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Abstract

Background: Malignant peripheral nerve sheath tumors (MPNSTs) are rare and highly aggressive
soft tissue tumors showing complex chromosomal aberrations. In order to identify recurrent
chromosomal regions of gain and loss, and thereby novel gene targets of potential importance for
MPNST development and/or progression, we have analyzed DNA copy number changes in seven
high-grade MPNSTs using microarray-based comparative genomic hybridization (array CGH).

Results: Considerable more gains than losses were observed, and the most frequent minimal
recurrent regions of gain included 1q24.1-q24.2, 1q24.3-q25.1, 8p23.1-pl12, 9q34.11-q34.13 and
17923.2-q25.3, all gained in five of seven samples. The 17q23.2-q25.3 region was gained in all five
patients with poor outcome and not in the two patients with disease-free survival. cDNA
microarray analysis and quantitative real-time reverse transcription PCR were used to investigate
expression of genes located within these regions. The gene lysyl oxidase-like 2 (LOXL2) was
identified as a candidate target for the 8p23.1-p12 gain. Within 17q, the genes topoisomerase Il-a
(TOP2A), ets variant gene 4 (EIA enhancer binding protein, E/AF) (ETV4) and baculoviral IAP
repeat-containing 5 (survivin) (BIRC5) showed increased expression in all samples compared to two
benign tumors. Increased expression of these genes has previously been associated with poor
survival in other malignancies, and for TOP2A, in MPNSTs as well. In addition, we have analyzed the
expression of five micro RNAs located within the 17q23.2-9q25.3 region, but none of them showed
high expression levels compared to the benign tumors.

Conclusion: Our study shows the potential of using DNA copy number changes obtained by array
CGH to predict the prognosis of MPNST patients. Although no clear correlations between the
expression level and patient outcome were observed, the genes TOP2A, ETV4 and BIRCS are
interesting candidate targets for the 17q gain associated with poor survival.
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Background

Malignant peripheral nerve sheath tumors (MPNSTs) are
rare tumors that arise sporadically or as part of the neu-
rofibromatosis type 1 (NF1) or -2 (NF2) autosomal inher-
ited  disorder. The NF1/von  Recklinghausen
neurofibromatosis, caused by germ line mutations of the
NF1 tumor suppressor gene, is one of the most common
autosomal dominant inherited disorders, occurring at a
frequency of one in every 4,000 individuals [1]. Patients
with this disease have an increased risk of benign and
malignant tumors [2]. In contrast to other soft tissue
malignancies, the majority of MPNSTs derives from previ-
ously existing neurofibromas [3].

Cytogenetically, MPNSTs have complex karyotypes with
multiple losses frequently observed in chromosome
regions 1p, 9p, 17q and 22 [4,5]. Several comparative
genomic hybridization (CGH) studies have revealed a
higher frequency of gains compared to losses, involving
chromosome regions 5p, 7p, 7q, 8q and 17q [6-10].
Recurrent gain of 7p15-p21 and 17q22-qter has been
associated with poor overall survival [10], and increased
copy number and expression of topoisomerase II-a
(TOP2A) in 17g21.2 have been associated with poor can-
cer-specific survival and presence of metastasis [11].

In order to identify specific genomic events and candidate
targets that may play a role in MPNST development and/
or progression, we have used microarray-based CGH
(array CGH) to map the distribution and frequency of
DNA copy number changes in seven high-grade MPNSTs.
c¢DNA microarray analysis and quantitative real-time
reverse transcription PCR (RT-PCR) were used to investi-
gate expression of genes located within the most fre-
quently altered chromosomal regions. In addition, micro
RNA (miRNA) expression in a recurrent region of gain was
determined using quantitative real-time RT-PCR.

Results

Recurrently altered chromosomal regions in MPNSTs
DNA copy number changes in seven high-grade MPNSTs
(Table 1) were analyzed using a 1 Mb resolution bacterial-
and P1 artificial chromosome (BAC and PAC) genomic
microarray supplemented with the tiling-path between
1q12 and the beginning of 1q25. A heat map of DNA copy
number ratios of the tumor samples is shown in Figure 1.

