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Abstract 

Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, 
leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy 
for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement 
chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, includ-
ing immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle 
wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse 
range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strat-
egies for side effect mitigation.
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Introduction
Cell death is a fundamental biological process inherent in 
complex organisms, serving as a critical mechanism for 
the elimination of dysfunctional or aging cells [1]. This 
process comprises two primary categories: accidental 
cell death, occurring in response to unexpected insults 
and injuries, and regulated cell death, a finely tuned 

machinery susceptible to modulation by drugs or genetic 
interventions [2]. Regulated cell death plays a pivotal role 
not only in tissue development and cellular homeostasis, 
but also contributes to various diseases and pathological 
conditions, including cancer, neurodegeneration, infec-
tions, and ischemia-reperfusion damage. In the context 
of cancer treatment, the induction of regulated cell death 
has become a primary goal in various targeted therapies, 
enabling the precise eradication of tumor cells while min-
imizing harm to healthy cells [3].

Considering the limitations associated with current 
drug treatments, often leading to apoptosis resistance, 
the exploration of non-apoptotic cell death has arisen 
as a logical strategy in both basic research and clini-
cal trials. Specifically, the term ’ferroptosis,’ coined in 
2012, delineates a distinctive form of non-apoptotic 
cell demise marked by uncontrolled lipid peroxidation 
[4] (Fig. 1). Traditional cell death effectors, such as cas-
pases, GSDMD (gasdermin D), and MLKL (mixed line-
age kinase domain like pseudokinase), are not essential 
for the process of ferroptosis [4]. Ferroptosis can be 
categorized as a type of regulated necrosis and exhibits 
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some morphological characteristics reminiscent of 
necrotic cell features, such as plasma membrane rupture 
[5]. Mechanistically, ferroptosis is mediated by the gen-
eration of toxic oxidized lipids, including 4-hydroxynon-
enal [6], as a result of lipid peroxidation [7]. Additionally, 
advanced lipid peroxidation end products can lead to 
oxidative damage to proteins or nucleic acids, causing 
cellular dysfunction [8]. Conversely, various antioxidant 
systems, comprising both GPX4 (glutathione peroxidase 
4)-dependent and GPX4-independent pathways, play a 
context-dependent role in defending against ferroptosis 
[9–18].

In recent years, there has been growing interest in using 
ferroptosis activators as a cancer treatment approach 
[19]. Tumor cells with metastatic potential or resistance 
to apoptosis-based therapies have demonstrated sus-
ceptibility to ferroptosis. Various interventions, includ-
ing experimental compounds and clinically used drugs 
(Table 1), have shown promise in inducing ferroptosis for 
cancer therapy, even overcoming resistance to traditional 
treatments [20]. Furthermore, combination therapies 
involving ferroptosis induction hold potential to enhance 
the efficacy of conventional treatments (such as radio-
therapy and immunotherapy), while preventing tumor 
recurrence [19, 21]. However, the current ferroptosis 
induction strategy can lead to significant side effects, 
highlighting the need for a deeper understanding of its 
role in cancer therapy [22].

In this review, we discuss the benefits and risks of 
ferroptosis-based antitumor therapy. Our aim in this 
introduction is to provide insights into strategies for 
mitigating these limitations and optimizing ferroptosis-
based cancer treatments.

The discovery of ferroptosis
Erastin and RSL3 are two well-known small molecule 
compounds that are frequently used to trigger ferroptosis 
and explore the associated mechanisms of this cell death 
pathway. However, the discovery and utilization of eras-
tin and RSL3 preceded the formal recognition of the term 
’ferroptosis’.

In 2003, the laboratory of Brent Stockwell utilized 
synthetic lethal high-throughput screening, assess-
ing a vast library of 23,550 compounds for their ability 
to selectively eliminate engineered tumorigenic cells 
(BJ-TERT/LT/ST/RASV12) while sparing their isogenic 
normal cell counterparts [51]. Through this screen-
ing, they identified erastin as a novel compound capa-
ble of selectively killing engineered tumorigenic cells 
with RAS mutations, but not wild type cells. This cell 
death induced by erastin was found to be caspase-
independent [51]. In 2008, the same research group 
conducted a similar screening involving 47,725 com-
pounds to target BJ-TERT/LT/ST/RASV12 cells [52]. 
This effort led to the discovery of RSL3, another com-
pound that selectively kills RAS-mutant cells through 

Fig. 1 A summary of the process of ferroptosis. Ferroptosis is a form of regulated necrosis primarily driven by lipid peroxidation, resulting 
in membrane damage and rupture. Increased production of ROS (reactive oxygen species) from endogenous or exogenous sources can 
initiate lipid peroxidation of PUFA (polyunsaturated fatty acids), which are a major component of cell membranes. The toxic byproducts of lipid 
peroxidation, including early-stage lipid hydroperoxides and late-stage aldehydes, as well as aldehyde-modified molecules, impair membrane 
structure and function. In contrast, various defense systems are capable of blocking or delaying this oxidative damage
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a caspase-independent mechanism. In contrast to 
erastin, RSL3 activates a similar death mechanism, but 
in a mitochondrial VDAC (voltage-dependent anion 
channel)-independent manner.

Subsequent studies have shown that erastin-induced 
cell death in the fibrosarcoma cell line HT1080 and 
the lung cancer cell line Calu-1 relies on iron accu-
mulation, consequent oxidative damage through the 
activation of the Fenton reaction, and inhibition of 
system  xc- [4]. System  xc- is an amino acid antiporter 
that facilitates the exchange of extracellular cystine 
and intracellular glutamate across the cellular plasma 
membrane. It comprises a heavy chain component, 
SLC3A2 (solute carrier family 3 member 2), and a 
transport module, SLC7A11 (solute carrier family 
7 member 11) [53]. The term ’ferroptosis’ was intro-
duced in 2012 to describe this iron-dependent, non-
apoptotic form of cell death. Subsequent research has 
demonstrated that RSL3 directly binds to and inhibits 
GPX4, a downstream molecule in the cystine uptake 
and subsequent GSH (glutathione) synthesis pathway 
mediated by the system  xc-, following the reduction 
of cystine to cysteine [9]. The current list of GPX4 
inhibitors is expanding, with ML210 standing out 
as a covalent GPX4 inhibitor,  utilizing intracellular 
drug metabolism to target the selenocysteine residue 
of GPX4 [27]. Nevertheless, ongoing debates persist 
regarding whether RSL3 and ML210 should selectively 
target GPX4, rather than other proteins in this context 
[26]. While GSH is the preferred co-factor for GPX4, 
it can also utilize other thiol-containing proteins as 
reductants [54]. In general, classical ferroptosis is trig-
gered by erastin and RSL3, both of which inhibit the 
system  xc--GSH-GPX4 pathway. This inhibition results 
in the accumulation of ROS (reactive oxygen species) 
within cells, ultimately leading to unrestricted lipid 
peroxidation.

It’s worth mentioning that the early mechanisms of 
ferroptosis exhibit similarities to oxytosis, a form of cell 
death observed in neuronal cells, including the HT-22 
cell line [55]. Oxytosis involves glutamate-induced 
inhibition of system  xc-, subsequent depletion of GSH, 
production of ROS, and activation of lipoxygenases 
and heat shock proteins [56]. The depletion of cystine 
or cysteine in the cell culture medium can also trigger 
ferroptotic cell death [57]. However, our current under-
standing of ferroptosis extends beyond the oxytotic 
phenotype, as we will discuss later, due to the discovery 
of GPX4-independent ferroptotic pathways. Further-
more, the induction of ferroptosis is not limited to cells 
with RAS mutations but has been observed in normal 
tissues or RAS wild-type cells [58, 59], highlighting the 
context-dependent nature of ferroptosis.

Positive regulators of ferroptosis
Given the intricate connection between the ferroptotic 
process and oxidative stress-induced lipid peroxidation, 
the synergistic interplay of ROS amplification, lipid pro-
visioning, and activation of lipid peroxidation enzymes 
collectively contribute to fostering ferroptosis induction 
or augmenting ferroptosis sensitivity (Fig. 1).

