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SLUG promotes prostate cancer cell migration
and invasion via CXCR4/CXCL12 axis
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Abstract

cancers remain elusive.

invasion assay, respectively.

Background: SLUG is a zinc-finger transcription factor of the Snail/Slug zinc-finger family that plays a role in
migration and invasion of tumor cells. Mechanisms by which SLUG promotes migration and invasion in prostate

Methods: Expression level of CXCR4 and CXCL12 was examined by Western blot, RT-PCR, and gPCR analyses.
Forced expression of SLUG was mediated by retroviruses, and SLUG and CXCL12 was downregulated by shRNAs-
expressing lentiviruses. Migration and invasion of prostate cancer were measured by scratch-wound assay and

Research: We demonstrated that forced expression of SLUG elevated CXCR4 and CXCL12 expression in human
prostate cancer cell lines PC3, DU145, 22RV1, and LNCaP; conversely, reduced expression of SLUG by shRNA
downregulated CXCR4 and CXCL12 expression at RNA and protein levels in prostate cancer cells. Furthermore,
ectopic expression of SLUG increased MMP9 expression and activity in PC3, 22RV1, and DU-145 cells, and SLUG
knockdown by shRNA downregulated MMP9 expression. We showed that CXCL12 is required for SLUG-mediated
MMP9 expression in prostate cancer cells. Moreover, we found that migration and invasion of prostate cancer cells
was increased by ectopic expression of SLUG and decreased by SLUG knockdown. Notably, knockdown of CXCL12
by shRNA impaired SLUG-mediated migration and invasion in prostate cancer cells. Lastly, our data suggest that
CXCL12 and SLUG regulate migration and invasion of prostate cancer cells independent of cell growth.

Conclusion: We provide the first compelling evidence that upregulation of autocrine CXCL12 is a major
mechanism underlying SLUG-mediated migration and invasion of prostate cancer cells. Our findings suggest that
CXCL12 is a therapeutic target for prostate cancer metastasis.

Introduction
Prostate cancer is the second leading type of cancer in
men in United States. In 2010, new cases of prostate can-
cer were estimated at 217,730, resulting in 32,050 deaths
in [1]. The major cause of death is bone metastasis.
Metastasis is a very complicated process during which
cancer cells go through a series of steps: (i) cell dissocia-
tion from the primary tumor environment, (ii) cell adhe-
sion to the endothelial surface at the target, (iii) cell
invasion through the endothelial surface, (iv) cell invasion
into new environment, and (v) cell proliferation.

In our previous study, we found that SLUG, a zinc-fin-
ger transcription factor, was elevated in mouse prostate
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tumors and human prostate cancer cell lines [2]. SLUG
belongs to the Slug/Snail superfamily [3,4], and it regu-
lates epithelial-mesenchymal transition (EMT) in a vari-
ety of cancers [5]. EMT is a dynamic process that
promotes cell motility with decreased adhesive ability,
and thus is thought to be a major starting point for can-
cer metastasis [6]. SLUG plays a major role in EMT dur-
ing embryonic development and metastasis of breast
cancers, through partial inhibition of E-cadherin [7,8,3].
In the tumor microenvironment, a complex network
of chemokines and receptors affects metastasis. The
CXCL12/CXCR4 pathway was originally discovered in
the immune system to play an important role in cancer
cell metastasis [9-12]. Mice deficient of either CXCR4
or CXCL12 had abnormal development in the central
nervous system [13]. CXCL12 belongs to chemokine
family of small peptides with 8 to 12 kDA size that
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control cell activation, differentiation, and trafficking
[14,15]. CXCL12 is expressed by several organs: lung,
liver, skeletal muscle, brain, heart, kidney, skin, and
bone marrow; its secretion is related to tissue damage
[16]. The CXCR4/CXCL12 axis can coordinate metasta-
sis of a variety of cancers, such as bladder [17], breast
[18], head and neck [19], ovarian [20], renal cell [21],
and prostate [22,23]. Interestingly, SLUG is required for
transcriptional and functional regulation of CXCL12
during bone tissue remodeling [24].

Although the role of SLUG in cancer metastasis has
been documented in other cancers besides prostate can-
cer, its molecular mechanism remains elusive. In this
study, we examined the regulation of the Slug-CXC4R/
CXCL12-metastasis triangle in an in vitro cell culture
model of human prostate cancer cells. We used gain-
and loss-of-function approaches to study (i) how SLUG
regulates the CXCR4/CXCL12 axis, and (ii) the func-
tional role of CXCL12 in SLUG-induced migration and
invasion of human prostate cancer cell lines. We found
that forced expression of SLUG significantly upregulated
both CXCL12 and CXCR4 expression and their down-
stream target MMP9. Knockdown of SLUG decreased
CXCL12 and CXCR4 expression in prostate cancer cells.
Furthermore, we showed that downregulation of
CXCL12/CXCR4 axis via CXCL12 knockdown impaired
SLUG-mediated MMP9 expression, migration and inva-
sion. Lastly, we provide evidence that CXCL12 and
SLUG regulate migration and invasion of prostate can-
cer cells independent of cell growth. Our findings sug-
gest that prostate cancer cells can gain invasive
characteristics through upregulation of autocrine
CXCL12.

