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Abstract
Background the problem in early diagnosis of sporadic cancer is understanding the individual’s risk to develop 
disease. In response to this need, global scientific research is focusing on developing predictive models based on 
non-invasive screening tests. A tentative solution to the problem may be a cancer screening blood-based test able to 
discover those cell requirements triggering subclinical and clinical onset latency, at the stage when the cell disorder, 
i.e. atypical epithelial hyperplasia, is still in a subclinical stage of proliferative dysregulation.

Methods a well-established procedure to identify proliferating circulating tumor cells was deployed to measure the 
cell proliferation of circulating non-haematological cells which may suggest tumor pathology. Moreover, the data 
collected were processed by a supervised machine learning model to make the prediction.

Results the developed test combining circulating non-haematological cell proliferation data and artificial 
intelligence shows 98.8% of accuracy, 100% sensitivity, and 95% specificity.

Conclusion this proof of concept study demonstrates that integration of innovative non invasive methods and 
predictive-models can be decisive in assessing the health status of an individual, and achieve cutting-edge results in 
cancer prevention and management.
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To the editor,

Background
The strategy to ensure a tangible decrease in cancer mor-
bidity and mortality resides in preventive medicine and 
the improvement of screening programs. Investment in 
cancer prevention results in both health and economic 
impacts. These effects become obvious when one com-
pares the cost of cancer to the cost of the last pandemic, 
the average direct medical cost of a symptomatic COVID-
19 patient being $3,045 [1] vs. an estimated average 
direct cost to the Health System of a patient with breast 
cancer being $37.968 [2]. The key to preventive strate-
gies in cancer is the assignment of an individual risk level 
of developing disease. Historically comprised largely of 
generalized lifestyle-based recommendations [3], cancer 
prevention and screening are now evolving to incorpo-
rate specific relevance to individual patients by the inte-
gration of precision medicine with artificial intelligence 
(AI) technology [4]. The non-invasive analytical approach 
favours the development and establishment of proactive 
screening programs for cancer-related risk assessment 
and improving early diagnosis platforms. Liquid biopsy 
(LB) is a major player in this transformation. LB is a non-
invasive test (often a blood test) initially developed and 
employed in the management of cancer patients. In the 
past decade the use for the LB has transitioned from the 
control of morbidity in established tumours (tertiary 
prevention), [5] to secondary prevention for early diag-
nosis [6] and, more recently, to assess the cancer risk [7]. 
Research in the liquid biopsy field has highlighted blood 
as a source of molecular and cellular markers that origi-
nate in tissue. Indeed, protocols and devices have been 
developed to isolate and analyze cell-free DNA [8], circu-
lating epithelial cells [9], endothelial cells [10], and cells 
with an epithelial and mesenchymal phenotype [11]. All 
of these biomarkers have proven to be useful in improv-
ing the management of cancer patients and more recently 
have been implicated as a possible marker of tissue dam-
age, the identification of which can be subsequently lev-
eraged, in the cancer screening and prevention context, 
to introduce and calibrate control measures to limit 
hypothetical broader risk [12].

Parallel to the development of LB applications in pre-
ventive medicine, AI was used to identify an increas-
ing degree of health problems in various segments of 
the population for a novel cycle of screening programs, 
including the targeted screening and stratified screening 
[3, 13].

In this current study, we have hypothesized to use of 
blood as a source of non-haematological cells which may 
exhibit signs of atypia and a dysregulated proliferation 
profile, which together suggest tumour pathology.

Results
Comprehensive assessment of cell type-specific differential 
CD45 expression in blood-derived samples
To assess cell proliferation, cell suspensions derived from 
blood, after a gradient passage to reduce the blood cell 
contamination, were cultured for a brief period (short-
time culture) revealing non-haematological elements that 
are typically rare. This approach highlighted proliferation 
dysfunction, if present, and allowed proliferating cells to 
be further analyzed, allowing for the evaluation of their 
degree of atypia and the identification of their tissue of 
origin [14].