Regions with significant DNA copy number changes in
each sample were identified using the "Analysis of Copy
Errors" (ACE) algorithm in CGH-Explorer. The resulting
frequency plot of gains and losses is shown in Figure 2a,
and a representative ratio plot for this type of tumors in
Figure 2b. Genome-wide ratio plots for all samples are
shown in Additional file 1. Minimal recurrent regions of
alteration identified by ACE in at least three of seven (>
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Heat map of DNA copy number ratios of seven MPNSTSs rel-
ative to a pool of normal diploid DNA. A total of 3,167
unique genomic clones are shown in chromosomal order
from Iptel to 22qtel. Chromosomes are indicated with black
and grey bars. Red, increases in DNA copy number; green,
decreases in DNA copy number-.
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Table I: Clinical data for tumor samples
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Sample Sample Patient age  Diagnosis Revised Grade! Location Size (cm)2 Metastasis  Status Follow-up Neurofibro
origin (years)/sex Initial (months)3 (months)*  matosis
MSI Prim 71/F MPNST MPNST 4 Upper 10 NM NED 100 +
trunk
MS2 Prim 46/M MPNST MPNST 4 Lower leg 40 MD DD I+
MS5 Met 24/M MPNST MPNST 4 Upper 9 20 DD 163
trunk
MS7 Prim 42/M MPNST MPNST 4 Pelvic areas 7 6 DD 12
MS8x  Prim 78/F MPNST MPNST 4 Gluteal 20 MD DD 12
MS9x  Rec 26/M MPNST MPNST 4 Upper 4 70 DD 79 +
trunk
MSI3  Prim 40/M MFH MPNST> 4 Thigh 10 NM NED 216 +
BS Prim 50/M MPNST BS - Retroperit 7 NM NED 120
oneum
NF Prim 19/F MPNST NF - Retroperit I 185 DD 186
oneum

Abbreviations: x, xenograft; Prim, primary tumor; Met, metastasis; Rec,

recurrence; F, female; M, male; MFH, malignant fibrous histiocytoma; BS,

benign schwannoma; NF, neurofibroma; NM, no metastasis; MD, metastasis at diagnosis; NED, no evidence of disease; DD, dead of disease.
I'Grading is based on a four-tiered system used in the Scandinavian Sarcoma Group.

2 Largest diameter of the tumor.

3 Time to first metastasis from diagnosis.

4Time to last follow-up from diagnosis.

5 Pleomorphic sarcoma in a patient with neurofibromatosis.

43%) samples are presented in Table 2. The complete list

of data of all defined regions of gain and loss from the
ACE analysis is presented in Additional file 2.

The tumors showed considerably more recurrent gains
than losses. Thirty-five of the 40 identified recurrent
regions of alteration were gains, compared with only five
regions of loss. The most frequent regions of increased
copy number were in 1q, 8p, 9q and 17q, all detected in
five of seven tumors. In 1q, three minimal recurrent
regions of gain were identified; 1q24.1-q24.2 (3.7 Mb)
and 1q24.3-q25.1 (3.5 Mb) in five of seven tumors and
1g21.1 (1.2 Mb) in three tumors. The other regions
gained in five tumors were 8p23.1-p12 (22.9 Mb),
9q34.11-q34.13 (1.0 Mb) and 17q23.2-q25.3 (26.2 Mb).
Ten minimal recurrent regions of gain were observed in
four tumors; 2q11.2-q13 (11.0 Mb), 3p26.2-p25.1 (12.6
Mb), 5q34-q35.3 (15.2 Mb), 7q11.23-q21.11 (7.4 Mb),
9q21.32-q22.33 (16 Mb), 12q13.3-q15 (14.2 Mb),
13q22.1-g22.2 (2.1 Mb), 16p13.3-p13.2 (7.9 Mb),
16p13.12-p13.11 (0.9 Mb) and 19p13.3-p13.2 (4.9 Mb).
In addition, 20 regions of gain were identified in three
tumors (see Table 2). High-level amplification (log2 ratio
> 1) was observed in some of the tumors, mainly of
regions in 1q and 12q [see Additional file 2].

Three of five identified minimal recurrent regions of loss
were located in chromosome 11. Four tumors showed
loss of 11p13 (1.5 Mb), whereas 11q22.3-q23.1 (7.7 Mb)
and 11q23.2-q23.3 (7.0 Mb) were lost in three tumors. In
addition, loss of 9p22.3-p21.2 (12.8 Mb) and 14q21.3-
q23.3 (15.3 Mb) were observed in three tumors.

Homozygous deletion (log, ratio < -1) was observed in
some of the tumors, mainly of regions in 9p [see Addi-
tional file 2].