Results

SLUG upregulated CXCL12 expression in prostate cancer
cell lines

CXCL12 expression was significantly higher in human
prostate cancer tissue than hyperplastic prostate tissues
[25], suggesting that CXCL12 has an autocrine regulatory
role via its receptor CXCR4 in the regulation of prostate
cancer cell migration, invasion, and metastasis [26]. Slug is
a zinc-finger transcription factor and its overexpression
promotes migration, invasion, and metastasis of various
cancer cells [4]. To determine whether CXCL12/CXCR4
axis plays a role in SLUG-mediated migration and invasion
of prostate cancer cells in vitro, we first tested if forced
expression of SLUG increases CXCL12 expression. We
infected PC3 cells and DU145 cells with retroviruses
expressing SLUG (pMig-Slug) or control retroviruses
(pMig). By qPCR and RT-PCR analysis, we found that
CXCL12 transcription level was 7-fold higher in PC3 cell
line overexpressing SLUG versus vector (Figure 1A). In
addition, we analyzed CXCL12 expression in established
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DU145 stable cell lines overexpressing SLUG or vector
(Figure 1B), and found that its expression was significantly
upregulated by SLUG. Using ELISA, we also measured the
protein level of CXCL12 in culture medium of PC3 stable
cell lines. Our data showed that the CXCL12 protein level
was 5-fold higher in PC3 cells stably expressing pMig-Slug
versus the pMig vector control (Figure 1C).

Knockdown of SLUG reduced CXCL12 expression in
prostate cancer cells
In addition to gain-of-function studies, we used a loss-
of-function approach to assess the effects of Slug knock-
down on CXCL12 expression. We established three
stable cell lines in PC3 and DU145 by infecting lenti-
viruses-expressing control shRNA (Ctr) or small hairpin
RNA (shRNA) targeting the human SLUG gene (shRNA
Sh1, Sh2), followed by selection with puromycin. As we
expected, Slug RNA level expression was significantly
reduced by two independent SLUG shRNAs (Sh1, Sh2)
in PC3 (Figure 2A) and DU145 (Figure 2B), as com-
pared with control shRNA (non-target scramble
shRNA). Consistent with Figure 1, our data showed that
CXCL12 expression was dramatically downregulated in
PC3 and DU145 cell lines harboring SLUG shRNAs ver-
sus those carrying control shRNA (Figure 2A, B). More-
over, we measured CXCL12 protein expression in
culture medium of these stable cell lines and found that
CXCL12 protein concentration was significantly lower
in PC3 cells expressing SLUG-specific shRNA versus
control shRNA (Figure 2C).

We used gain- and loss-of-function approaches to
demonstrate that SLUG is a positive regulator of
CXCL12 in prostate cancer cells.

CXCR4 is a target of SLUG in prostate cancer cell lines

CXCR-4 is an alpha-chemokine receptor specific for
CXCL12 (also called stromal-derived-factor-1 or SDF-1),
a molecule endowed with potent chemotactic activity
for lymphocytes and tumor cells. It has been reported
that CXCR4 is expressed in prostate cancer cells but not
in immortalized prostate epithelial cells [27,28]. In our
previous study, we found that SLUG protein expression
is elevated in human prostate cancer cell lines [2]. To
investigate whether SLUG can also regulate CXCR4
expression in prostate cancer cell lines, we infected four
prostate cancer cell lines with retrovirus expressing
SLUG (pMig-Slug) or control retroviruses (pMig). We
examined CXCR4 expression of both at the transcrip-
tional level and protein level by RT-PCR and qPCR and
Western Blot analysis, respectively. Our data showed
that forced expression of SLUG significantly increased
CXCR4 expression at the transcription level in PC3
(Figure 3A), DU145 (Figure 3B), 22RV1 (Figure 3C), and
LNCaP cell lines (Figure 3C), respectively. In addition,
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Figure 1 Analysis of CXCL12 expression in prostate cancer cell lines stably overexpressing SLUG. (A, B) Analysis of RNA transcripts of
CXCL12 by gPCR (left panel) and RT-PCR (right panel). RNA was extracted from PC3 (A) or DU-145 (B) prostate cancer cell lines infected with
pMIGR1-Slug or pMIGR1 (vector) retroviruses, and used to synthesize cDNA. Transcript level of CXCL12 and SLUG was analyzed by gPCR (left
panel) and RT-PCR (right panel). GAPDH was included as a loading control. CXCL12 was significantly upregulated by SLUG overexpression in PC3
(A) and DU145 (B). (C) ELISA analysis of CXC12 protein in PC3 cell line. Conditioned cell culture medium was collected from the cell culture
environment of PC3 cells infected with pMig (vector) or pMig-Slug retroviruses and centrifuged to remove cell lysates, and then used for ELISA.
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we examined the protein level of CXCR4 in these stable
cell lines. Consistent with the qPCR and RT-PCR data
(Figure 3A-D), Western blot analysis confirmed that
forced expression of SLUG increased CXCR4 protein
expression in these four prostate cancer cell lines (Fig-
ure 3E). In addition, flow cytometric analysis indicated
that CXCR4 expression is higher on surface of LNCaP
cells stably carrying pMig-Slug versus pMig vector con-
trol (Additional file 1, Figure S1).