We have performed blood-derived short-time cultures 
(BDCs) from control subjects (CS) and cancer patients 
(CP) (Fig. 1A) (Supplementary file 1: Table S1), enrolled 
following the project acceptance criteria approved by 
local government ethical standards with number ID 
2013/34, detailed in Supplementary file 2 (Fig. S1-7). Fur-
ther evaluation of the cell type yielded by the cell cultures 
was performed by evaluating for the expression pattern 
of the leukocyte common antigen CD45. This assessment 
endorsed for the determination of non-haematolog-
ical and blood cell proportions at the end of short time 
cultures.

The percentage of non-haematological cells obtained 
from the CP-BDCs (54% ± 9) was significantly higher 
compared to CS-BDCs (6% ± 0.9) (p < 0.001) (Fig. 1B).

Clinical implications of intra and inter blood-derived 
sample heterogeneity
Cultured non-haematological cells were further ana-
lyzed with a panel of epithelial and mesenchymal mark-
ers: panCK, CD34, Vimentin, CD24, CD133, CD184, 
CD326, CD49F, CD44, CD146. Levels of antigen cell-
surface expression were quantified as mean fluorescence 
intensity normalized to 1 (Supplementary file 3: Table 2). 
The heat map in Fig. 1C illustrates the differential expres-
sion of marker levels and highlights the seven phenotypic 
patterns (Pn) that were identified. Each Pn is given by 
a combination of phenotypic profile displayed by cul-
tured cells. CS showed a sole pattern, Pn4, characterized 
by negative or low expression of CK, CD34, Vimentin, 
CD24, CD133, CD184, CD326, CD49F, CD44 and by 
high positivity for CD146. Contrary, in CP’ BDCs six pat-
terns were identified (Pn1,2,3,5,6,7) by the exclusion of 
phenotypic redundancy data Fig. 1C. Moreover, cell phe-
notype in Pn4 showed two levels of CD146 expression 
Fig.  1D. The presence of reactive endothelial cells posi-
tive for CD146 in CS was related to clinical inflammatory 
conditions detailed in table S1 and previosly observed 
[10]. According to the clinical impact of heterogeneity in 
marker expression, the principal CP’s Pns affecting dis-
ease-free survival (DFS) and overall survival (OS), were 
the Pn6 and Pn7, Fig. 1D, with both showing a significant 
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fraction of cultured cells characterized by an epithelial-
mesenchymal transition phenotype, Fig. 1E. Pn6 showed 
a disease free survival (DFS) of 2 months (95% CI, 4–6) 
and overall survival (OS) of 8 months (95% CI, 6–9) while 
Pn7 showed a DFS of 5 months (95% CI, 4–6) and an OS 
of 10 months (95% CI, 8–13) (Supplementary file 4).

Processing and reporting of cytology specimens from 
blood-derived samples
Anticipating that the BDCs obtained from CS and CP 
groups would be distinguishable according to cell tumour 
heterogeneity, all experimental steps were conducted 
on chamber slides to obtain corresponding microscope 
slides. The microscope slides collected were explored and 
classified in order of cytopathological variables (detailed 
in Supplementary files 6 and 7). A total score from each 
specimen was calculated by precise cellularity guidelines 
(score 1: 1–5 target cells/100 cells; score 2: 5–10 target 
cells/100; score 3: >10 target cells/100 cells) applied on 
pathological variables considering the rate of lympho-
monocytes (Vc1), endothelial cells (Vc2), atypical cells 

(Vc3), mitotic figures (Vc4), homotypic (Vc5) and het-
erotypic cell clusters (Vc6), monocyte macrophages (Vc7) 
and multinucleated cells (Vc8).

Ward’s hierarchical clustering score-based cytopatho-
logical variables method (Fig.  1F) revealed a high level 
of segregation between CS (Fig. 1F-a) and CP specimens 
(Fig.  1F-b) and a high level of correlation with tumour 
progression (Spearman coefficient rho = 0.5).