ROS generation
ROS are chemically reactive molecules containing oxy-
gen, typically produced as natural byproducts of cellular 
metabolism. They are essential for various physiological 
processes within cells. However, excessive accumulation 
of ROS can lead to oxidative stress, causing damage to 
cellular components (e.g., DNA, proteins, and lipids), and 
potentially contributing to various diseases. There are 
three main sources that generates ROS for ferroptosis:

1) Mitochondria: Mitochondria serve as the primary 
source of ROS during oxidative phosphorylation, a 
process vital for cellular energy generation. Electrons 
escaping from the electron transport chain can react 
with molecular oxygen, leading to the production of 
 O2

·− (superoxide radicals), a type of ROS. Mitochon-
drial ROS can act as triggers for ferroptosis, while 
the presence of mitochondrial antioxidant systems, 
comprised of enzymatic and non-enzymatic anti-
oxidants, can mitigate ferroptosis [50, 57, 60–66]. 
Multiple mitochondrial metabolic pathways influ-
ence ATP (adenosine triphosphate) and ROS genera-
tion, thereby influencing ferroptosis sensitivity. For 
instance, glutaminolysis assumes particular impor-
tance in scenarios with limited glucose availability, 
such as in rapidly growing tumors. Cancer cells often 
depend on glutaminolysis to fulfill their high energy 
and biosynthetic demands. However, glutaminolysis 
can promote ferroptotic death triggered by depriva-
tion of full amino acids or of cystine alone [57, 67]. 
The AMPK (AMP-activated protein kinase) func-
tions as a critical cellular energy sensor. When acti-
vated in response to declining energy levels, AMPK 
promotes ATP production by enhancing the activity 
or expression of catabolic proteins. Simultaneously, 
it conserves ATP by inhibiting biosynthetic path-
ways. AMPK activation during energy deficiency 
can both inhibit ferroptosis, through phosphoryla-
tion of ACACA/ACC (acetyl-CoA carboxylase alpha) 
in MEFs (mouse embryonic fibroblasts) and human 
renal adenocarcinoma cells [68], and promote ferrop-
tosis, by targeting BECN1 (beclin1)-mediated system 
 xc- inhibition in human colorectal cancer cells [25] 
or regulating pyrimidinosome assembly in human 
cervical cancer cells [69]. These findings suggest the 
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presence of a threshold for AMPK activity in regulat-
ing ferroptosis levels in cancer cells through various 
substrates or binding proteins.
2) NOXs (NADPH oxidases): These enzymes are 
specialized proteins that generate ROS as part of 
their normal function. While they serve crucial roles 
in immune responses and cellular signaling, they 
also contribute to ferroptosis. Increased expression 
of NOX can result in elevated ROS levels, thereby 
increasing sensitivity to ferroptosis [70–72]. The 
activity of NOX in ferroptosis is subject to regulation 
by various factors. For example, the tumor suppres-
sor protein TP53/p53 (tumor protein p53) can inhibit 
ferroptosis in human colorectal cancer cells by bind-
ing to DPP4 (dipeptidyl peptidase 4) [70]. Conversely, 
TP53 deficiency promotes the accumulation of DPP4 
on the cell membrane, where it forms a complex with 
NOX1, resulting in oxidative damage [70]. Arachi-
donic acid also has the capacity to enhance NOX1 
activity through phosphorylation by PRKC/PKC 
(protein kinase C), thereby promoting ROS produc-
tion [73]. Furthermore, 4-hydroxynonenal, a byprod-
uct of lipid peroxidation, augments NOX1 activity 
and induces ferroptosis in HT1080 and Calu1 cells 
[6]. The ferroptosis-inducing effect of NOX1 activ-
ity can be counteracted by ALDH1B1 (aldehyde 
dehydrogenase 1 family member B1) in HT1080 and 
Calu-1 cells [6]. ALDH1B1 catalyzes the oxidation of 
aldehydes, converting them into their corresponding 
carboxylic acids, a process relevant to the develop-
ment of colorectal and pancreatic tumors [74, 75].
3) The fenton reaction. The fenton reaction is a 
chemical process that occurs when  H2O2 (hydro-
gen peroxide) interacts with a metal catalyst, usu-
ally  Fe2+, resulting in the formation of highly reac-
tive and destructive ·OH (hydroxyl radicals) [76]. 
This reaction is a notable contributor to oxidative 
stress and can cause damage to cellular components. 
Hydroxyl radicals target and harm the lipids found 
in cell membranes, namely lipid peroxidation. Lipid 
peroxidation can result in membrane destabilization, 
compromising the integrity of cells and potentially 
leading to ferroptosis. Apart from its involvement in 
the fenton reaction, iron can also enhance the activ-
ity of enzymes, such as ALOX (arachidonate lipoxy-
genase) family and POR (cytochrome p450 oxidore-
ductase), thereby increasing ferroptosis sensitivity. 
Consequently, alterations in iron metabolism, includ-
ing processes, such as iron uptake, storage, utiliza-
tion, and release, can modulate ferroptosis sensitiv-
ity. An extensively studied example is the induction 
of ferritinophagy, a selective form of autophagy that 
promotes the degradation of the iron storage protein 

ferritin in MEFs or pancreatic cancer cells, resulting 
in an increase in labile iron [77, 78]. This process has 
been demonstrated to enhance ferroptosis sensitivity 
in various disease models [79–83].

PUFA synthesis
PUFAs (polyunsaturated fatty acids) are a category of 
dietary fats characterized by having two or more double 
bonds within their molecular structure. These double 
bonds introduce kinks into the fatty acid chains, prevent-
ing them from closely packing together. Consequently, 
PUFAs typically maintain a liquid state at room tempera-
ture and are commonly referred to as "healthy" or "good" 
fats. PUFAs are essential for the human body and serve 
critical roles in various cellular functions. They become 
integrated into cell membranes, where they exert influ-
ence over membrane fluidity and flexibility. This, in turn, 
has a direct impact on the membrane’s ability to function 
effectively in processes, such as signal transduction, the 
transport of molecules in and out of the cell, and the reg-
ulation of enzymes bound to the membrane [84].

PUFAs are highly susceptible to lipid peroxidation 
due to the presence of weak C-H bonds at the bis-allylic 
positions. Recent research has primarily focused on ω-6 
PUFAs (e.g., linoleic acid, gamma-linolenic acid, dihomo-
gamma-linolenic acid, arachidonic acid, and adrenic acid) 
and ω-3 PUFAs (e.g., alpha-linolenic acid, eicosapentae-
noic acid, and docosahexaenoic acid) in the context of 
ferroptosis. Among these, arachidonic acid and adrenic 
acid are the primary substrates of lipid peroxidation dur-
ing ferroptosis. It’s important to note that free PUFAs 
themselves do not directly drive ferroptosis; they must 
be esterified into membrane phosphatidylethanolamines 
or cholesteryl esters to become lethal after peroxidation 
[84].

The downstream pathways mediated by ACSL4 (acyl-
CoA synthetase long chain family member 4) result in 
the production of different PUFA-related acyl-CoA esters 
[85–87] (Fig.  2), even though ACSL4-independent fer-
roptosis can still occur [88, 89]. One pathway involves 
LPCAT3 (lysophosphatidylcholine acyltransferase 3), 
which incorporates PUFA into phosphatidylethanola-
mines in various types of cancer cells [85, 90]. The other 
pathway involves the activation of SOAT1 (sterol O-acyl-
transferase 1) in pancreatic cancer and leukemia cells, 
leading to the production of PUFA-cholesteryl esters 
instead of PUFA-phosphatidylethanolamines [91]. Both 
pathways contribute to lipid peroxidation, with PUFA-
related acyl-CoA esters serving as substrates. The activity 
of ACSL4 can be enhanced by PRKCB/PKCβII (protein 
kinase C beta) in MDA-MB-231 (breast cancer cell line) 
and HT1080 cells, which catalyzes the phosphorylation 
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of ACSL4 at Thr328 [92]. This suggests that ACSL4 phos-
phorylation is a crucial post-translational modification 
for regulating ferroptosis sensitivity.

Additional sources of PUFAs for lipid peroxidation 
include the peroxisome-mediated biosynthesis of plas-
malogens through TMEM189 (transmembrane protein 
189) in human ovarian and kidney cancer cell lines [93, 
94] and lipophagy-mediated lipid droplet degradation 
in human liver cancer cell lines [95, 96], although the 
initiation signals for these alternative pathways are not 
well understood. Recently, TMEM164 (transmembrane 
protein 164) was identified as a mediator of ferroptosis, 
with multifunctional roles as an acyltransferase involved 
in the synthesis of C20:4 ether phospholipids in renal 
carcinoma 786-O cells [97] or in driving the formation 
of phagophores, leading to excessive autophagosome for-
mation in HT1080 and pancreatic cancer cell line PANC1 
[98]. These diverse sources of PUFAs during ferroptotic 

stimuli highlight the heterogeneity and plasticity of fer-
roptosis machinery.

