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Abstract
Background: Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the
nuclear hormone receptor superfamily and is highly expressed in many human tumors including
breast cancer. PPARγ has been identified as a potential target for breast cancer therapy based on
the fact that its activation by synthetic ligands affects the differentiation, proliferation, and apoptosis
of cancer cells. However, the controversial nature of current studies and disappointing results from
clinical trials raise questions about the contribution of PPARγ signaling in breast cancer
development in the absence of stimulation by exogenous ligands. Recent reports from both in vitro
and in vivo studies are inconsistent and suggest that endogenous activation of PPARγ plays a much
more complex role in initiation and progression of cancer than previously thought.

Results: We have previously demonstrated that an increase in expression of PPARγ1 in MCF-7
breast cancer cells is driven by a tumor-specific promoter. Myc-associated zinc finger protein
(MAZ) was identified as a transcriptional mediator of PPARγ1 expression in these cells. In this
study, using RNA interference (RNAi) to inhibit PPARγ1 expression directly or via down-regulation
of MAZ, we report for the first time that a decrease in PPARγ1 expression results in reduced
cellular proliferation in MCF-7 breast cancer cells. Furthermore, we demonstrate that these
changes in proliferation are associated with a significant decrease in cell transition from G1 to the
S phase. Using a dominant-negative mutant of PPARγ1, Δ462, we confirmed that PPARγ1 acts as a
pro-survival factor and showed that this phenomenon is not limited to MCF-7 cells. Finally, we
demonstrate that down-regulation of PPARγ1 expression leads to an induction of apoptosis in
MCF-7 cells, confirmed by analyzing Bcl-2 expression and PARP-1 cleavage.

Conclusion: Thus, these findings suggest that an increase in PPARγ1 signaling observed in breast
cancer contributes to an imbalance between proliferation and apoptosis, and may be an important
hallmark of breast tumorigenesis. The results presented here also warrant further investigation
regarding the use of PPARγ ligands in patients who are predisposed or already diagnosed with
breast cancer.
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Background
Breast cancer is the most common malignancy and the
second leading cause of cancer related death among
American women [1]. Despite of the fact that recent
research efforts have significantly improved the outcome
of breast cancer, the complexity and heterogeneity of this
disease still urges the necessity to explore new and more
specific drug targets. Peroxisome proliferator-activated
receptor gamma (PPARγ), a member of the nuclear-hor-
mone receptor family, has shown potential as a therapeu-
tic target for prevention and treatment of breast cancer.
PPARγ is a ligand-activated transcription factor. There are
two isoforms of PPARγ protein, PPARγ1 and PPARγ2, the
latter of which has the addition of 30 N'-terminal amino
acids as a result of the usage of a different promoter and
alternative splicing [2]. PPARγ plays an important role in
adipocyte differentiation, insulin sensitivity, energy
metabolism, immune response, and the development of
the nervous system [3-5]. It is predominantly expressed in
adipose tissues; although, it is also detected in various tis-
sues such as cardiac and skeletal muscle, intestine, vascu-
lar smooth muscle, lung, breast, colon, and prostate [6,7].
Some polyunsaturated fatty acids [8-10] and arachidonic
acid metabolites [11] are considered to be the natural lig-
ands of PPARγ. Synthetic ligands of PPARγ include the thi-
azolidinedione class of anti-diabetic drugs (TZDs) such as
rosiglitazone, pioglitazone, troglitazone [12,13], some
non-steroidal anti-inflammatory drugs (NSAID) [14], and
non-thiazolidinedione tyrosine [15]. In addition, a lig-
and-independent mechanism of PPARγ activation has
also been observed due to altered phosphorylation status
of the receptor [16].