Next, we asked if endogenous SLUG is required for
CXCR4 expression in prostate cancer cell lines. To do
so, we confirmed knockdown of SLUG by two indepen-
dent sShRNA (Sh1, Sh2) in both the PC3 and DU145 cell
lines (Figure 4A, B). We examined CXCR4 expression in
both of these stable cell lines. Our data revealed that
SLUG knockdown significantly downregulates CXCR4
expression at the transcriptional level in both PC3
(Figure 4A) and DU145 (Figure 4B) cell lines, by qPCR
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Figure 2 Examination of CXCL12 RNA transcript levels and protein expression of CXCL12 in prostate cancer cell lines in which SLUG
was knocked down by shRNA. (A, B) RNA transcript analysis of CXCL12. RNA was extracted from PC3 and DU-145 prostate cancer cell lines
stably expressing Slug shRNA (Sh1 and Sh2) or control shRNA (ShRNA Ctr), and subjected to cDNA synthesis. RNA transcript level of CXCL12 and
SLUG in these cell lines was analyzed by gPCR (left panel) and RT-PCR (right panel). CXCL12 expression was significantly downregulated in PC3
and DU145 cells expressing Slug shRNAs at RNA transcript level. (C) ELISA analysis of CXC12 protein level in PC3 cells expressing Slug shRNAs.
Conditioned cell culture medium was collected from cell culture environments of PC3 cells infected with lentiviruses expressing control ShRNA
(ShRNA Ctr) and Slug-specific sShRNA (Slug Sh1 and Slug Sh2), and then analyzed by ELISA. CXCL12 protein level was great significantly

downregulated in PC3 cells expressing Slug shRNA.
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Figure 3 Analysis of CXCR4 expression in prostate cancer cell lines stably overexpressing SLUG. (A-D) gPCR and RT-PCR analysis of RNA
transcripts of CXCR4 expression. RNA was extracted from PC3 (A), DU145 (B), 22RV1 (C), and LNCaP (D) cell lines stably carrying pMIGR1-Slug or
vector control (pMig), and subjected to cDNA synthesis. The transcript level of CXCR4 was analyzed by gPCR (left panel) and RT-PCR (right
panel). GAPDH was included as a control. CXCR4 was highly expressed in PC3, DU145, 22RV1, and LNCaP cell lines overexpressing SLUG. (E)
Western Blot analysis of CXCR4 expression in PC3, DU145, 22RV1, and LNCaP cell lines stably carrying pMig-Slug or pMig (vector). GAPDH was
included as a loading control.
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Figure 4 Examination of CXCR4 expression in prostate cancer cell lines expressing SLUG shRNAs. (A, B) Analysis of CXCR4 RNA transcripts
by gPCR (left panel) and RT-PCR (right panel). RNA was extracted from PC3 and DU-145 prostate cancer cell lines stably expressing Slug shRNA
(Sh1, Sh2) or shRNA control (ShRNA Ctr). All RNA was extracted from these cells four days after infection, and subjected to cDNA synthesis. The

CXCR4 and SLUG transcripts were analyzed by qPCR or RT-PCR, or both. GAPDH was included as a control. CXCR4 was significantly
downregulated in human prostate cancer cell lines harboring Slug-specific shRNAs. (C) Western Blot analysis of CXCR4 protein level in PC3 (left
panel) and DU-145 (right panel) lines stably carrying Slug shRNA or control. All protein was extracted and analyzed by Western blot analysis

using anti-Slug, anti-CXCR4, anti-gapdh antibodies (loading control).
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(Figure 4A, B, left panels) and RT-PCR (Figure 4A, B,
right panels) analyses. Furthermore, we analyzed protein
expression of CXCR4 in these stable cell lines and
found that CXCR4 protein was significantly reduced in
PC3 (Figure 4C, left panel) and DU145 (Figure 4C, right
panel) when SLUG was knocked down by two indepen-
dent shRNAs. These data, together with Figures 1, 2
and 3, demonstrated that SLUG upregulates CXCR4 and
CXCL12 gene expression in human prostate cancer
cells.