Notably, not all lipids contribute to increased lipid per-
oxidation. In contrast, ACSL3 (acyl-CoA synthetase long 
chain family member 3)-mediated metabolism of MUFAs 
(monounsaturated fatty acids) can inhibit ferroptosis, 
possibly due to its structural differences from PUFAs 
[7, 99–101] (Fig. 2). The mitochondrial glutamate trans-
porter SLC25A22 (solute carrier family 25 member 22) 
inhibits ferroptosis in pancreatic cancer cells by remod-
eling lipid metabolism pathways and promoting the pro-
duction of GSH and MUFAs [102]. SLC25A22 achieves 
this by utilizing NADPH and stimulating the activity 
of the enzyme SCD/SCD1 (stearoyl-CoA desaturase) 
[102]. Moreover, MBOAT1 (membrane-bound O-acyl-
transferase domain-containing 1) and MBOAT2 (mem-
brane-bound O-acyltransferase domain-containing 2), 
which are transcriptionally upregulated by sex hormone 

Fig. 2 PUFAs and MUFAs in ferroptosis. Both dietary and de novo synthesized PUFAs play a central role in propagating lipid peroxidation 
during ferroptosis. Notably, free PUFAs themselves do not directly initiate ferroptosis; they must first undergo esterification into membrane 
PEs (phosphatidylethanolamines) or CEs (cholesteryl esters) following peroxidation to become lethal. ACSL4 regulates PUFA-PE synthesis 
through LPCAT3 and PUFA-CE synthesis via SOAT1. TMEM164 forms ferroptotic C20:4 ether phospholipids or induces autophagy, whereas TMEM189 
is involved in peroxisome-mediated plasmalogen biosynthesis for lipid peroxidation. The POR and ALOX families mediate lipid peroxidation, leading 
to the production of PUFA-OOH, whereas ACSL3-mediated metabolism of MUFAs can exert an inhibitory effect on ferroptosis. The mitochondrial 
transporter SLC25A22 inhibits ferroptosis, in part, through the de novo synthesis of MUFAs. Furthermore, in  ER+ breast cancer and  AR+ prostate 
cancer cells, MBOAT1 and MBOAT2, upregulated by sex hormone receptors, inhibit ferroptosis through the production of MUFA-PLs, respectively
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receptors, exert inhibitory effects on ferroptosis in  ER+ 
breast cancer and  AR+ prostate cancer cells, respectively 
[11]. They achieve this by remodeling the cellular phos-
pholipid profile, ultimately leading to the synthesis of 
phospholipids rich in MUFA [11].

Hence, adjusting the balance between PUFA and 
MUFA levels is critical for regulating ferroptosis sensitiv-
ity. Nonetheless, lipid metabolism is a complex process 
with numerous interconnected steps. Understanding 
the bioavailability and absorption of PUFAs and MUFAs 
from diverse food sources and dietary supplements is 
vital, as it may play a context-dependent role in prevent-
ing or enhancing the ferroptotic process and its health 
implications.

Lipid peroxidation
Lipid peroxidation stands as the defining characteristic 
of ferroptosis. The susceptibility of lipids to oxidation 
hinges on both the surrounding chemical environment 
and their inherent molecular structure. PUFAs are par-
ticularly prone to peroxidation due to the presence of 
bis-allylic moieties within their structure. The oxidation 
of PUFA during ferroptosis occurs through two primary 
mechanisms: enzymatic reactions and non-enzymatic 
autoxidation, driven by the Fenton reaction.

In enzymatic lipid peroxidation, the oxidation of PUFA 
is predominantly mediated by enzymes known as ALOXs 
and POR (Fig. 2). ALOXs, which are nonheme iron-con-
taining enzymes, directly introduce molecular oxygen 
into PUFAs and PUFA-containing lipids within biological  
membranes. For instance, ALOX12 plays a crucial role  
in TP53-dependent ferroptosis [88]. ALOX15 is essential 
for ferroptosis induced by compounds (e.g., erastin or 
RSL3), as it forms a complex with PE binding protein 1  
(PEBP1), specifically recognizing stearoyl-arachidonoyl-
phosphatidylethanolamines and generating lipid peroxides 
[103]. Additionally, ALOXE3, ALOX5, ALOX12B, and  
ALOX15B have been implicated in ferroptosis induction, 
including in various cancer cells, in a context-dependent 
manner. Certain ALOX inhibitors (e.g., baicalein) pro-
tect cells against lipid peroxidation and ferroptosis [104]. 
However, it is important to note that genetic deletion of 
Alox15 in Gpx4 conditional knockout mice in kidney did 
not prevent ferroptosis in vivo [58]. Genetic deletion of 
Alox12 and Alox15 also failed to restore the viability of 
Gpx4-deficient T cells [59]. This suggests the existence of 
an ALOX-independent mechanism leading to ferroptosis 
in GPX4 knockout mice.

POR, on the other hand, directly provides electrons 
to P450 enzymes, facilitating the catalysis of PUFA per-
oxidation in an ALOX-independent manner in skin, 
ovarian, and kidney cancer cell lines [105, 106]. While 
POR expression is widespread, the expression of ALOX 

family members is highly cell- or tissue-specific. These 
observations collectively underscore the role of various 
iron-dependent enzymes, including ALOX and POR, 
in promoting lipid peroxidation and ferroptosis. Fur-
ther investigations are necessary to explore the potential 
involvement of other oxygenases, such as cyclooxyge-
nases and peroxygenases, in lipid peroxidation.

Nonenzymatic peroxidation of lipids is catalyzed 
by redox-active metals, with iron playing a prominent 
role. In non-enzymatic lipid peroxidation, when ini-
tial PLOOH (phospholipid hydroperoxides) are gener-
ated and not promptly reduced by the enzyme GPX4, 
they can react with ferrous ions, leading to the genera-
tion of alkoxyl and peroxyl radicals through the Fenton 
reaction. This process drives the propagation of PLOOH 
production to neighboring PUFA-phospholipids [23]. 
Furthermore, these toxic lipid products can react with 
nucleophilic amino acid residues within various proteins, 
forming covalent adducts and inducing protein lipoxi-
dation [107]. If the defense system cannot effectively 
remove these toxic products, it can result in an irrevers-
ible point of no return in the progression of ferroptosis. 
Elucidating the precise mechanisms involved in this intri-
cate process necessitates further investigation.

Negative regulators
The defense against ferroptosis encompasses various 
antioxidant systems and membrane repair mechanisms, 
all working in concert to interrupt lipid peroxidation 
reactions or eliminate compromised membranes.

GPX4‑dependent antioxidant pathway
GPX4 stands out as the exclusive member within the 
GPX family recognized for its role as a phospholipid 
hydroperoxidase, directly transforming PLOOH into 
the corresponding PLOH (phospholipid alcohols) [108]. 
This distinctive function establishes GPX4 as the piv-
otal negative regulator of ferroptosis [9]. The catalytic 
mechanism employed by GPX4 adheres to a ping-pong 
mechanism, characterized by the dynamic interchange of 
the enzyme’s active site between oxidation and reduction 
states (Fig. 3).

Initially, GPX4’s active site selenol (GPX4-SeH) under-
goes oxidation by PLOOH, resulting in the formation 
of a selenenic acid intermediate (GPX4-SeOH). Subse-
quently, this intermediate interacts with GSH, leading to 
the creation of a selenium-glutathione adduct (GPX4-Se-
SG) [10]. The system  xc-, which plays a role in import-
ing cysteine for GSH synthesis, is a significant upstream 
modulator in this process. Finally, through a reaction 
with a second GSH molecule, GPX4-Se-SG is converted 
back to GPX4-SeH, simultaneously generating oxi-
dized glutathione (GSSG). A crystal structure analysis of 
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seleno-GPX4 has unveiled the presence of seleninic acid 
(GPX4-Se-OO-) within the enzyme’s active site [109]. 
This finding suggests an alternative reaction mechanism 
characterized by three distinct redox states (GPX4-SeH, 
GPX4-SeOH, and GPX4-Se-OO-) involving the catalyti-
cally active selenocysteine. These studies underscore the 
role of selenocysteine in GPX4 expression and activity 
[10].

To prevent hydroperoxide-induced ferroptosis, it is 
imperative to substitute selenocysteine with a cysteine 
residue (U46C) in GPX4 [110]. Furthermore, the R152H 
mutation in GPX4 can lead to Sedaghatian-type spinal 

metaphyseal dysplasia, a rare and fatal disease in new-
borns [111]. In vitro studies suggest that this R152H 
mutation doesn’t directly impact the enzyme’s catalytic 
activity but rather interferes with its allosteric activa-
tion by cardiolipin [112]. In the context of ferroptosis, 
the expression of GPX4 protein is regulated by either 
the ubiquitin-proteasome system or the autophagy deg-
radation pathway [36, 113–117]. CKB (creatine kinase 
B)-mediated phosphorylation of GPX4 at serine residue 
104 inhibits autophagy-mediated GPX4 degradation 
and subsequent ferroptosis in human liver cancer cells 
[116]. However, the exact checkpoint governing these 
two degradation pathways of GPX4 remains unclear.

