for an extracellular 
matrix protein. It belongs to the collagen type IV proteins 
that have been described to contribute to the perineural 
invasion of pancreatic cancer cells [10].

To evaluate the predictive power of liquid biopsy data 
from our targeted panel, we used an unbiased machine 
learning approach to discriminate cancers of pancreato-
biliary origin (PBCs) from patients with pancreatitis and 
clinical controls. The data was split into an identification 
cohort C2 for feature selection and model training (Sup-
plementary Fig.  7; Additional File 15) and a validation 
cohort C3 for model performance evaluation. The best 
performing machine learning model (M1) also included 
CA19-9 concentrations. The PCA of M1 already showed 
a good separation of PBC samples from pancreatitis and 
control samples (Fig.  2A) without any subtype-specific 
separation of the three subgroups that make up the PBC 
group (Supplementary Fig. 8; Additional File 16). Cross-
validation on the identification cohort C2 of M1 (samples 

Fig. 2 Machine learning approach M1. 50 most promising DMCs (hybridization and capture approach) combined with CA19-9 values for distinguish-
ing PBC from pancreatitis and controls. A: PCA based on the 50 most informative DMCs combined with CA19-9 values for the conditions control (blue), 
pancreatitis (black), and PBC (red). Variances explained: PC1 = 56.75%, PC2 = 9.05%. B: ROC curve (AUC = 0.85) of PBC predicition scores for the identifica-
tion cohort C2. The red dot indicates the determined optimal threshold value for the PBC prediction score that maximizes sensitivity and specificity with 
a defined minimum sensitivity of 90%. C: Boxplot of PBC prediction scores from the identification cohort C2 with the optimized classification threshold 
of 0.15 (gray line). D: ROC curve (AUC = 0.88) of PBC prediction scores for the validation cohort C3 including IMPNs. The red dot indicates the threshold 
value for classifying PBCs and high grade IPMNs with a minimum sensitivity of 90%. E: Boxplot of the PBC prediction scores from the validation cohort 
C3 including low and high grade IPMNs and the pre-determined PBC classification threshold of 0.15 (gray line). F: Kaplan-Meier curve for the survival of 
PBC patients from the validation cohort C3. Follow-up of 44 months after diagnosis. Separation of PBC group (n = 10) into two subgroups by the pre-
determined PBC classification threshold of 0.15
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from 15 PBCs, 15 pancreatitis patients and 15 clinical 
controls) resulted in overall AUROC = 0.85, Sensitiv-
ity = 0.93 and Specificity = 0.63 based on a feature set of 50 
methylation sites and CA19-9 concentrations (Fig.  2B). 
An optimal classification of PBC samples was achieved 
using a threshold of 0.15 for the SVM prediction score 
(Fig. 2C and Supplementary Fig. 9A; Additional file 17). 
To validate the performance of the machine learning 
approach M1 we analyzed an independent validation 
cohort C3 (Supplementary Fig. 1; Additional File 3, Sup-
plementary Table 8; Additional File 18, and Supplemen-
tary Fig.  10; Additional File 19) consisting of 10 PBCs, 
10 pancreatitis patients, and 10 clinical controls as well 
as 7 IPMNs (2 high grade and 5 low grade) to also test 
for discrimination of high vs. low grade IPMNs and to 
potentially identify early stages of cancer. This indepen-
dent validation cohort showed an overall performance 
of AUROC = 0.88, Sensitivity = 0.92 and Specificity = 0.84 
in detecting positive/‘intention to treat’ samples, mean-
ing PBCs and high grade IPMNs (Fig. 2D and E). Studies 
using cfDNA methylation comparing pancreatic cancer 
patients in all stages solely with healthy controls (but not 
for discrimination from pancratitis) revealed sensitivities 
of 81%, 93%, and 97% with specificities of 85%, 89%, and 
92%, respectively [11–13]. As target regions from these 
publications were also considered for our panel design, 
we are convinced that our hybridization and capture 
panel comprises the most informative regions that were 
known to date. Interestingly, of the reported DNA-meth-
ylation signatures for the differentiation of pancreatic 
cancer from chronic pancreatitis by Wu Y et al. [14] only 
one methylation site is included in our presented panel 
(cg15138289 (HLA-DPB1, gene body)). The reason for 
this might be due to different cohorts, underlying meth-
ods and approaches to identify marker regions. Remark-
ably, high grade IPMNs could be also distinguished from 
low grade IPMNs in our test set as well (Supplementary 
Fig. 9B; Additional file 17). These results imply that our 
targeted panel has potential to discriminate PBCs and 
high grade IPMNs from low grade IPMNs, pancreatitis 
patients, and clinical controls.

Strikingly, single DMCs from our analyses performed 
significantly better than the tumor marker CA19-9 alone 
(AUROC = 0.720) with AUROC scores of 0.878 and 0.892 
for two exemplary individual CpGs in the identifica-
tion cohort C2 (One-sided DeLong’s test: p = 0.012 and 
p = 0.009, Supplementary Fig.  11; Additional File 20 and 
Supplementary Fig. 12; Additional File 21). Of note, our 
results suggest that the selected methylation markers of 
our targeted panel increase the prediction performance 
compared to the clinical standard of care tumor marker 
CA19-9.

Finally, we also evaluated the prognostic potential of 
our classification model. The validation set included 

10 PBCs with a median follow up of 19.1 months 
(Fig.  2F). All detected (correctly classified) PBCs have 
a significantly shorter survival time (median survival 
of 8 months) as compared to the non-detected PBCs 
(p = 0.0276). Interestingly, patients with PBCs with a 
short overall survival (follow up of 44 months after diag-
nosis) have been accurately detected in the validation set 
(Fig.  2F and Supplementary Fig.  9; Additional File 17). 
The machine learning approach did not detect all PBCs, 
but there might be a bias towards specifically detect-
ing more aggressive PBCs that should be investigated in 
larger cohorts.

Similar to another study to solely discriminate PDAC 
from pancreatitis with promising markers (e.g. protein 
kinase C beta type; accuracy 100%) [14] our study also 
suffers from a relatively small cohort size where more 
comprehensive patient groups and a multi-center setting 
would be desirable, of course. In this context, some clini-
cal cases of interest like pancreatitis and IPMN are com-
parably rare and could not be recruited on a larger scale 
within the scope of this study.

Conclusions
Taken together, we demonstrate proof of concept for a 
hybridization and capture method to reliably identify 
pancreato-biliary cancer patients. The designed panel 
enables diagnostics in the same organ by discriminat-
ing pancreato-biliary cancers from pancreatitis with 
better performance than current standard of care. The 
presented workflow entails potential for clinical applica-
tion and could possibly be used for cost-effective screen-
ing of e.g. risk groups [15]. Our work is paving the way 
for future studies to improve non-invasive diagnostics 
for reliable and potentially earlier detection of pancre-
ato-biliary cancers. Moreover, applying this concept to 
other cancer types and clinical indications could help to 
improve diagnostics on a larger scale.
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