SLUG positively regulates CXCR4/CXCL12 downstream
target MMP9 in prostate cancer cells

Our data suggest that SLUG could positively regulate
the CXCL12/CXCR4 signaling in prostate cancer cells,
leading to cancer migration and invasion. MMP9
belongs to the matrix metalloproteinase family [29] and
is a target of the CXCL12/CXCR4 signaling in cancer
cells, including prostate cancer [30]. Therefore, we
decided to determine whether or not MMP9 is also
positively regulated by SLUG in prostate cancer cells.
To address this question, we first examined MMP9 gene
expression in prostate cancer cells that stably overex-
press SLUG gene by qPCR (Figure 5A, B, left panels)
and RT-PCR (Figure 5A, B, right panels). Our data
showed that MMP9 expression was significantly higher
in PC3 (Figure 5A) and DU145 (Figure 5B) stable cell
lines overexpressing SLUG than in cells carrying pMig
vector only. Next, we examined MMP9 activity in
SLUG-overexpressing prostate cancer cell lines by gela-
tin-zymography. In agreement with Figure 5A, B,
MMP9 activity was significantly elevated by SLUG over-
expression in PC3 (Figure 5C) and DU145 (Figure 5D)
cell lines. Consistently, when SLUG was knocked down
by two independent specific sShRNAs in PC3 (Figure 6A)
and DU145 (Figure 6B), MMP9 expression was dramati-
cally decreased in these cells. Together, our findings
indicate that Slug positively regulates MMP9 expression,
possibly via CXCR4/CXCL12 pathway in prostate cancer
cells.

CXCL12 is required for SLUG-mediated MMP9 expression
and migration of prostate cancer cells

Although our data thus far indicate that both CXCL12
and CXCR4 are positively regulated by SLUG, it remains
to be determined if the CXCL12/CXCR4 is a mediator of
SLUG-induced MMP9 expression. To address this ques-
tion, we infected PC3 cell lines overexpressing SLUG or
vector with control shRNA or CXCL12 shRNA (Shl,
Sh2)-expressing lentiviruses, and then confirmed effi-
ciency of these shRNAs to knockdown CXCL12 by RT-
PCR (Figure 6C). Next, we examined expression of
MMP9 in these PC3 stable cell lines by qPCR (Figure
7A) and RT-PCR (Additional file 1, Figure S2). Our data

Page 7 of 15

showed that MMP9 expression is significantly higher in
PC3 cells co-expressing SLUG and control shRNA, but is
not evident in PC3 cells co-expressing SLUG and
CXCL12-specific shRNAs (Sh1l and Sh2). These data
indicated that CXCL12 is required for SLUG-mediated
MMP9 expression in prostate cancer cells.

Furthermore, we performed a scratch-wound assay in
the confluent monolayer of cultured stable cell lines.
Consistent with published reports [31], our data showed
that overexpression of SLUG exhibited a higher scratch
closure rate than the controls in metastatic PC-3 cells
(Figure 7B) and in non-metastatic 22RV1 cell lines
(Additional file 1, Figure S3). Interestingly, SLUG-
expressing stable cell lines harboring CXCL12 shRNA
showed an impaired scratch closure, compared with the
control stable cell line expressing SLUG and control
shRNA (Figure 7C). These data indicate that CXCL12 is
required for SLUG-mediated MMP9 expression and
migration of prostate cancer cells.

CXCL12 is essential for SLUG-mediated invasion of
prostate cancer cells

Metastasis is characterized by the ability of cancer cells to
invade adjacent tissue, and is regulated by multiple sig-
naling pathways, including the CXCL12/CXCR4 axis.
Because our data show that SLUG positively regulated
both CXCL12 and CXCR4; therefore, we assessed the
role of CXCL12 in SLUG-mediated prostate cancer inva-
sion. First, we examined the ability of SLUG to promote
prostate cancer invasion by the Oris™ Cell Invasion
Assay, which can quantity and image cells invading
through an extracellular matrix (ECM). Figure 8A
demonstrates overexpression of SLUG increased invasion
of PC3 cells. Second, we infected SLUG-expressing PC3
cells with lentiviruses harboring CXCL12 shRNA (Sh1,
Sh2) or control shRNA (Ctr). As shown in Figure 8B and
8C, PC3 cell line stably expressing SLUG and shRNA Ctr
(Figure 8B, left panel) had a higher invasive ability than
the other two stable cell lines co-expressing SLUG and
CXCL12 shRNAs (Figure 8B, middle and right panels).
Thus, our data indicated that CXCL12 is critical for
SLUG-mediated invasion of prostate cancer cells.