Gene expression in frequently altered chromosomal
regions

Gene expression has previously been analyzed using
c¢DNA microarrays in a panel of soft tissue sarcomas,
including six of the MPNSTs studied here (using the
xenograft of MPNST2) [12]. In order to identify candidate
target genes for the DNA copy number changes, the
expression level of genes located within the most fre-
quently altered regions (gained in five of seven samples)
was investigated. Genes with increased expression relative
to the median for soft tissue sarcomas (log, ratio > 1) in
two or more of the six MPNSTs analyzed were identified.

Within the minimal recurrent region of gain in 8p23.1-
pl2, six genes showed increased expression [12]. Two
genes were over-expressed in three samples; lysyl oxidase-
like 2 (LOXL2) and zinc finger protein 395 (ZNF395). In
two of the samples, the genes mitochondrial tumor sup-
pressor 1 (MTUS1), leucine zipper, putative tumor sup-
pressor 1 (LZTS1), scavenger receptor class A, member 3
(SCARA3) and UBX domain-containing protein 6 (Repro-
duction 8 protein) (Protein Rep-8) (UBXDG6) were over-
expressed (data not shown).

The expression level of LOXL2 and ZNF395 was in addi-
tion determined using quantitative real-time RT-PCR in
six of the samples (using the xenograft of MPNST2 and -
13 and the patient sample of MPNST8x). The expression
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Figure 2

(A) Genome-wide frequency plot of copy number altera-
tions identified by ACE in seven MPNSTs. Red, increases in
DNA copy number; green, decreases in DNA copy number.
(B) Representative whole genome DNA copy number pro-
file for MPNSTSs. Log, ratio for each of the genomic clones is
plotted according to chromosome position.

level was compared to the average expression in two
benign tumors, one benign schwannoma (BS) and one
neurofibroma (NF) (Table 1). Figure 3 shows the relative
expression level of LOXL2 and ZNF395. LOXL2 showed
increased expression in MPNST1, -7 and -9x, whereas
ZNF395 showed approximately similar expression levels
in the MPNSTs and the benign tumors.

In the minimal recurrent regions of gain in 1q24.1-q24.2,
1q24.3-g25.1 and 9q34.11-q34.13, no genes present in
the cDNA microarray showed increased expression in
more than one of the samples.

Homozygous deletion (log, ratio < -1) of the region con-
taining the tumor suppressor gene cyclin-dependent
kinase inhibitor 2A (melanoma, p16, inhibits CDK4)

http://www.molecular-cancer.com/content/7/1/48

(CDKN2A) was observed in two samples, and hetero-
zygous deletion in one sample [see Additional file 2]. The
expression level of CDKN2A was determined using quan-
titative real-time RT-PCR in six of the samples (Figure 3).
The three samples with deletion of the region, MPNST2x,
-7 and -9%, showed no or low expression compared to the
benign tumors, whereas the other three MPNSTs showed
increased expression.

Characterization of the 17q gain

The minimal recurrent region 17q23.2-q25.3 was gained
in all patients who died of the disease (five of seven
patients), but not in the two patients with disease-free sur-
vival (MPNST1 and -13, with follow-up of 100 and 216
months, respectively). Figure 4a shows the copy number
of chromosome 17 for all the tumor samples.

The expression level of genes located within the minimal
recurrent region, as well as the proximal region where
only four of seven samples showed gain (17q21.2-q23.2),
was examined. By cDNA microarray analysis, ten genes
showed increased expression relative to the median for
soft tissue sarcomas (log, ratio > 1) in two or more of the
six MPNSTs analyzed [12]. Three genes were over-
expressed in three MPNSTs; baculoviral IAP repeat-con-
taining 5 (survivin) (BIRCS5), ets variant gene 4 (E1A
enhancer binding protein, E1AF) (ETV4) and homeobox
B7 (HOXB7?). In two of the samples, the genes RAB5C,
member RAS oncogene family (RAB5C), vesicle amine
transport protein 1 homolog (T. californica) (VAT1), dis-
tal-less homeobox 4 (DLX4), DEAD (Asp-Glu-Ala-Asp)
box polypeptide 5 (DDX5), thymidine kinase 1, soluble
(TK1), stimulated by retinoic acid 13 homolog (mouse)
(STRA13) and solute carrier family 16, member 3 (mono-
carboxylic acid transporter 4) (SLC16A3) were over-
expressed (data not shown).