Fig. 3 GPX4-dependent pathway in ferroptosis. The GPX4-dependent antiferroptotic pathway is associated with classical ferroptosis, a form 
of cell death driven by iron-dependent lipid peroxidation of PUFA. In this process,  Fe3+ is transported into the intracellular space through binding 
to TF (transferrin) and its receptor TFRC. Within endosomes, STEAP3 converts intracellular  Fe3+ to  Fe2+, which can catalyze the production of .
OH through the Fenton reaction, leading to lipid peroxidation. Conversely, storing  Fe2+ in ferritin or exporting iron into the extracellular space 
via SLC40A1 can inhibit ferroptosis. Furthermore, the degradation of ferritin through ferritinophagy increases free  Fe2+ levels, thereby promoting 
ferroptosis. GPX4 plays a pivotal role in this pathway by catalyzing the reduction of toxic PLOOH to non-toxic PLOH. The activity of GPX4 
is tightly regulated by GSH (glutathione) and Se (selenium). Intracellular GSH levels are primarily controlled by system  xc--mediated cystine 
uptake and subsequent cysteine transformation for GSH synthesis. In addition to the system  xc-, methionine metabolism serves as an additional 
intracellular source of cysteine for the synthesis of GSH. The radical-trapping antioxidants ferrostatin-1 and liproxstatin-1 are the most used 
ferroptosis inhibitors
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GPX4 exists in three isoforms: mitochondrial, cyto-
solic, and nuclear GPX4 [108]. All of these isoforms are 
encoded by the same GPX4 gene, but have different tran-
scription initiation sites. When the cytosolic GPX4 is 
genetically ablated or rendered inactive, it leads to early 
embryonic lethality [118]. Interestingly, reintroduc-
ing cytoplasmic GPX4, rather than its mitochondrial or 
nuclear counterparts, can rescue the lethal phenotype in 
Gpx4-null mice [119]. Generally, cytosolic GPX4 plays a 
prominent role in preventing ferroptosis. However, the 
question of whether mitochondrial GPX4 inhibits ferrop-
tosis remains a subject of debate [13, 120, 121], and there 
is currently no research establishing the role of nuclear 
GPX4 in ferroptosis.

Global Gpx4 knockout mice do not survive, but the 
phenotype of conditional Gpx4 knockout mice depends 
on the specific cell or tissue involved. For instance, the 
conditional knockout of Gpx4 in kidney cells, T cells, 
or B cells can induce ferroptotic damage, which can be 
reversed by supplementing with vitamin E or the fer-
roptosis inhibitor liproxstatin-1 [58, 59, 122, 123]. Con-
versely, the conditional knockout of Gpx4 in myeloid 
cells, blood progenitor cells, and sperm cells can increase 
pyroptosis, necroptosis, and apoptosis in response to spe-
cific stresses [120, 124, 125]. Therefore, the antioxidant 
function mediated by GPX4 plays a context-dependent 
role in both ferroptosis and non-ferroptotic cell death.

GPX4‑independent antioxidant pathway
Although the ER (endoplasmic reticulum) has been sug-
gested as the primary site for the initiation of ferrop-
tosis [126], various cellular compartments contribute 
to the ferroptosis process [127]. Consequently, differ-
ent antioxidant systems possess unique capabilities and 
operate within distinct cellular locales to inhibit ferrop-
tosis. GPX4 has a prominent function within the cytosol, 
actively inhibiting ferroptosis. Simultaneously, various 
GPX4-independent enzymes contribute to ferroptosis 
resistance in distinct cellular compartments (Fig. 4), pri-
marily by generating radical-trapping antioxidants, with 
a notable emphasis on COQ10 (coenzyme Q10).

AIFM2/FSP1 (apoptosis inducing factor mitochondria 
associated 2), a member of the apoptosis-inducing factor 
family located in mitochondria, has garnered attention 
as a potent suppressor of ferroptosis in diverse cancer 
cells, including HT1080 [12, 15]. It achieves this by trans-
locating from mitochondria to the cell membrane and 
participating in the reduction of COQ10 to COQ10H2. 
STARD7 (StAR-related lipid transfer domain-containing 
7), located in the intermembrane space of mitochon-
dria and in the cytosol after cleavage by the rhomboid 
protease PARL (presenilin-associated rhomboid-like), 
is involved in transporting COQ10 to the plasma 

membrane AIFM2, thus suppressing ferroptosis in HeLa 
(human cervical cancer cell line) and HCT116 (human 
colorectal cancer cell line) cells [128]. Furthermore, 
AIFM2 contributes to the inhibition of ferroptosis by 
engaging in membrane repair in pancreatic cancer cells 
(PANC1) and liver cancer cells (HepG2) [129] and is also 
involved in the reduction of vitamin K in 786-O (human 
renal carcinoma cell line) and A375 (human melanoma 
cell line) cells, which includes warfarin-resistant vitamin 
K reduction [14, 130, 131]. The involvement of AIFM2 in 
ferroptosis is influenced by phase separation, a process in 
which a homogeneous mixture of substances spontane-
ously separates into distinct phases, and can be initiated 
through N-terminal myristoylation, which is facilitated 
by a compound called icFSP1 in a variety of human can-
cer cells [14].

DHODH (dihydroorotate dehydrogenase (quinone)), 
a flavin-dependent mitochondrial enzyme involved in 
de novo pyrimidine biosynthesis, has garnered atten-
tion as a potential therapeutic target for various diseases. 
DHODH inhibitors (e.g., BAY 2402234, PF-06726209, 
and brequinar) have been developed for potential use in 
cancer treatment and immunosuppression. The activ-
ity of DHODH influences the vulnerability of cancer 
cells with low GPX4 levels to ferroptosis, likely due to 
DHODH-mediated utilization of COQ10 as an electron 
acceptor in HT1080 and NCI-H226 (human lung cancer 
cell line) cells [13]. Inhibiting DHODH activity leads to 
a reduction in COQ10 levels, compromising antioxidant 
capacity and increasing susceptibility to lipid peroxida-
tion and ferroptosis [13]. Nonetheless, there is an ongo-
ing debate regarding the potential unintended effects of 
the DHODH inhibitor brequinar on AIFM2 in cancer 
cells [132, 133].

TXNDC12 (thioredoxin domain-containing protein 
12), also known as ERp18 or ERp19, plays a role in inhib-
iting ferroptosis independently of GPX4 in human leuke-
mia cells within the ER [134]. Its expression is increased 
in human leukemia cells during ferroptosis due to the 
activation of transcription factor ATF4 (activating tran-
scription factor 4) [134]. Solid cancer cells with higher 
baseline TXNDC12 expression tend to exhibit resist-
ance to ferroptosis [135]. Conversely, genetic knockdown 
of TXNDC12 enhances ferroptosis sensitivity, leading 
to increased lipid peroxidation both in vitro and in vivo 
[134, 135]. Hence, targeting TXNDC12 could prove to be 
a valuable strategy in cancer therapy.

Redundancy in antioxidant systems acts as a backup 
mechanism to safeguard cellular integrity and function 
in the face of oxidative stress, reducing the risk of dam-
age. Other antioxidant enzymes, including GCH1 (GTP 
cyclohydrolase 1) [136], NOS2/iNOS (nitric oxide 
synthase 2) [137], MGST1 (microsomal glutathione 
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S-transferase 1) [138], GSTZ1/maleylacetoacetate 
isomerase (glutathione S-transferase zeta 1), TXNRD1 
(thioredoxin reductase 1) [139], PLA2G6/iPLA2β/
PNPLA9 (phospholipase A2 group VI) [16, 17], and 
peroxiredoxins (PRDX) [140], also inhibit ferroptosis in 
a context-dependent manner, even in GPX4- or AIFM2-
knockout cancer cells. Each of these pathways plays a 
unique and complementary role, collectively providing 
comprehensive protection against oxidative damage 
during ferroptosis.

Metal ions, particularly iron, play pivotal roles in ini-
tiating oxidative stress and triggering ferroptosis. To 
counteract these detrimental reactions, cells employ 
a range of metal-binding proteins, such as transferrin 
(TF) and ferritin, which efficiently sequester free iron 

[77, 78]. Intracellular metal equilibrium is meticulously 
upheld by specialized proteins, including metal chap-
erones that are tasked with delivering metals to their 
intended protein targets. Metallothioneins, a family of 
cysteine-rich proteins, also contribute significantly to 
regulating the availability of metal ions, thereby reduc-
ing their participation in oxidative damage and the fer-
roptosis process in human liver cancer cells (HepG2) 
[141]. Furthermore, certain clinical drugs with metal-
chelating properties have shown promise in preventing 
ferroptosis by interfering with iron-related processes. 
Examples of these drugs include deferoxamine, defer-
iprone, deferasirox, and ciclopirox [142]. These com-
pounds hold potential as therapeutic agents that can 
mitigate the impact of iron-mediated oxidative stress, 

Fig. 4 GPX4-independent pathway in ferroptosis. Organisms possess intricate networks of antioxidant and enzyme systems that collaborate 
to prevent lipid peroxidation-mediated ferroptosis. Apart from GPX4, several GPX4-independent pathways and proteins are involved. Specifically, 
AIFM2 (also known as FSP1) and DHODH act as ferroptosis suppressors by reducing COQ10 to COQ10H2. This process is facilitated by STARD7. 
The PARL-mediated cleavage of STARD7 occurs during its import into mitochondria, leading to the release of a portion of mature STARD7 
into the cytosol. This cytosolic fraction delivers mitochondria COQ10 to the plasma membrane. AIFM2 also inhibits ferroptosis by either generating 
reduced vitamin K or activating the ESCRT-III membrane repair pathway. Furthermore, ER stress can induce ATF4-dependent expression 
of TXNDC12, which serves to limit lipid peroxidation
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thereby offering a new avenue for intervention in dis-
eases where ferroptosis plays a significant role.