CXCL12 and SLUG regulate migration and invasion of
prostate cancer cells independent of cell growth

Because CXCL12 shRNAs relieve SLUG-mediated
migration and invasion of prostate cancer cells (Figure
7, 8), we asked whether or not cell proliferation plays a
role in these processes. First, we assessed if knockdown
of CXCL12 by shRNAs affects cell growth of PC3 cell
lines. To do so, we infected PC3 cells with retroviruses
expressing sShRNA Ctr and two CXCL12 shRNAs (Shl
and Sh2), respectively. We confirmed efficiency of
CXCL12 knockdown by RT-PCR after drug selection
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Figure 5 Overexpression of Slug positively regulates MMP9 expression in prostate cancer cell lines. (A, B) Analysis of MMP9 RNA
transcripts in prostate cancer cell lines overexpressing SLUG by gPCR (left panel) and RT-PCR (right panel). RNA was extracted from PC3 and DU-
145 cell lines stably carrying pMig-Slug or pMig (vector) and then subjected to cDNA synthesis. Transcript level of MMP9 was analyzed by gPCR
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Figure 6 MMP9 and CXCL12 expression in prostate cancer cells expressing shRNAs targeting SLUG or CXCL12 mRNA. (A, B) gPCR (left
panel) and RT-PCR (right panel) analysis of MIMP9 RNA transcripts in prostate cancer cell lines harboring SLUG shRNAs. RNA was extracted from
PC3 and DU145 cell lines stably expressing SLUG shRNA (Sh1, Sh2) or control shRNA (Ctr), and subjected to cDNA synthesis. Transcript level of
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downregulated in PC3 and DU145 cell lines carrying Slug shRNAs. (C) Identification of CXCL12-specific shRNAs. PC3-pMig and PC3-pMig-Slug
stable cells lines were infected with lentiviruses expressing control shRNA (sh Ctr) and CXCL12 shRNAs (Sh1, Sh2), and followed by puromycin
selection. Total RNA was extracted from these stable cell lines and CXCL12 expression was analyzed by RT-PCR.
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Figure 7 Knockdown of CXCL12 impaired SLUG-mediated MMP9 expression and prostate cancer cell migration. (A) gPCR analysis of
MMP9 expression in PC3 cells overexpressing SLUG and CXCL12 shRNAs. PC3 stable cell lines overexpressing SLUG (or vector) and control
ShRNA (shCtr) or CXCL12 shRNA (CXCL12sh1 and CXCL12sh2) were proceeded to RNA extraction and cDNA synthesis. MMP9 transcript in these
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were seeded in 12-well plates (15 x 10" cells per well). After cells formed a confluent monolayer, scratches were performed using a 100 l tip.
Twenty-four hours after scratching, the cells were examined for closure of scratch under the microscope and images were captured.
Quantification of cell migration was done by measuring the distance between 4 random points within the wound edge in three replicate
experiments. (C) Cell migration assay in PC3 cells stably overexpressing SLUG and CXCL12 shRNAs. PC3 stable cell lines overexpressing SLUG
were infected with control shRNA or CXCL12 shRNA lentiviruses, as indicated. Closure of scratch was examined under the microscope 24 hr after
scratching. Quantification of cell migration was done by measuring the distance between 4 random points within the wound edge. Slug-
mediated cell migration was diminished in PC3 cells expressing CXCL12 shRNA.
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Figure 8 CXCL12 is required for Slug-mediated prostate cancer cell invasion. (A) Invasion assay of PC3 cells expressing pMig-Slug, or pMig
(vector). Briefly, cells were seeded at 6 x 10" cells per well into 96-well plate from the Oris™ Cell Invasion Assay Kit, and incubated for ~16 hr at
37°C. Collagen | overlay was added to create a 3-D ECM environment for invasion. Cells were allowed to invade for 48 hr, and then stained with
DAPI before images were captured (left panel). Total number of invaded cells were manually accounted (right panel). (B, C) Invasion assay of PC3
cells overexpressing SLUG and CXCL12 shRNAs. PC3 cell line overexpressing SLUG (pMig-Slug) and control shRNA (Ctr) or CXCL12 shRNA (Sh1, Sh2)
were generated as shown in Figure 6C, and their invasion ability was examined as in (A), based on relative numbers of invaded cells (C).
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(Figure 6C), and then carefully monitored growth of
these PC3 stable cell lines by measuring cell numbers of
viable cells at each time point. Our data showed that
PC3 cell lines expressing shRNA Ctr or two CXCL12
shRNAs (Sh1 and Sh2) had a similar cell proliferation
rate (Additional file 1, Figure S4A).

Next, we examined the effects of SLUG overexpres-
sion and CXCL12 knowdown on cell growth of PC3
cells in cell culture. As shown in Figure S4B (Additional
file 1), the PC3 cell lines expressing SLUG showed a
lower proliferation rate than PC3 cell lines with vector,
regardless of CXCL12 knockdown. Although CXCL12
shRNAs had no effect on PC3 cell growth (Additional
file 1, Figure S4A), CXCL12 knockdown further inhib-
ited growth of PC3 cells overexpressing SLUG (Addi-
tional file 1, Figure S4B). Therefore, it is unlikely that
CXCL12 knockdown impaired SLUG-mediated migra-
tion and invasion of prostate cancer cells by promoting
cell growth. Our data suggest that migration and inva-
sion of prostate cancer cells are independent of cell
growth.