The expression level of ETV4, HOXB7 and BIRC5 was in
addition determined using quantitative real-time RT-PCR
in six of the samples. The expression level of TOP2A was
also determined, since increased expression of TOP2A has
been associated with poor cancer-specific survival in
MPNSTs [11]. Figure 4b shows the relative expression
level of TOP2A, ETV4, HOXB7 and BIRC5. Of these four
genes, only BIRCS5 is located within the minimal recurrent
region of gain. TOP2A, ETV4 and BIRC5 showed increased
expression in all MPNST samples compared to the benign
tumors, in most cases more than 20-fold, whereas HOXB7
showed approximately similar expression levels in the
MPNSTs and the benign tumors. ETV4 showed the highest
level of expression; its expression was more than 140-fold
higher in MPNST9x and more than 90-fold higher in
MPNST1 compared to the benign tumors. No clear differ-
ences in the expression levels were seen between MPNSTs
from patients with poor outcome and MPNSTs from
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Table 2: Minimal recurrent regions altered in MPNSTs (n = 7)
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Cytoband Aberration  Start clone End clone Size (Mb) Frequency  Observation

Iq21.1 Gain RP3-365119 RP11-544024 1.2 3/7 | sample with +Iq
1q24.1-q24.2 Gain RP11-525G13 RP4-780M13 3.7 517 | sample with +1q
1q24.3-q25.1 Gain RPI-127D3 RP5-830A10 35 577 | sample with +Iq
2pl5-pl4 Gain RPI1-52FI0 RPI1-263L17 3.0 3/7 | sample with +2p
2ql1.2-ql3 Gain RPI11-451C2 RPI1-368A17 11.0 4/7 | sample with +2q
3p26.2-p25.1 Gain RPI1-95EI1 RPI1-255019 12.6 4/7 | sample with +3, | sample with +3p
3p22.1-p21.1 Gain RP11-437N10 RP11-122D19 1.5 3/7 | sample with +3, | sample with +3p
3q27.2-q29 Gain RPII-110CI5 RPI1-23M2 12.5 3/7 | sample with +3
5pl4.3 Gain RPI1-28P24 RPI1-374E21 20 3/7 | sample with +5
5q34-q35.3 Gain CTC-320Cé6 RPI11-281015 152 4/7 | sample with +5
6p22.1-pl2.1 Gain RPI1-373N24 RPI1-472M19 28.1 3/7 | sample with +6p
6pl2.1-ql2 Gain RP3-422B1 | RPI1-349P19 78 377 | sample with +6p, | sample with +6q
7p21.2-pl4.1 Gain RPI1-512E16 RP5-1178G13 263 3/7 | sample with +7
7q11.23-q21.11 Gain RPI11-313P13 RP5-1057M1 74 417 | sample with +7, | sample with +7q
8p23.1-pl2 Gain RPI1-540E4 RPI1-473A17 229 5/7 2 samples with +8
8ql1.23-q24.3 Gain RPI1-53MI | RP5-1056B24 90.5 3/7 2 samples with +8
9p24.3-p23 Gain RPI1-48M17 RPI1-413D24 1.6 3/7 | sample with +9p
9p22.3-p21.2 Loss RPI1-490C5 RPI1-20P5 128 3/7 2 samples with -9p
9q21.32-q22.33 Gain RPI11-54IF16 RPI1-192E23 16.0 4/7

9q34.11-q34.13 Gain RPI1-202H3 RPI1-143H20 1.0 5/7

Ipl3 Loss RPI-316D7 RP4-60717 1.5 4/7

11q22.3-q23.1 Loss RPI1-2122 RPII-1INI5 7.7 317

11923.2-q23.3 Loss RPI1-212D19 RPI1-14212 70 3/7

12p13.32-p13.31 Gain RPI1-543P15 RPI1-277E18 48 3/7 | sample with +12
12q12-q13.11 Gain RPI11-333D23 RPI1-89H19 93 377 | sample with +12
12q13.3-ql5 Gain RPI1-474N8 RPI1-101K2 142 4/7 | sample with +12
12q21.2-q21.31 Gain RPI1-26L7 RPI1-268A19 33 377 | sample with +12
12922 Gain RP11-24119 RPI1-372G13 08 3/7 | sample with +12
12q22-q23.3 Gain RPI1-410AI13 RPI1-415D21 9.1 3/7 | sample with +12
13q12.11-q12.12  Gain RPI1-76K19 RP11-760MI 39 377 | sample with +13
13ql3.1-q14.3 Gain RPI1-14IMI RPI1-327P2 185 3/7 | sample with +13
13q22.1-q22.2 Gain RP11-552Mé6 RPI1-332E3 2.1 477 | sample with +13
14q21.3-q23.3 Loss RPI1-346L24 RP11-430G13 153 3/7