Recently, PPARγ has emerged as a promising target for
cancer therapy based on the fact that its activation by syn-
thetic ligands such as TZDs have been shown to induce
cell cycle arrest, apoptosis and differentiation in many
human malignancies [17,18]. Several studies have dem-
onstrated that PPARγ activation by agonists can promote
growth inhibition and apoptosis in both primary and
metastatic breast malignancies [19-22]. In addition to the
anti-proliferative and pro-apoptotic effects, PPARγ ligands
have also been reported to inhibit invasion and metastasis
of human breast cancer cells [23,24]. However, these
results were questioned by several studies that demon-
strated the ability of PPARγ ligands to elicit anti-tumor
effects via PPARγ-independent pathways and in the
absence of PPARγ receptors [25,26]. Moreover, there is a
debate that the concentrations of PPARγ ligands used in
many studies are above the saturation level of the recep-
tor. In fact, Roziglitazone, a widely studied PPARγ agonist,
has shown to induce opposing effects when used in low
versus high doses [27]. Furthermore, PPARγ antagonists
have also shown anticancer effects in a wide range of epi-

thelial cancer cell lines, usually with greater potency than
agonists [28].

Existing data from in vivo studies is also controversial.
Recent animal studies have demonstrated that PPARγ ago-
nists can prevent mammary carcinogenesis and reduce the
development of tumors in nude mice [29]. In contrast,
another study has demonstrated an increase in the
number of tumors when PPARγ ligand was administered
[30]. To clarify the controversy arising from the use of
pharmacological approaches, several animal studies uti-
lized techniques that allowed evaluation of the conse-
quences of PPARγ transactivation in breast cancer
independent of exogenous stimulation. Studies which
employed a genetic approach to explore the intrinsic role
of PPARγ signaling have demonstrated that an increase in
PPARγ signaling accelerates mammary gland tumor devel-
opment and constitutive over-expression of PPARγ
increases incidence of breast cancer in mice already sus-
ceptible to the disease [31]. This group has also shown
that mice heterozygous for a null PPARγ mutation
develop tumors with the same kinetics as those that carry
two functional copies [31]. Furthermore, the ablation of
PPARγ expression in the mouse mammary gland using a
Cre- Lox recombination system has demonstrated that no
tumors developed in mammary glands lacking PPARγ sug-
gesting that PPARγ is not a tumor suppressor [32]. In sum-
mary, these observations suggest that reduced PPARγ
expression does not contribute to the initiation of breast
cancer; however, acceleration of PPARγ signaling after
tumor initiation markedly promotes breast cancer devel-
opment.

In this study, we have begun to elucidate the functional
significance of endogenous PPARγ activation in breast
cancer using an in vitro model. We have previously
reported that PPARγ1, not PPARγ2, is expressed in normal
mammary epithelial cells and breast cancer cell lines [33].
Our lab and others have also demonstrated that the level
of PPARγ1 expression is significantly higher in breast can-
cer cell lines as compared to normal epithelial cells [33-
36]. In addition, we have shown that a distinct promoter
regulates PPARγ1 expression in MCF-7 cells and that pro-
moter switching mediates differential PPARγ1 expression
levels between normal and cancer cells [33]. The Myc-
associated zinc finger protein (MAZ) has been identified
as a transcriptional mediator of PPARγ1 in MCF-7 cells
[37]. MAZ is a transcriptional factor that controls the
expression of various genes through interactions between
GC-rich DNA binding sites within the promoter sequence
of target genes and the carboxyl-terminal zinc finger
motifs of MAZ [38]. Here, we demonstrated that an
increase in expression and endogenous transactivation of
PPARγ1 in MCF-7 breast cancer cells enhances cell prolif-
eration by accelerating cell transition from G1 to the S
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phase. This data was confirmed using a dominant-nega-
tive PPARγ1 mutant as an alternative approach to inhibit
endogenous activity of PPARγ1 in two different cell lines,
MCF-7 and T47D. We also found that in the absence of
exogenous stimulation high expression of PPARγ1 signifi-
cantly inhibits apoptosis in MCF-7 cells.