Discussion

Metastasis is the spread of a disease from one organ or
tissue to another non-adjacent organ or tissue; and thus,
it is regulated by numerous signaling pathways in both
the cancer cells and microenvironment. CXCR4/
CXCL12 axis plays role in cancer cell metastasis and
proliferation; the importance of the CXC4/CXCL12 axis
may differ in different types of cancer cells, due to their
discrete expression. For example, CXCR4 expression is
lower in gastrointestinal tumors than breast cancer [32].
Overexpression of CXCR4 in prostate cancer cells accel-
erated prostate tumor metastasis, prostate tumor vascu-
larization, and tumor growth in vivo [33]. CXCL12
stimulates chemotaxis of metastatic prostate cancer cells
expressing a high level of CXCR4 and accelerates their
migration [34]. Conversely, blockade of CXCR4/
CXCL12 interaction in prostate cancer cells via CXCR4
knockdown significantly inhibits bone metastasis in vivo
[35]. Androgens promote migration of prostate cancer
cells via KLF5-mediated upregulation of CXCR4 expres-
sion [36].

In this study, we used gain- and loss-of-function
approaches to determine that SLUG positively regulated
both CXCL12 and CXCR4 at the RNA and protein
level. Because SLUG is a zinc-finger transcription factor
and mainly functions as a transcription repressor when
it is tethered to promoters of target genes [4,7], we
therefore assumed that SLUG regulates CXCL12 and
CXCR4 in an indirect manner, i.e., by suppressing
expression of one or more inhibitors of these two mole-
cules. It was recently reported that MiR-886-3p directly
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targets CXCL12 and decreases its expression [37]. In
future studies, we will examine if SLUG directly down-
regulates MiR-886-3p in prostate cancer cells. Interest-
ingly, CXCL12 can increase the RNA and protein level
of the CXCR4 receptor in basal cell carcinoma and PC3
cells [38,39]. Therefore, it is possible that SLUG upregu-
lates CXCR4 in a CXCL12-dependent manner. It has
been heavily documented that CXCL12 is expressed in
the bone microenvironment and creates migration and
invasion paths for the tumor cells with CXCR4 expres-
sion [40]. Our current findings indicate that CXCL12 is
expressed in prostate cancer cells and was induced by
SLUG. Notably, it was recently shown that Slug is
required for transcriptional and functional regulation of
CXCL12 during the remodeling of bone tissue [24].

Elevated SLUG expression in tumors is correlated with
tumor metastasis in many types of tumors [41,25,42], and
forced expression of SLUG promotes metastasis of breast
cancer in mouse models through partial inhibition of E-
cadherin [43]. In this study, we found that SLUG overex-
pression upregulated endogenous CXCL12 and increased
prostate cancer cell migration and invasion, but reduced
adhesion (data nor shown). In contrast, knockdown of
endogenous CXCL12 expression impaired SLUG-
mediated MMP9 expression, and migration and invasion
in PC3 cells. Thus, our new findings that CXCL12/
CXCR4 is a mediator of SLUG-induced migration and
invasion of prostate cancer cells provide insight into the
molecular mechanisms by which SLUG promotes tumor
cell metastasis in vivo. Neutralizing CXCL12 with specific
antibodies in NOD/SCID mice resulted in reduced
metastasis to the lungs, adrenal glands, and liver [21].
Therefore, it would be worthwhile to use mouse models
to test whether CXCL12 is a key mediator of SLUG-
induced metastasis of prostate cancer in vivo.

It has been suggested that CXCL12 promotes tumor
invasion by inducing MMP9 [44], which degrades extra-
cellular matrix components. MMP9 is expressed and
secreted from both prostate cancer cells and their
microenvironment [30,45]. In addition, high expression
of SLUG and MMP9 is found in pancreatic cancer tis-
sues [25]. It remains to be determined whether MMP9
is upregulated by SLUG. Here, we showed that SLUG
upregulated both CXCL12 and its downstream target
MMP9 expression, and that MMP9 is regulated by
SLUG through CXCL12. In the future, it needs to be
determined if MMP9 is critical for SLUG-induced inva-
sion of prostate cancer cells.

Overall, our data indicate that CXCL12 is a key med-
iator for SLUG-induced migration and invasion of
human prostate cancer cell lines in vitro; thereby sug-
gesting that autocrine CXCL12 is an important factor
for tumor metastasis.
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Conclusion

CXCL12/CXCR4 ligand receptor interaction is involved
in the directional migration of metastatic prostate can-
cer cells [34]. We found that SLUG positively regulates
expression of the CXCL12/CXCR4 axis in human pros-
tate cancer cell lines. Furthermore, we determined that
forced expression of SLUG increased migration and
invasion of human prostate cancer cells through activa-
tion of CXCR4/CXCL12 axis. Our findings add support
that CXCL12 are a potential therapeutic target for pros-
tate cancer metastasis [46].