14q24.3-q32.33 Gain RPI1-61F4 RPI1-417P24 279 3/7 | sample with +14
16p13.3-pl3.2 Gain RP11-344L6 RPI1-148FI0 79 477 2 samples with +16
16p13.12-p13.11 Gain RPI11-82018 RP11-48901 09 4/7 2 samples with +16
16q21-q23.2 Gain RPI1-148FI12 RPI1-437L22 182 3/7 2 samples with +16
17q23.2-q25.3 Gain RPII-112J9 RPI11-567016 262 5/7

19p13.3-pl13.2 Gain CTB-3ICl6 RPI1-492L14 49 4/7 2 samples with +19p
22ql12.3-q13.2 Gain LL22NCOI-132D12 RP3-437M21 6.1 3/7

patients who showed disease-free survival (MPNST1 and -
13).

The expression levels of miRNAs located within 17q were
in addition investigated, in order to see if their expression
was increased due to the genomic gain. At the time the
analyses were performed, five miRNAs were identified
within the minimal recurrent region of gain according to
Ensembl; hsa-miR-142p-3p, -142-5p, -301, -21 and -338.
The expression level of these miRNAs was determined
using quantitative real-time RT-PCR in six of the samples.
Figure 4c shows the relative expression level of hsa-miR-
142p-3p, -142-5p, -301, -21 and -338. The two miRNAs
hsa-miR-142-3p and -142-5p, originating from the differ-
ent arms of the stem-loop precursor, showed a similar

expression pattern. In general, none of the miRNAs
showed high expression levels in the MPNSTs compared
to the benign tumors, and no clear differences in the
miRNA expression levels were seen between MPNSTs
from patients with poor outcome and MPNSTs from
patients who showed disease-free survival (MPNST1 and -
13).

Discussion

We have used array CGH to analyze DNA copy number
changes in a small panel of high-grade MPNSTs, in order
to identify recurrent copy number alterations at high-res-
olution and thereby novel candidate oncogenes and/or
tumor suppressor genes. After a recent pathological revi-
sion of our tumor collection, seven samples were classi-
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Figure 3

Plot of expression level of three candidate target genes in six
of the MPNSTs, normalized with the average expression of
three endogenous controls (B2ZM, GAPDH and TBP). The
expression level was determined relative to the average
expression of two benign tumors. No detection of PCR-
product is indicated with an asterisk (¥).

fied as MPNSTs based on the current classification
standard and included in the study. Although this is a
small number of samples, the analyses revealed results of
potential importance for this malignancy.

Considerably more gains than losses were observed in the
seven MPNSTs. Only five of the 40 identified minimal
recurrent regions of alteration were losses (see Figure 2a
and Table 2), similar to previous observations by others
[7,10,13]. However, other studies have reported far more
frequent losses than gains in MPNSTs as well [4,14]. Dif-
ferences in the chromosomal regions altered in sporadic
versus neurofibromatosis-associated MPNSTs have previ-
ously been demonstrated [6,9,10,13], but the only differ-
ence observed here was loss of 11q23.2-q23.3. This region
was deleted in the three sporadic MPNSTs, but not in the
four neurofibromatosis-associated MPNSTs. However,
two of the neurofibromatosis-associated MPNSTs showed
loss of other parts of chromosome 11, and the two other
minimal recurrent regions of loss in chromosome 11,
11p13 and 11922.3-q23.1, were deleted in both sporadic
and neurofibromatosis-associated MPNSTs [see Addi-
tional file 2].

It has previously been reported that patients with neurofi-
bromatosis-associated MPNSTs have a worse survival than
patients with sporadic MPNSTs [15,16], but this has not
been a consistent finding [17,18]. In this panel of tumors,
the two longest surviving patients who showed no evi-
dence of the MPNST tumor after 100 and 216 months,
respectively, have neurofibromatosis (Table 1).

The most frequent alterations observed in the seven MPN-
STs were gains of regions in 1q, 8p, 9q and 17q, all present

http://www.molecular-cancer.com/content/7/1/48

in five of the seven tumors analyzed. Within 1q, three
minimal recurrent regions were identified. 1q24.1-q24.2
(3.7 Mb) and 1q24.3-q25.1 (3.5 Mb) were gained in five
of seven samples, whereas 1q21.1 (1.2 Mb) was gained in
three samples. Gain of regions in 1q has not frequently
been reported in MPNSTs previously, but it is a recurrent
finding in soft tissue sarcomas [19,20] and other malig-
nancies. Since gene expression of six of the MPNSTs stud-
ied here has previously been analyzed using cDNA
microarrays [12], the expression level of genes located
within these regions was investigated, but none of the
genes present on the cDNA microarray were over-
expressed compared to the median for soft tissue sarco-
mas (log, ratio > 1) in more than one sample. This was
also the case for genes located within the minimal recur-
rent region in 9q34.11-q34.13 (1.0 Mb).