Membrane repair system
The membrane repair system operates to mitigate and 
reverse damage to the plasma membrane resulting from 
mechanical stress, injury, or disruption. When the mem-
brane is compromised, cellular mechanisms are acti-
vated to restore its integrity, thereby reducing the risk of 
ferroptosis.

Ca2+ plays a central role in initiating membrane repair. 
Following plasma membrane damage,  Ca2+ enters the 
cytoplasm from extracellular sources, serving as a signal 
to trigger downstream repair processes such as ESCRT 
(endosomal sorting complexes required for transport)-III 
and exocytosis.  Ca2+ signaling from different organelles 
has a dual impact on ferroptosis sensitivity, highlighting 
the need for timely signal monitoring.

During cellular stress, which includes oxidative stress 
associated with ferroptosis, ESCRT-III components are 
mobilized to sites of membrane damage, where they play 
a critical role in facilitating repair and preventing irre-
versible damage that can lead to ferroptosis [143]. For 
instance, when there is an influx of  Ca2+ in pancreatic 
cancer cells, specific subunits of ESCRT-III, referred to as 
CHMPs (charged multivesicular body proteins), particu-
larly CHMP5 and CHMP6, are recruited and assembled 
at the damaged site, actively contributing to the restora-
tion of membrane integrity in liver and pancreatic cancer 
cells [143]. In contrast, the knockout of either CHMP5 or 
CHMP6 increases the susceptibility of pancreatic cancer 
cells (PANC1) to ferroptosis [143].

Exocytosis constitutes another crucial aspect of the 
membrane repair system, where intracellular vesicles 
fuse with the plasma membrane to facilitate repair. This 
essential process, involved in the transport and secre-
tion of diverse molecules, including proteins, lipids, neu-
rotransmitters, and hormones, plays a protective role. It 
particularly safeguards neurons from ferroptosis by facil-
itating the release of lipids and iron from autolysosomes 
[144].

While repair mechanisms in the plasma membrane 
are well-studied, it remains unclear whether organelles 
employ similar mechanisms for repair. Further explora-
tion of these mechanisms and their associated signal-
ing pathways has the potential to pave the way for the 
development of targeted therapies aimed at addressing 
diseases associated with impaired ferroptosis. Addi-
tionally, the emerging field of understanding the role 
of membrane repair in immune responses, including 
inflammation and tissue repair, holds great promise and 
continues to garner interest.

Advantages of ferroptosis‑based antitumor 
therapy
Extensive studies suggest that ferroptosis plays a pivotal 
role in tumor suppression, thus providing new opportu-
nities for cancer therapy.

Personalized medicine
Identifying specific vulnerabilities in cancer cells that 
make them susceptible to ferroptosis allows for more 
personalized treatment, potentially improving outcomes. 
Below, we highlight three key gene mutation signals in 
the regulation of ferroptosis sensitivity.

RAS mutations, commonly found in various cancer 
types, promote abnormal cell growth and resistance to 
certain therapies. Ferroptosis, initially recognized as a 
targeted therapy for RAS-mutated cancer cells, offers 
selectivity in eliminating them while sparing normal 
cells [4]. Blocking the RAS pathway or its downstream 
RAF-MEK-ERK axis can reverse the specific cytotoxic 
effects induced by erastin [145]. Additionally, mutations 
in EGFR (epidermal growth factor receptor), upstream 
of RAS, enhance the susceptibility to ferroptosis induced 
by cystine depletion [146]. This susceptibility is likely 
attributed to the activation of the RAS-MAPK axis medi-
ated by mutant EGFR in non-small cell lung cancer cells 
[146]. A recent study demonstrated that mutant KRAS 
elevates AIFM2 levels by activating MAPK and NFE2L2/
NRF2 (NFE2 like BZIP transcription factor 2), thereby 
suppressing ferroptosis in pancreatic cancer cells [147]. 
Combining the induction of ferroptosis with the inhibi-
tion of defense mechanisms, such as AIFM2 or NFE2L2 
inhibitors, holds promise as a potential treatment strat-
egy for pancreatic cancers with KRAS mutations. In a 
similar fashion, mutant KRAS can activate NFE2L2-
dependent expression of SLC7A11, resulting in elevated 
intracellular cysteine levels and increased GSH biosyn-
thesis [148]. Inhibition of SLC7A11 by erastin can induce 
synthetic lethality in KRAS-mutated lung adenocarci-
noma cells [148]. Taken together, these findings indicate 
that cancer cells harboring KRAS mutations are suscepti-
ble to ferroptosis induction.

Subsequent studies have revealed vulnerabilities asso-
ciated with gene mutations, particularly TP53, impact-
ing ferroptosis sensitivity. TP53, a tumor suppressor 
protein known as the ’guardian of the genome,’ plays a 
crucial role in maintaining genomic stability and regu-
lating cell cycle progression. For example, the acetyla-
tion-deficient TP53 variant, TP53[3KR], lacks the ability 
to induce apoptosis and cell cycle arrest but retains its 
tumor suppression function akin to wild-type TP53. It 
achieves this by suppressing SLC7A11 expression, lead-
ing to ferroptosis induction in various cancer cells [149, 
150]. TP53 also influences ferroptosis sensitivity through 
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other mechanisms, such as downregulating VKORC1L1 
(vitamin K epoxide reductase complex subunit 1 like 1) 
in vitamin K metabolism [151] and inducing SAT1 (sper-
midine/spermine N1-acetyltransferase 1), an enzyme in 
polyamine catabolism that produces ROS [152]. Con-
versely, TP53 can inhibit ferroptosis in certain condi-
tions. For example, TP53 deletion in colorectal cancer 
cells increases ferroptosis sensitivity by activating DPP4-
mediated NOX1 pathway [70]. TP53 mutations, such as 
R175H, can lead to modified TP53 proteins that act as 
suppressors of ferroptosis by preventing BACH1 (BTB 
domain and CNC homolog 1)-mediated downregulation 
of SLC7A11, thus promoting tumor growth [153]. These 
findings underscore the varied roles of TP53 in regulating 
ferroptosis sensitivity, which can vary depending on the 
specific tumor types.

KEAP1 (kelch like ECH associated protein 1), an 
enzyme often mutated in lung cancer, interacts with 
NFE2L2, leading to NFE2L2 degradation [154, 155]. 
Mutations in KEAP1 or the augmentation of SQSTM1 
(sequestosome 1)-mediated KEAP1 protein degradation 
can enhance the stability of NFE2L2 protein, enabling 
cancer cells to evade ferroptosis and acquire drug resist-
ance [34]. NFE2L2 plays a pivotal role in regulating anti-
oxidant genes involved in both GPX4-dependent (e.g., 
GPX4 and SLC7A11) and GPX4 independent pathways 
(e.g., AIFM2 and MT1G [metallothionein 1G]) [34, 83, 
156]. In TNBC (triple-negative breast cancer), meth-
ylation of KEAP1 by PRMT5 (protein arginine methyl-
transferase 5) results in decreased levels of NFE2L2 and 
its downstream target gene HMOX1 (heme oxygenase 
1), thereby influencing the sensitivity of the cancer cells 
to ferroptosis [157]. These findings also demonstrate an 
epigenetic strategy for controlling ferroptosis sensitivity 
in TNBC cells by modulating the KEAP1-NFE2L2 path-
way. p14ARF, also known as ARF tumor suppressor, is a 
protein product encoded by the alternate reading frame 
of the CDKN2A (cyclin dependent kinase inhibitor 2A) 
locus. p14ARF enhances ferroptosis, both with and with-
out TP53, by inhibiting NFE2L2, particularly in TP53-
knockout cells. Loss of p14ARF activates NFE2L2, aiding 
cancer cell survival during oxidative stress and ferropto-
sis [158]. Apart from KEAP1, other oncogenes, such as 
 KRASG12D [147],  BRAFV619E [159], and  MYCERT2 [159], 
can increase NFE2L2 expression or stability, maintaining 
cellular antioxidant defenses and potentially defending 
against ferroptosis. Overall, dysregulation of NFE2L2 or 
its downstream pathways can lead to increased suscep-
tibility to ferroptosis, making it an attractive target for 
research and potential therapeutic interventions in cer-
tain types of cancer.