Materials and methods

Cell Culture

PC3, 22RV1, LNCaP, and DU-145 cells were obtained
from American Type Culture Collection (ATCC, Mana-
ssas, VA). These cells were maintained in culture med-
ium, according to the manufacturer’s instructions.

Plasmids

pMig-Slug was constructed by cloning human SLUG
gene into pMIGR1 retroviral vector. pLKO.1-Slug
shRNAT1 (target sequence: 5-CAGCTGTAAATACTGT-
GACAA-3), pLKO.1-Slug shRNA2 (target sequence: 5'-
CCAAATCATTTCAACTGAAA-3’), pLKO.1-CXCL12
shRNA1 (target sequence: 5-TGTGCATTGACCC-
GAAGCTAA), and pLKO.1-CXCL12 shRNA2 (target
sequence: 5-GCCAACGTCAAGCATCTCAAA-3’) were
obtained from Open Biosystem (Huntville, AL). pLKO.1
control shRNA (containing non-target scramble shRNA,
Addgene plasmid #1864) were purchased from Addgene
(Cambridge, MA).

Viral Production and Infection

293T cells were seeded at 3 x 10° cells per well in a 6-
well plate. The next day, a mixture of plasmid DNA was
transfected separately into 293T cells using Superfect
transfection reagent (Qiagen, Valencia, CA). For retro-
virus production, pCL-Ampho (packaging plasmid) was
mixed with pMig-based retroviral vectors. To generate
the lentiviruses, the packaging plasmids (pCMV-VSVG
and psPAX2) were co-transfected with pLKO.1-Slug
shRNA or pLKO.1-control shRNA (containing non-tar-
get sShRNA). The viruses were collected 24 hr after trans-
fection. For viral infection, PC3, 22RV1, or DU-145 cells
were seeded at 50% confluence in 6-well plates. The next
day, the virus-containing supernatants from 293T cul-
tures were mixed with polybrene (Sigma, St. Louis, MO)
at a final concentration of 4 mg/ml, and added to the
cells in each well. The plate was centrifuged at 2,000 rpm
for 1 hr at 35°C, and returned to the cell culture incuba-
tor. PC3, 22RV1, DU145, and LNCaP cells were infected
with retroviruses (pMig-Slug or pMig vector) for 3 times
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to achieve 100% transduction in these cells. Cells infected
with pLKO.1 lentiviruses were selected with puromycin
(1 pg/ml), starting at 48 hr after infection.

RNA Isolation, cDNA Synthesis, RT-PCR, and qPCR
Analysis

Total RNA extraction from cultured cells was accom-
plished by using RNeasy Plus mini kit (Qiagen, Valencia,
CA). cDNA was synthesized by random priming from 1
pg of total RNA with the SuperScript III First-Strand
Synthesis Super Mix kit (Invitrogen, San Diego, CA),
according to the manufacturer’s protocol. Primers used
for the RT-PCR and qPCR analysis were synthesized by
Integrated DNA Technologies (Coralville, IA). RT-PCR
was performed by using the Hotstar Taq DNA polymer-
ase kit (McLab, San Francisco, CA), and qPCR was per-
formed by using the Perfecta SYBR Green FastMix
(Quanta Bioscience, CA), according to the manufac-
turer’s protocol. Data were analyzed by using the com-
parative CT method; CT refers to the “threshold cycle,”
and is determined for each experiment using MyiQ soft-
ware. Quantities of gene specific mRNA expression were
determined by the CT method. Amplification of
GAPDH was performed for each reverse-transcribed
sample as an endogenous quantification standard. The
fold-difference in gene expression was determined by
2-48CT AACT is equal to (ACy of experimental condi-
tions -ACry of control conditions). ACr is equal to (gene-
specific Cr -GAPDH Cr). The primers are as following:
SLUG, 5-CTTCCTGGTCAAGAAGCA-3 and 5'-
GGGAAATAATCACTGTATGTGTG-3’; CXCR4, 5'-
ATATACACTTCAGATAACTACACCGAG-3 and 5'-
TCAGTTTCTTCTGGTAACCCATGACCA-3’; CXCL12,
5-ACCGCGCTCTGCCTCAGCGACGGGAAG-3’ and 5’
TGTTGTTCTTCAGCCGGGCTACAATCTG-3"; MMP
9,5-AGCGGGCGGCGCCTCTGGAGGTTCGA-3 and 5’
CCTGGCAGAAATAGGCTTTCTCTCGGT-3"; GAPDH,
5 ATTGACCTCAACTACATGGTTTACATG-3 and 5-
TTGGAGGGATCTCGCTCCTGGAAG-3.