A minimal recurrent region in 8p23.1-p12 (22.9 Mb) was
gained in five of the samples. Within this region, six genes
showed increased expression in two or more of the sam-
ples [12]. LOXL2 and ZNF395 were over-expressed in
three of the samples. The expression level of these two
genes was in addition determined using quantitative real-
time RT-PCR, and the expression level was compared to
two benign tumors (Figure 3). LOXL2 showed more than
3-fold increased expression in three MPNSTs, whereas
ZNF395 showed approximately similar expression levels
in the MPNSTs and the benign tumors. Increased expres-
sion of LOXL2, a member of the lysyl oxidase family, has
previously been shown in colon- and esophageal cancer
[21], and it has also been associated with breast cancer
tumor grade [22]. Thus, LOXL2 may be a candidate target
for the 8p23.1-p12 gain in MPNSTs.

Scattered high-level amplification (log, ratio > 1) and
homozygous deletion (log, ratio < -1) were observed in
some of the tumors [see Additional file 2]. Within 9p22.3-
p21.2, homozygous deletion of the region harboring the
gene CDKN2A was observed in two samples, and hetero-
zygous deletion in one sample [see Additional file 2].
Inactivation of this region is a frequent finding in MPNSTs
[23,24], as well as other cancer types [25]. The expression
level of CDKN2A was determined using quantitative real-
time RT-PCR (Figure 3), and the three samples with dele-
tion of the region showed no or very low expression com-
pared to the benign tumors, whereas the other three
samples showed increased expression. Notably, the
expression level of CDKN2A was lower in the four patients
with poor outcome than the two patients with disease-free
survival (Figure 3).

We observed that all five patients with poor outcome
showed gain of the distal part of 17q, whereas the two
patients with disease-free survival did not (Figure 4a). Sev-
eral other studies have also reported that gain of 17q is fre-
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(A) DNA copy number profile of chromosome 17 for seven MPNSTSs. Log, ratio for each of the genomic clones is plotted
according to chromosome position using "moving average smoothing" with a three-clone window. The minimal recurrent
region (MRR) gained in all five patients with poor outcome is indicated, as well as the region where at least four of the five
patients showed gain (highlighted by a square). (B) Plot of expression level of four candidate target genes in 17q in six of the
MPNSTs, normalized with the average expression of three endogenous controls (B2M, GAPDH and TBP). The expression level
was determined relative to the average expression of two benign tumors. (C) Plot of expression level of five candidate target
miRNAs in 17q in six of the MPNSTSs, normalized with the average expression of two endogenous controls (RNU6B and -24).
The expression level was determined relative to the average expression of two benign tumors.
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quent in MPNSTs [6,7,9,10,13,26], and this alteration has
been associated with poor outcome [10] and develop-
ment of metastasis [26]. These CGH studies have reported
the region of gain to be from either 17q22 or 17q24 to
17q25/17qtel. The minimal recurrent region identified in
this study, using microarrays, covered 17q23.2-q25.3
(gtel). This region was gained in five tumors, and four of
these showed also gain of the proximal region (17q21.2-
q23.2).

The expression level of genes located within the minimal
recurrent region, as well as the proximal region where four
of seven samples showed gain, was investigated. Ten
genes showed increased expression relative to the median
for soft tissue sarcomas in two or more of the six tumors
analyzed [12], although it should be noted that the cDNA
microarray only contained probes for about half of the
genes in the region (including novel and predicted genes).
Three genes were over-expressed in three of the tumors;
ETV4, HOXB7 and BIRC5, and the expression levels of
these genes, as well as TOP2A, were in addition deter-
mined using quantitative real-time RT-PCR (Figure 4b).
Of these four genes, only BIRC5 is located within the min-
imal recurrent region of gain. TOP2A, ETV4 and BIRC5
showed increased expression in all MPNST samples, in
most cases more than 20-fold, whereas HOXB7 showed
approximately similar expression levels in the MPNSTs
and the benign tumors. Even though only tumors from
patients who died of the disease showed gain of this
region, increased expression of these genes was also seen
in tumors from the patients who showed no evidence of
the disease. Thus, there were no correlations between the
expression level of the genes and patient survival.