In addition to genetic mutations, recent reviews have 
highlighted the influence of multiple tumor-related 

signaling pathways on ferroptosis sensitivity. These path-
ways, including MTOR (mechanistic target of rapamycin 
kinase) signaling [31, 43, 160], hypoxia response [161–
163], the Hippo pathway [164, 165], and autophagic deg-
radation [116, 166–172], play context-dependent roles 
in determining ferroptosis susceptibility. Moreover, bio-
informatic analyses have uncovered aberrant expression 
patterns of ferroptosis regulator genes in cancer patients. 
The development of a ferroptosis potential index for 
patients offers a valuable tool for predicting disease pro-
gression, evaluating immune responses, and characteriz-
ing metabolic alterations.

Overcoming drug resistance
The persistence of cancer cells, including drug-tolerant 
populations, presents a substantial challenge in both 
preclinical research and clinical practice. Some can-
cer cells resist conventional therapies due to apoptosis 
deficiencies, rendering them resistant to elimination. 
Ferroptosis-based therapies show promise in targeting 
vulnerabilities unique to these resistant cells, offering a 
potential solution.

Acquired drug resistance frequently hinders can-
cer treatments from achieving stable and complete 
responses. Recent evidence highlights the significance of 
non-mutational drug resistance mechanisms in the sur-
vival of residual cancer ’persister’ cells [173]. These per-
sister cells act as a reservoir from which drug-resistant 
tumors can potentially emerge, making targeting them 
an attractive therapeutic opportunity to prevent tumor 
relapse. Cancer cells in a high mesenchymal therapy-
resistant state rely on the lipid hydroperoxidase GPX4 for 
survival [174, 175]. Preclinical studies have demonstrated 
the efficacy of GPX4 inhibitors, such as RSL3 or ML210, 
in eliminating persister cancer cells in vitro and in xeno-
graft models [174, 175].

In addition, there is a scarcity of ferroptosis activators 
capable of targeting cancer stem cell niches and popula-
tions of cells that inherently tolerate therapy or acquire 
drug resistance [176–178]. These findings support the 
potential clinical utility of GPX4 inhibitors to prevent 
tumor relapse or to combat cancer cells that can adopt a 
therapy-resistant state.

Complementary to other therapies
Ferroptosis-based treatments can be employed in combi-
nation with existing cancer therapies (e.g., chemotherapy, 
radiotherapy, or immunotherapy) to potentially enhance 
overall treatment efficacy. Combining ferroptosis acti-
vators with traditional chemotherapeutic drugs (e.g., 
temozolomide, oxaliplatin, cisplatin, gemcitabine, and 
5-fluorouracil) or targeted drugs (e.g., olaparib, cetuxi-
mab, and sunitinib) may help overcome drug resistance 
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or enhance their effects. Radiotherapy itself can induce 
ferroptosis in tumor cells, and the addition of ferropto-
sis agonists can improve radiation therapy outcomes in 
tumor models. For instance, in vitro and in vivo stud-
ies using cancer cell lines (HT1080, HeLa, NCI-H1975 
[human non-small cell lung cancer cell line], and B16F10 
[human melanoma cell line]) demonstrated that combin-
ing ferroptosis activators with radiation therapy reduced 
tumor growth compared to radiation therapy alone [179–
182]. Mechanistically, this combination therapy not only 
inhibits the expression of anti-ferroptotic proteins, such 
as GPX4 and SLC7A11, but also induces the expression 
of ACSL4, leading to increased lipid peroxidation and fer-
roptosis [183]. In cancer cells, PARP1 (poly(ADP-Ribose) 
polymerase 1) and PARP2 can activate DNA repair path-
ways to prevent DNA damage and cell death caused by 
radiotherapy. When radiotherapy is combined with PARP 
inhibitors (e.g., niraparib), it can induce DNA damage 
and activate the CGAS (cyclic GMP-AMP synthase)-
STING1 (stimulator of interferon response cGAMP 
interactor 1) pathway. This activation, in turn, triggers 
tumor ferroptosis and subsequently stimulates  CD8+ T 
cells-mediated antitumor immunity in colorectal can-
cer models [184]. In addition to its benefits in inhibiting 
tumor growth, ACSL4-dependent ferroptosis is impli-
cated in radiation-induced intestinal injury, a common 
gastrointestinal complication resulting from radiotherapy 
[185]. This highlights that ferroptosis can also be a side 
effect of radiation-induced damage in normal tissues.

The sensitivity of ferroptotic cancer cell death is influ-
enced by the release of cytokines from immune cells. 
IFNG/IFN-γ (interferon gamma), a versatile cytokine 
released by  CD8+ T cells or NK (natural killer) cells, is 
a crucial effector molecule in immunotherapy. IFNG can 
enhance the cell death of tumor cells (HT1080, A375, 
and ID8 [murine ovarian surface epithelial cell line]) 
induced by ferroptosis activators, such as erastin, RSL3, 
or cysteine depletion [186]. This effect is partly achieved 
by downregulating SLC7A11 through its receptor and 
activating the JAK (Janus kinase)-STAT1 (signal trans-
ducer and activator of transcription 1) pathway in cancer 
cells [186] (Fig. 5A). In addition, IFNG stimulates ACSL4 
expression through an IRF1 (interferon regulatory fac-
tor 1)-dependent mechanism, thereby augmenting ara-
chidonic acid-related ferroptosis in animal models and 
impeding tumor growth [187] (Fig. 5A). Combining fer-
roptosis inducers with immune checkpoint inhibitors, 
such as anti-CTLA4 (cytotoxic T-lymphocyte associated 
protein 4), anti-PDCD1/PD-1 (programmed cell death 
1), or anti-CD274/PD-L1 (programmed death ligand 1) 
antibodies, enhances tumor suppression compared to 
using immune checkpoint inhibitors alone. Conversely, 
tumor-associated macrophage-derived TGFB1/TGFβ1 

(transforming growth factor beta 1) suppresses ferropto-
sis through the activation of the HLF (HLF transcription 
factor, PAR BZIP family member)-GGT1 (gamma-glu-
tamyltransferase 1)-GSH-GPX4 pathway in TNBC cells 
[188] (Fig. 5B). Moreover, IL1B/IL-1β (interleukin 1 beta) 
stimulation leads to KAT2B (lysine acetyltransferase 
2B)-dependent acetylation and activation of NNT (nico-
tinamide nucleotide transhydrogenase) in gastric can-
cer cells, resulting in increased production of NADPH 
and the preservation of Fe-S clusters within mitochon-
dria [189] (Fig. 5C). This mechanism functions to shield 
tumor cells from ferroptosis and immune-based thera-
pies. However, IL1B is also a mediator of immunogenic 
cell death driven by pyroptotic cell death [190], adding 
complexity to the feedback mechanisms involving differ-
ent cell death and immune mediators.

Side effects of ferroptosis‑based antitumor therapy
There is growing evidence that current ferroptosis acti-
vators can trigger cell death in normal cells, resulting in 
adverse effects during cancer therapy.

Immune cell death
Recent studies have shown that classical ferroptosis acti-
vators or oxidized lipids can inadvertently lead to the 
death of these crucial antitumor immune cells. Among 
these immune cells are cytotoxic  CD8+ T cells, special-
ized in directly recognizing and eliminating cancer cells 
by targeting cancer-specific antigens on their surfaces. 
Inducing ferroptosis in  CD8+ T cells has been found to 
dampen antitumor immunity in mouse models of clone 
cancer (using B16 or MC38 cell line) in B6 mice [191, 
192] (Fig.  6A). This effect is linked to the expression of 
CD36, a cell surface protein known for its roles in lipid 
metabolism, including fatty acid and lipoprotein uptake, 
as well as its involvement in innate immunity and inflam-
mation. The uptake of OxLDL (oxidized low-density 
lipoproteins) or PUFA by CD36 can trigger GPX4 down-
regulation and MAPK14/p38 (mitogen-activated protein 
kinase 14) phosphorylation, ultimately leading to lipid 
peroxidation and ferroptosis or functional exhaustion of 
cytotoxic  CD8+ T cells in mouse models of clone cancer 
in B6 mice [191, 192]. These effects can be prevented by 
ferroptosis inhibitors or by CD36 deficiency [191, 192]. 
GPX4 is not essential for T cell development, but plays 
a crucial role in maintaining T cell homeostasis and 
supporting T cell-dependent immune responses dur-
ing acute viral infections [59]. Moreover, overexpressing 
GPX4 or depleting CD36 can rescue effector functions of 
cytotoxic  CD8+ T cells, enhancing their ability to control 
tumor growth deficiency [191, 192].  CD8+ T cells can 
be categorized into various functional subsets, includ-
ing Tc1 cells that produce high amounts of IFNG and 
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Tc9 cells that produce IL9 (interleukin 9) at lower levels 
of IFNG. Unlike conventional cytotoxic  CD8+ Tc1 cells, 
 CD8+ Tc9 cells activate the IL9-STAT3-fatty acid oxi-
dation pathway in B16 tumor–bearing Thy1.2+ B6 mice 
[193] (Fig. 6B). This pathway provides protection against 
ROS-induced lipid peroxidation and ferroptosis in the 
tumor microenvironment [193]. Furthermore, Gpx4-defi-
cient Treg (T regulatory) cells are vulnerable to ferropto-
sis and exhibit elevated IL1B production, which, in turn, 
enhances T Th17 (helper cell 17) responses in B6 mice 
inoculated with B16.F10 melanoma cells [194] (Fig. 6C). 
This impairment compromises Treg-mediated immuno-
suppression within the tumor microenvironment, ulti-
mately restricting in vivo tumor growth [194].