Enzyme-linked Immunosorbent Assay (ELISA)
Conditioned cell culture medium was centrifuged and
an SDF1-o immunoassay kit (R&D Systems Inc. Min-
neapolis, MN) was used for CXCL12 detection. 100 pl
of sample or control (or standard) was added into each
well, according to the manufacturer’s protocol. The opti-
cal density of each well was measured within 30 min,
using a microplate reader set to 450 nm.

Western Blot Analysis

The cells were lysed in the protein lysis buffer (20 mM
Tris, 100 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, 1
mM beta glycerophosphate, 1 mM sodium orthovanadate),
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supplemented with 1 ml protease inhibitor cocktail
(Sigma, St. Louis, MO). The protein samples were ana-
lyzed by Western blot analysis using an ECL kit
(Pierce, Rockford, IL) with antibodies against following
antigens: Slug (ANASPEC, Fremont, CA), CXCR4
(Abcam, Boston, MA), GAPDH (Bethyl Laborotaries,
Montgomery, TX).

Zymographic Analysis of MMP activity

Cells overexpressing pMig or pMig-Slug (70-80% conflu-
ence) were washed twice with PBS, and the medium was
changed to serum free cell culture medium. After 48 hr,
the conditioned medium was collected and centrifuged
for 5 min at 400 x g. A 500 pl aliquot was concentrated
to < 100 ul in a Microcon concentrator (Millipore, Bill-
erica, MA) at 6500 x g at 4°C. Protein concentration
was determined using BCA assay (Thermo Scientific,
Rockford, IL), and 20 pg of the protein from each sam-
ple was electrophoresed on a 10% zymography gel con-
taining 0.1% gelatin (Invitrogen, San Diego, CA). MMP
activity was detected by incubating the gel in 1x Zymo-
gram Renaturing Buffer for 30 min at room temperature
and then equilibrating the gel for 30 min at room tem-
perature with gentle agitation. The gel was incubated
with fresh 1x Zymogram Developing Buffer overnight,
followed by staining with Coomassie Blue for 30 min.
Contrast was adjusted by destaining with Coomassie
destaining solution (Methanol: Acetic acid: Water (50:
10: 40). The staining gels were then air-dried in cello-
phane mounts and images were captured.

Wound Healing Assay

The cells were seeded in a 12-well plate (15 x 10%).
After the cells formed a confluent mono layer, scratches
were performed using a 100 ul tip. The culture medium
was replaced with fresh complete medium. The closure
of scratch was analyzed under the microscope and
images were captured at 18 - 24 hr after incubation.

Invasion Assay

The cells were seeded at 6 x 10* cells per well into the
96-well plate of an Oris™ Cell Invasion Assay Kit (Pla-
typus, Madison, WI). The plate was incubated for ~16
hr at 37°C. The stoppers were then removed. Collagen I
Overlay was added to create a 3-D ECM environment
for invasion and incubated for 1 hr at 37°C. Cell culture
medium was added and the cells were allowed to invade
for 72 hr, and were stained with DAPI before images
were captured.

Statistical Analysis

qPCR data and cell growth data were analyzed by the
Student’s ¢-test (one-tailed). P < 0.05 was used to define
statistically significant differences.
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Additional material

Additional file 1: Additional figure legend. Figure legends for
additional figures S1 - S4. Figure S1 Flow Cytometric Analysis of
CXCR4 expression on surface of LNCAP cells stably expressing
SLUG. SLUG overexpression (SLUG) and control (pMig) LNCAP cells were
detached from plates with 4 mM EDTA solution when reaching 70-80%
confluence. The cells were washed with 2% FBS in PBS solution and then
stained with APC-labeled anti-human CXCR4 for flow cytometric analysis.
Figure S2 Analysis of MMP9 expression in PC3 cells stably
expressing CXCL12 shRNAs. RNA was extracted from PC3 infected with
lentiviruses expressing CXCL12 shRNAs (sh1 and sh2), and used to
synthesize cDNA. Transcript level of MMP9 and SLUG was analyzed by
RT-PCR. GAPDH was included as a loading control. Figure S3 Cell
migration assay in 22RV1 cells stably overexpressing SLUG. 22RV1
cells expressing pMig-Slug or pMig (vector) were seeded in 12-well
plates (15 x 10* cells per well). After cells formed a confluent monolayer,
scratches were performed using a 100 pl tip. Twenty-four hours after
scratching, the cells were examined for closure of scratch under the
microscope and images were captured. Figure S4 Cell growth of PC3
stably expressing different combinations of CXCL12 shRNAs and
SLUG. Cell were seeded into 12 well plate (triplicates) at a density of 5 x
10* per well and viable cell numbers were counted with Beckman Vicell
XR cell counter for 7 days.

Additional file 2: Additional figures. Additional figures S1 - 54.
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