Clinical impact of blood-derived samples proliferation 
profile
At the same time, the analysis of the proliferation pro-
file of cultured cells from the two groups showed a sig-
nificant difference expressed as a percentage of cells in 
S-phase (p = 0.001). In CP ‘ BDCs, the percentage of cells 
in S-phase correlated with cancer stage (p = 0.0004) and 
OS (p = 0.001) (Supplementary file 4) (Fig.  1H). Further 
experiments on mutational pattern of the experimen-
tal cells isolated from cancer patients, showed a linear 
correlation with the mutational signature of autologous 

Fig. 1 Non-haematological cell features are input/output models to simulate multicancer screening. A) Baseline percentage related to the clinical pre-
sentation of healthy subjects enrolled as controls (CS) and the type of tumours in the cancer patient group (CP). B) Different proportions of CD45 pos/ 
neg cells in liquid and solid matrices. In C) Identification of six patterns (Pn) by heatmap depicting expression levels of each marker on individual cell. 
Principal Analysis Component (PCA) maps allowed for a multidimensional separation of cell populations in CS and CP groups E) Cytological images of 
blood-derived specimens in CS (SUB109) and CP (PZ014) and immunofluorescence analysis of epithelium-specific cadherin (red) and biomarkers of EMT 
as vimentin (green) expression F) Ward’s clustering cytopathologic features in CS and CP. G) mutational profile in order of Kras mutation comparing liquid 
and tumour biopsy and CTCs with ct-DNA in same colon cancer patients. H) workflow starts from blood collection through short time culture to ML 
application. I) Neural model incorporates a linear, non-linear, normalization layer linked together. L) Decision boundary or confusion region between the 
two groups in order of S-phase input M) Performance of the neural network model N) 3D representation of the model output as a function of cancer 
features as S-phase, atypical cells (Atc) and cells organized in clusters (CCF)
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samples from the primary tumour biopsy (k = 0.9) and ct-
DNA (k = 0.5) Fig. 1G (Supplementary files 8 and 9).

Supervised machine learning (ML) model based to decode 
cancer features
Finally, we used a supervised machine learning (ML) 
model based on artificial neural networks to decode can-
cer features and improve cancer diagnosis.

ML was used to examine whether all or some of cancer 
cell signatures identified in this study could offer guid-
ance to the underlying diagnosis.

The neural networks model was composed by a 
sequence of several layers, as described in the Supple-
mentary File 5. Variables passed to the model as input 
data were: (i) the value of S-Phase, (ii) the grade of atypia 
– corresponding to cyto-pathological variable (Vc) Vc3, 
(iii) and the grade of cluster formation (CCF), identified 
by the variables Vc5, Vc6 and expressed as a percentage 
or a positive integer Vc3, Vc5, Vc6 (Fig. 1I).

The model’s output was a Boolean variable [15] with 
two possible values indicating whether the patient has 
developed aggressive forms of cancer (1) or not (0) 
(Fig.  1I). The performance of the model was measured 
using three different metrics, i.e. accuracy, sensitivity, 
and specificity, defined as (i) the proportion of the cor-
rect predictions among the total number of examined 
cases, (ii) the proportion of positive results that were true 
positives and (iii) the proportion of negative results being 
true negatives (Fig. 1L). The principal ML outputs iden-
tified were atypia (Vc3) and proliferation rate (S-phase), 
which, when analyzed together, were able to allow a 
cancer detection resulting in 98.8% accuracy, 100% sen-
sitivity, and 95% specificity (Fig. 1M) with high grade of 
resolution (Fig. 1N).

Conclusion
In summary, this research suggests the existence of a fun-
damental logic underlying the complexity of early blood-
based diagnosis. The logic is based on the presence of 
specific populations of non-haematological cells that can 
be characterized in terms of atypia, proliferation, and tis-
sue origin, as previously demonstrated [14]. As research 
advances, this effective assessment methodology is 
expected to demonstrate its unique advantages, such as 
specificity and repeatability, in clinical translation.

Considering that the turnaround time (TAT) and cost 
for a single test are both equivalent to the TAT and eco-
nomic impact of a conventional cytological examination, 
doctors may apply this approach not only to monitor 
patient’s response to therapy (in line with the traditional 
vocation of LB), but also to formulate personalized sur-
veillance and general prevention, if applicable, based 
upon individual patient characteristics/risk factors.

This test represents a real collaboration between LB 
and AI that has resulted in a strategic cancer preven-
tion roadmap. This roadmap is able to identify individual 
cell features/phenotypic patterns which can highlight 
the subpopulation of patients at higher risk of develop-
ing cancer. We propose that those identified through 
this stratified screening program have an opportunity 
that allows for early diagnosis - the offensive front line 
in fighting the war on cancer- and subsequent treatment 
which, if effective, are anticipated to result in a rapid 
return to baseline values.
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