DCs (dendritic cells) are another type of immune cell 
that contributes to antitumor immunity by activating 
cytotoxic T cells. Interestingly, the GPX4 inhibitor RSL3 

can impair the maturation and function of DCs in tumor 
suppression by activating PPARG/PPARγ (peroxisome 
oroliferator activated receptor gamma)-dependent fer-
roptosis in DC2.4 cell line [195] (Fig.  6D). Early-stage 
ferroptosis in the MCA205 mouse fibrosarcoma cell 
line treated by RSL3 for 1 hour exhibits immunogenic-
ity when exposed to activated DCs, in contrast to late-
stage ferroptosis induced by ML162 for 14 hours in the 
MCA205 mouse fibrosarcoma cell line [196, 197]. The 
potential mechanism responsible for these differences 
may involve a switch in the release of immunostimulatory 
danger/damage-associated molecular patterns (DAMPs) 
(e.g., ATP and reduced HMGB1 [high mobility group 
box  1]) to immune-suppressive DAMPs (e.g., oxidized 
HMGB1 or PGE2 [prostaglandin E2]) [198, 199]. PGE2 is 
an immunosuppressive lipid that hinders the anti-tumor 
activity of cDC1 (conventional type 1 DC), NK cells, and 

Fig. 5 Effects of cytokines produced by immune cells on ferroptosis in cancer cells. A IFNG production by  CD8+ T cells or natural killer cells can 
promote ferroptosis in cancer cells through STAT1-dependent downregulation of SLC7A11 or IRF1-dependent upregulation of ACSL4. B TGFB1 
production by macrophages can inhibit ferroptosis in cancer cells by enhancing HLF-dependent GSH synthesis through GGT1, ultimately leading 
to the activation of GPX4. C IL1B production by macrophages can inhibit ferroptotis in cancer cells through KAT2B-dependent acetylation. This 
acetylation enhances NNT’s affinity for  NADP+ and leads to increased production of NADPH, thus promoting the maintenance of Fe‐S clusters
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Fig. 6 Mechanisms of ferroptosis in immune cells and the effects of DAMP on ferroptosis-related tumor immunity. A‑F Mechanisms of ferroptosis 
in immune cells within the tumor microenvironment. G The impact of ferroptotic cancer cells on tumor immunity, which depends on the stage 
of cell death, DAMP release, and the infiltration of immune cells within the tumor microenvironment
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effector T cells, while also activating immunosuppressive 
cells, such as MDSCs (myeloid-derived suppressor cells) 
and Tregs, promoting immune escape.

NK cells represent yet another class of immune cells 
capable of targeting and eliminating cancer cells with-
out prior sensitization or antigen recognition. However, 
tumor-associated NK cells within the tumor microen-
vironment of ovarian cancer patients exhibit increased 
expression of proteins related to lipid peroxidation, oxi-
dative damage, ferroptosis, as well as senescence and 
autophagy pathways [200]. These alterations impair the 
cytotoxic activity of NK cells against ovarian cancer 
cell OVCAR8 in vitro [200]. L-Kynurenine is a naturally 
occurring molecule and a critical intermediate in the 
tryptophan metabolic pathway. In the context of cancer 
and immunology, L-kynurenine has garnered attention 
for its potential immunosuppressive effects. A recent 
study revealed that L-kynurenine can contribute to 
immune tolerance by inducing lipid peroxidation and fer-
roptosis in NK cells, ultimately promoting gastric cancer 
growth in in vivo experiments [201] (Fig. 6E). Thus, the 
modulation of the tryptophan metabolic pathway con-
tributes to the development of potential immunothera-
peutic strategies by influencing NK cell death through 
ferroptosis.

Furthermore, pathologically activated neutrophils, 
known as PMN-MDSCs (myeloid-derived suppressor 

cells), act as major negative regulators of antitumor 
immunity. While PMN-MDSCs in the tumor microenvi-
ronment undergo spontaneous ferroptosis, this process 
leads to the release of oxygenated lipids (e.g., oxidized 
AA-PEox) or PGE2, limiting the activity of both human 
and mouse T cells [202] (Fig. 6F). Inhibition of ferropto-
sis using liproxstatin-1 results in PMNs’ depletion and 
enhances the effectiveness of anti-PDCD1/PD-1 antibody 
treatment on pancreatic cancer cell growth in immuno-
competent mice [202]. These observations highlight the 
significant impact of both the particular cell undergoing 
ferroptosis and the release of DAMP within the tumor 
microenvironment on the functionality of cytotoxic 
 CD8+ T cells (Fig. 6G).

To address this unintended consequence, it is crucial 
to develop strategies that can specifically target tumor 
cells while preserving the functionality of immune cells 
and their ability to surveil and combat cancer. In a recent 
study, a screening of a library containing more than 4000 
small-molecule compounds identified N6F11 as the first 
cell-specific ferroptosis activator [36]. N6F11 selectively 
induces ferroptosis in cancer cells by targeting TRIM25 
(tripartite motif containing 25)-mediated GPX4 degra-
dation in pancreatic cells, both in vitro and in various 
mouse models, such as xenografts, orthotopic models, 
and transgenic models [36] (Fig.  7). TRIM25 is primar-
ily expressed in cancer cells, rather than in immune cells 

Fig. 7 Strategy for GPX4 Inhibition. A Traditional GPX4 inhibitors, such as RSL3, lead to the loss of GPX4 activity. As GPX4 is widely expressed 
in both immune and cancer cells, they induce non-selective ferroptosis. B N6F11 can bind to TRIM25, subsequently triggering TRIM25-dependent 
GPX4 degradation to induce ferroptosis. Given that TRIM25 is mainly expressed in cancer cells, the use of N6F11 does not induce ferroptosis 
in non-cancer cells
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(DC, T, NK, and neutrophil cells) [36]. This finding may 
represent a safe and effective approach to enhance fer-
roptosis-driven antitumor immunity. Additional research 
is needed to determine whether there are other TRIM25-
dependent protein substrates involved in the selective 
induction of ferroptosis in cancer cells.

Bone marrow impairment
Anticancer agents can disrupt the bone marrow’s capac-
ity to generate blood cells, potentially causing conditions, 
such as anemia, thrombocytopenia (low platelet count), 
or leukopenia (low white blood cell count). Inducing fer-
roptosis can lead to the death of stem cells and damage to 
the bone marrow, which may impact hematopoiesis and 
result in bone marrow suppression.

Recent research has shed light on the mechanisms 
involved. HSCs (hematopoietic stem cells) possess unique 
physiological adaptations that sustain lifelong blood cell 
production, including finely regulated protein synthesis 
rates. Disrupting MYSM1 (Myb like, SWIRM and MPN 
domains 1), a histone deubiquitinase, can compromise 
human HSC function, mimicking the bone marrow fail-
ure seen in patients, by triggering lipid peroxidation and 
ferroptosis [203]. Additionally, healthy HSCs are sus-
ceptible to ferroptosis induced by compounds such as 
erastin, FIN56, FINO2, and RSL3, primarily due to their 
low protein synthesis levels [203]. Therefore, inhibiting 
ferroptosis represents a potential strategy to augment 
HSC numbers, supporting the production of all blood 
cell types, including red blood cells (erythrocytes), white 
blood cells (leukocytes), and platelets (thrombocytes).

Furthermore, the activation of FANCD2 (fanconi 
anemia complementation group D2), a nuclear protein 
involved in DNA damage repair, plays a protective role 
against bone marrow injury caused by ferroptosis [204]. 
These discoveries suggest the existence of a nuclear pro-
tection pathway designed to alleviate ferroptotic dam-
age in bone marrow dysfunction. Activators of FANCD2 
have the potential to enhance its capacity to repair dam-
aged DNA and shield cells from the detrimental conse-
quences of DNA damage.

In light of these findings, monitoring the bone marrow 
and blood counts during ferroptosis-mediated therapy 
is crucial for assessing the impact of treatment on the 
hematological system.

Liver and kidney damage
Many cancer treatments, including chemotherapy and 
targeted therapies, go through hepatic metabolism and 
renal elimination processes, which can increase the expo-
sure of these organs to potentially harmful substances. 
As a result, the liver and kidneys may be at risk of dam-
age. Similar to some other anticancer agents, specific 

ferroptosis activators have the potential to induce hepa-
totoxicity (liver damage) or nephrotoxicity (kidney 
damage).