BIRCS5, also known as survivin, is an inhibitor of apopto-
sis that has been shown to be highly expressed in the
majority of cancers, including soft tissue sarcomas and
osteosarcomas [27,28]. Increased expression of BIRC5 has
been associated with chemotherapy resistance, enhanced
proliferation, increased tumor recurrence and shorter
patient survival [27]. BIRC5 is located within a 2 Mb
region in 17q25 previously shown to be commonly
amplified in MPNSTs [26], and increased expression of
BIRC5 in MPNSTs compared to neurofibromas and
benign schwannomas has been reported [29,30]. Hence,
there is considerable evidence suggesting that BIRC5 may
be involved in MPNST tumorigenesis.

Increased expression of TOP2A has been previously asso-
ciated with poor cancer-specific survival in MPNSTs [11],
whereas increased expression of ETV4, a member of the
Ets family of transcription factors, has been associated
with shorter patient survival in colorectal cancer [31] and
gastric cancer [32]. Although these two genes were not
located within the minimal recurrent region of gain, their

http://www.molecular-cancer.com/content/7/1/48

associations with poor outcome in MPNSTs (for TOP2A)
and other malignancies suggest that increased expression
of these genes may play a role in MPNST tumorigenesis as
well.

Recently, it has been shown that expression of miRNAs
can be deregulated in cancer, and that miRNAs may act as
oncogenes and tumor suppressor genes [33]. miRNAs are
frequently found in regions of DNA copy number aberra-
tions, and a general correlation between miRNA copy
number and expression level has been reported [34,35].
In order to investigate if miRNAs may be candidate targets
for the 17q gain, we analyzed the expression level of five
miRNAs present in the minimal recurrent region (Figure
4c). Compared to the benign tumors, none of the miRNAs
showed high expression levels, and no clear differences in
the miRNA expression levels were seen between MPNSTs
from patients with poor outcome and MPNSTs from
patients who showed disease-free survival. Thus, no clear
correlation could be found between DNA copy number
and miRNA expression in 17q in our samples.

Conclusion

Our study has identified recurrent copy number altera-
tions in MPNSTs at high resolution, and shows the poten-
tial of using DNA copy number changes obtained by array
CGH to predict the prognosis of MPNST patients. LOXL2
was identified as a candidate target gene for the 8p23.1-
p12 gain. Although no clear correlations between the
expression level and patient outcome were observed here,
the genes TOP2A, ETV4 and BIRC5 are interesting candi-
date targets for the 17q gain associated with poor out-
come, but further validation is required on a larger tumor
set.

Methods

Tumor samples

Six human sarcomas classified as MPNSTs were selected
from a tumor collection at the Department of Tumor Biol-
ogy at the Norwegian Radium Hospital. One additional
sample initially diagnosed as malignant fibrous histiocy-
toma was included in the study after reclassification to
MPNST. Two benign tumors, one BS and one NF, were
used as a reference for the quantitative real-time RT-PCR
analyses. All tumors were revised at the time of the study
by the pathologist (B.B.) and diagnosed according to the
current World Health Organization classification. The
informed consent used and the collection of samples were
approved by the ethical committee of Southern Norway.

Clinical samples were collected immediately after surgery,
cut into small pieces, frozen in liquid nitrogen and stored
at -70°C until use. Some of the samples were grown sub-
cutaneously in immunodeficient mice as xenografts (suf-
fix x). Animal care was in accordance with the institution's
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guidelines. Clinical data for all samples are given in Table
1.

Array CGH

The genomic microarray used contained 4,549 BAC and
PAC clones representing the human genome at approxi-
mately 1 Mb resolution, as well as the minimal tiling-path
between 1q12 and the beginning of 1q25. Detailed infor-
mation on the construction and preparation of the micro-
array has been previously described [36]. The microarrays
were provided by the Norwegian Microarray Consortium.

Array CGH was performed essentially as described previ-
ously [36]. In brief, approximately 500 ng of Dpnll-
digested total genomic DNA was labeled by random prim-
ing using BioPrime DNA Labeling System (Invitrogen,
California, USA) and Cy3-dCTP (tumor) or Cy5-dCITP
(reference) (PerkinElmer, Massachusetts, USA). Labeled
tumor and reference DNA were combined together with
135 pg human Cot-1 DNA (Invitrogen). Hybridization
was performed using an automated hybridization station,
GeneTAC (Genomic Solutions/PerkinElmer), agitating
the hybridization solution for 42-46 hours at 37°C. The
arrays were scanned using an Agilent G2565BA scanner
(Agilent Technologies, California, USA), and the images
were segmented using GenePix Pro 6.0 (Axon Laborato-
ries, California, USA). Further data processing, including
filtering and normalization, was performed using M-CGH
as previously described [36,37].

Array CGH data analysis

The complete array CGH dataset for the seven MPNSTs
can be viewed in the ArrayExpress microarray database
(accession number E-MEXP-869). Clones belonging to
chromosomes 1-22 with known unique chromosomal
location in Ensembl (v33, Sep 2005) were considered for
analysis (3,351 clones). Due to experimental variation in
normal control experiments, 22 clones (0.7%) were dis-
carded as described previously [36]. In addition, clones
with missing values in three or more of the seven samples
were discarded, leaving 3,167 clones for analysis. The
remaining missing values were imputed via a K-Nearest
Neighbor algorithm normalization using "Significance
Analysis of Microarrays" [38].

In order to determine copy number changes, CGH-
Explorer v. 2.55 was used [39]. ACE was performed using
a false discovery rate of 0.0000. Chromosomal segments
showing gains or losses in at least three of seven MPNSTs
(= 43%) were used to identify minimal recurrent regions
of alteration.

Quantitative real-time RT-PCR
Quantitative real-time RT-PCR was performed using Taq-
Man Gene Expression and MicroRNA Assays (Applied

http://www.molecular-cancer.com/content/7/1/48

Biosystems, California, USA). The expression level was
determined for the genes LOXL2 (assay ID
Hs00158757_m1), ZNF395 (assay ID Hs00608626_m1),
CDKN2A (assay ID Hs00924091_m1), TOP2A (assay 1D
Hs01032127_g1), ETV4 (assay ID Hs00385910_m1),
HOXB?7 (assay ID Hs00270131_m1) and BIRC5 (assay ID
Hs00153353_m1). The genes beta-2-microglobulin
(B2M, assay ID Hs99999907_m1), glyceraldehyde-3-
phosphate  dehydrogenase = (GAPDH, assay ID
Hs99999905_m1) and TATA-box binding protein (TBP,
assay ID Hs99999910_m1) were used as endogenous
controls for normalization of gene expression. The expres-
sion level was determined for the miRNAs hsa-miR-142-
3p (assay ID 464), hsa-miR-142-5p (assay ID 465), hsa-
miR-301 (assay ID 528), hsa-miR-21 (assay ID 397) and
hsa-miR-338 (assay ID 548). The small nuclear RNAs
RNUGB (assay ID 1093) and RNU24 (assay ID 1001) were
used as endogenous controls for normalization of miRNA
expression.

Frozen tumor tissue was pulverized in liquid nitrogen,
and total RNA was extracted using Trizol (Invitrogen)
according to the manufacturer's instructions. The total
RNA was further purified using the RNeasy Mini Kit (QIA-
GEN, California, USA) as described by the manufacturer,
with a few modifications in order to preserve the miRNAs.
In brief, after addition of buffer RLT and vortexing, 3.5
volumes of 100% ethanol was added and mixed by vor-
texing. The sample was subsequently applied to the RNe-
asy Mini column. Washing with buffer RW1 was not
performed. Universal Human Reference RNA (Stratagene,
California, USA) was used as a reference for the gene
expression assays. cCDNA synthesis and real-time PCR were
performed essentially as described in the protocols sup-
plied by the manufacturer (Applied Biosystems). The PCR
amplification was performed using the ABI 7500 Real
Time PCR System (Applied Biosystems).

Each gene expression assay included (in duplicate) a
standard curve of four serial dilutions of the Universal
Human Reference RNA ¢cDNA (ranging from 50 ng to 50
pg), 10 ng of each tumor cDNA and a no-template con-
trol. The expression levels were determined from the
standard curves as described by the manufacturer. The
expression level of each gene was normalized with the
average expression of the three endogenous controls. The
expression level of each gene in the MPNSTs was deter-
mined relative to the average expression of the benign
tumors.

Each miRNA expression assay included (in duplicate) 0.3
ng of each tumor cDNA and a no-template control. The
experiments were done twice, and the average values were
used. The expression levels were determined using the
comparative Cymethod as described by the manufacturer,
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and the expression level of the miRNAs was normalized
with the average expression of the two endogenous con-
trols. The expression level of each miRNA in the MPNSTs
was determined relative to the average expression of the
benign tumors.
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