Research has shown that when Gpx4 is conditionally 
knocked out in the kidney or liver, it can lead to spon-
taneous ferroptotic damage [58, 205]. Fortunately, this 
damage can be reversed through treatment with vitamin 
E or liproxstatin-1. Therefore, there is a possibility that 
inhibition of GPX4, which promote ferroptosis, may have 
toxicity effects on the liver and kidneys [206].

To proactively manage this risk and ensure patient 
safety, it is crucial to closely monitor the function of 
the liver and kidneys throughout ferroptosis treatment. 
This can be achieved by conducting regular blood tests, 
including liver function tests and kidney function tests, 
such as measuring serum creatinine and blood urea 
nitrogen levels. These monitoring measures are indis-
pensable for the early detection of any signs of damage or 
dysfunction in these vital organs.

Cachexia
Cachexia is a complex metabolic syndrome often asso-
ciated with chronic illnesses, such as cancer. It is char-
acterized by symptoms, such as weight loss and muscle 
wasting [207]. Ferroptosis-based treatments can contrib-
ute to the development of cachexia.

In a study involving mice fed a high-fat, low-carbohy-
drate ketogenic diet, the induction of ferroptosis effec-
tively suppressed tumor growth [208]. However, it also 
resulted in systemic effects, including increased lipid 
peroxidation and decreased levels of NADPH, leading to 
early-onset cachexia and reduced survival rates [208]. To 
address these systemic side effects, researchers employed 
a pulsed administration of glucocorticoids. This approach 
demonstrated the potential for improving therapeu-
tic outcomes by gaining a deeper understanding of the 
mechanisms behind these side effects.

Furthermore, GDF15 (growth differentiation factor 15), 
a member of the TGFB superfamily produced by stressed 
cells, plays a role in reducing food intake by binding to 
its receptor GFRAL (GDNF family receptor alpha like) in 
the area postrema [208]. While GDF15 levels are elevated 
in cachexia resulting from ferroptosis, specific laboratory 
markers to distinguish it from other forms of cachexia 
have yet to be identified.

Secondary tumorigenesis
Secondary tumorigenesis refers to the occurrence of 
new, unrelated tumors in individuals who have previ-
ously undergone cancer treatment. While cancer thera-
pies are designed to target and eliminate cancer cells, 
they can inadvertently affect healthy cells and tissues, 
potentially leading to the development of new cancers. 
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Although direct evidence is currently limited, several 
transgenic animal studies have suggested a potential 
role for ferroptotic damage in initiating tumorigenesis.

For instance, experiments involving high-iron diets or 
the depletion of Gpx4, which induces ferroptosis, pro-
mote pancreatitis and pancreatic tumorigenesis in mice 
[209, 210]. Conversely, inhibiting ferroptosis through 
the administration of liproxstatin-1 reduce spontane-
ous pancreatic cancer formation in a mouse model 
driven by KrasG12D mutations, suggesting that ferrop-
tosis may play a role in pancreatic cancer development 
[209, 210]. This ferroptosis-induced pancreatic cancer 
development could be linked to macrophage infiltration 
and polarization, mediated by the release of 8-OHG 
(8-hydroxy-2′-deoxyguanosine) resulting from ferrop-
totic damage and subsequent activation of the STING1-
dependent DNA sensor pathway [209, 210]. Moreover, 
the oncogenic KRAS protein can be released by ferrop-
totic pancreatic cells, promoting pro-tumor M2 mac-
rophage polarization through uptake by the AGER/
RAGE (advanced glycosylation end-product specific 
receptor) [211]. In addition, the process of mitophagy-
mediated degradation of mitochondrial iron importers 
(SLC25A37 and SLC25A28) results in elevated mito-
chondrial iron accumulation [212]. This, in turn, trig-
gers the HIF1A (hypoxia inducible factor 1 subunit 
alpha)-dependent Warburg effect and AIM2 (absent 
in melanoma 2)-dependent inflammasome activation, 
contributing to KrasG12D-induced pancreatic tumo-
rigenesis [212]. Thus, mitochondrial iron dysfunction 
can contribute to tumorigenesis through hypoxia and 
inflammasome signals. Some studies suggest that M1 
macrophages exhibit greater resistance to ferroptosis 
compared to the M2 phenotype, despite similar expres-
sion levels of GPX4, ACSL4, and LPCAT3 between M1 
and M2 macrophages [137]. As a result, the increased 
presence of M1 macrophages not only contributes to 
immunotherapy, but also sustains a proinflammatory 
tumor microenvironment that supports tumor growth 
at early stage [137].

Recent research has also emphasized ferroptosis as a 
significant form of hepatocyte death. This process can 
lead to inflammation, which in turn promotes the devel-
opment of HCC (hepatocellular carcinoma) and com-
pensatory cell proliferation. The activation of ATF4 has a 
protective effect against the progression from steatohep-
atitis to HCC [213]. ATF4 accomplishes this by upregu-
lating SLC7A11, a factor that inhibits stress-related 
ferroptosis, thereby slowing down the onset of HCC 
[213]. Furthermore, experiments involving the condi-
tional knockout of Gpx4 in the liver have shown an accel-
eration of diethylnitrosamine-induced liver cancer. This 
acceleration is attributed to the release of HMGB1, which 

in turn recruits MDSC infiltration and is associated with 
the upregulation of CD274/PD-L1 [214].

These findings suggest that secondary tumors may arise 
as a potential side effect of pharmacological ferroptosis 
induction, underscoring the need for long-term experi-
ments to assess this possibility in suitable animal models.

Conclusion and perspective
Ferroptosis, characterized by iron-dependent lipid per-
oxidation, presents a unique avenue for targeting cancer 
cells with specific vulnerabilities. While recent advance-
ments have underscored its therapeutic potential in 
oncology, the intricate mechanisms of ferroptosis display 
variability and plasticity [215, 216]. However, like a coin 
with two sides, we must carefully weigh the reported side 
effects and potential risks, as discussed in this review, 
against its benefits during ferroptosis therapy.

Several future directions necessitate interdisciplinary 
collaboration to deepen our understanding of ferroptosis 
mechanisms and its application in tumor therapy:

Selective induction
Effective targeted therapy should precisely eradicate can-
cer cells while safeguarding normal tissues and main-
taining immune surveillance. Many existing ferroptosis 
activators lack specificity for particular cells or tissues. 
While N6F11 has shown some cell-specific properties, it 
requires higher concentrations to achieve effectiveness 
compared to well-known non-selective ferroptosis acti-
vators [36]. Therefore, it is imperative to make improve-
ments in its structure, metabolic stability, and activity.

Molecular mechanism
The specific molecular factors that set ferroptosis apart 
from other forms of oxidative cell death, such as mito-
chondrial apoptosis, are still not well understood [21]. 
Additionally, it is crucial to investigate whether vary-
ing levels of oxidative stress trigger distinct types of cell 
death. A deeper exploration is required to comprehend 
the functioning of different antioxidant systems, espe-
cially when critical pathways like GPX4 fail. The ongoing 
challenge lies in addressing acquired resistance mecha-
nisms in ferroptosis. Furthermore, the transition between 
reduced and oxidized forms of non-enzymatic antioxi-
dants also plays a role in determining the outcome of fer-
roptotic cell death [217, 218].

Biomarker identification
Monitoring ferroptosis responses necessitates diverse 
biomarkers to assess iron and lipid metabolism as well as 
associated immune responses. Several biomarkers, such 
as TFRC [219], ACSL4 [87], and PTGS2 (prostaglandin-
endoperoxide synthase 2) [9], hyperoxidized PRDX3 
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[220], have been measured at the mRNA or protein levels 
to monitor ferroptosis responses. Blood-based biomark-
ers, particularly danger signals, such as HMGB1 [221], 
ATP [222], SQSTM1 [223], and DCN (decorin) [224], 
hold translational potential for clinical use. LC-MS-based 
redox lipidomics is invaluable for characterizing fer-
roptotic biomarkers in vivo. An outstanding question is 
whether an easily applicable and cost-effective biomarker 
or method can be developed for clinical trials.

Benefits and side effects
Despite being designed for specific elimination of drug-
resistant cancer cells, ferroptosis therapies can exhibit 
side effects of varying unpredictability and severity, 
dependent on tumor types and treatments. Vigilant 
monitoring and management of these side effects are 
critical for therapy safety and continuity. In addition to 
developing selectively inductive drugs, the development 
of targeted drug delivery systems, such as nanoparticles, 
is essential for enhancing therapeutic effectiveness and 
reducing systemic side effects.

In summary, the assessment of the advantages and lim-
itations of ferroptosis therapies in cancer is a challeng-
ing undertaking, owing to the intricate complexities of 
cancer signaling, the interplay among various cell death 
pathways, and the dynamic stress responses associated 
with these treatments. Ongoing comprehensive research, 
advanced experimental designs, and rigorous scientific 
methodologies are enhancing our comprehension of 
these intricacies. Nevertheless, these factors remain piv-
otal in informing decisions regarding cancer treatment 
strategies.
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