Results
PPARγ1 is highly expressed in breast cancer cell lines
Our previous studies revealed that MAZ is a critical tran-
scriptional regulator of PPARγ1 in MCF-7 breast cancer
cells [37]. We also showed that both PPARγ1 and MAZ are
highly expressed in MCF-7 cells as compared to normal
mammary epithelial cells (HMEC) and tumor-specific
expression of PPARγ1 is MAZ dependent [37]. To evaluate
expression of PPARγ1 within other breast cancer cell lines,
whole cell lysates from a panel of eight different breast
cancer cell lines originated from heterogeneous tumors
(ranging from adenocarcinoma to metastatic ductal carci-
noma) were examined by Western blot analysis. HMEC
cells were used as a control. Figure 1A shows the repre-
sentative immunoblot for PPARγ1. To demonstrate the
reproducibility of these data, statistical analysis of three
Western blots was performed (Fig. 1B). The results
showed that PPARγ1 is expressed at significantly higher
level in cancer cell lines as compared to HMEC.

RNAi effect on PPARγ1 expression and activity in MCF-7 
breast cancer cell line
As discussed above, evaluation of PPARγ1 as a potential
breast cancer therapy target revealed the complexity of
PPARγ1 signaling in cancer. The mechanism of PPARγ1
activation during cancer development and the functional
role of this event in tumorigenesis still remain unclear. To
address these questions and elucidate the role of PPARγ1
activation in cancer, we utilized the advantages of shRNA
techniques. A set of five shRNAs for each of PPARγ or MAZ
gene was purchased from The RNAi Consortium (TRC).
Each shRNA was evaluated using Western blot analysis
(data is not shown). The most efficient shRNA for each
gene was chosen for further investigation. MCF-7 cells
were transiently transfected with PPARγ and MAZ shR-
NAs, as well as with a scrambled shRNA as control. MCF-
7 cells treated only with the transfection reagent were also
used as a control. To evaluate the specificity of shRNAs to
their target genes and the extent of PPARγ1 down-regula-
tion when either PPARγ or MAZ shRNA were applied to
MCF-7 cells, Real-time PCR, Western blot analysis and
Luciferase assay were performed. Real-time PCR data
revealed that both PPARγ and MAZ shRNAs are highly
specific to their targets and their application to the cells
leads to a significant decrease in PPARγ1 or MAZ mRNA
levels respectively (Fig. 2A). We also tested whether the
observed changes in PPARγ1 or MAZ mRNA lead to
changes in PPARγ1 protein expression. Figure 2B shows

the representative immunoblot for PPARγ1 and demon-
strates the level of PPARγ1 down-regulation by both
PPARγ and MAZ shRNAs as compared to controls. The sta-
tistical evaluation of three different Western blots showed
that the direct inhibition of PPARγ1 by PPARγ shRNA
resulted in an average 50 percent decrease in PPARγ1
expression. A lower level of inhibition was observed when
PPARγ1 knocked-down was achieved via down-regulation
of MAZ expression. This was anticipated since we believe
transcription factors other than MAZ are involved in regu-
lation of PPARγ1 in cancer cells.

It is known that PPARγ activates gene transcription by
interacting with a Peroxisome-Proliferator Response Ele-
ment (PPRE) located within the promoter sequence of tar-
get genes [2]. To confirm that shRNAs-mediated down-
regulation not only affects expression but also activity of
PPARγ1, a PPRE functional response was measured. MCF-
7 cells were transfected with a 3XPPRE-mTK-pGL3
reporter plasmid and then co-transfected with scrambled,
PPARγ, or MAZ shRNA expression plasmids. Following
transfection, cells were treated with 10 μM Rosiglitazone
(Rosi), a well known PPARγ agonist [39]. Cells were lysed
24 hours after the second transfection and a Luciferase
assay was performed. Data demonstrated that direct
down-regulation of PPARγ1 expression by PPARγ shRNA
led to a significant decrease in PPRE-mediated reporter
activity in both Rosi treated and untreated MCF-7 cells
(Fig. 2C). This confirms that PPARγ shRNA is specific and
efficient for the inhibition of PPARγ1 expression and
activity. Moreover, the fact that PPRE activity falls below
the control level when PPARγ shRNA is applied to the cells
is additional evidence for endogenous transactivation of
PPARγ1 in breast cancer cells. Although we observed a
decrease in reporter activation when MAZ shRNA was
transfected to the cells, these changes were not statistically
significant, suggesting the complexity of PPARγ transcrip-
tional regulation and that the knock-down of MAZ seen in
transient transfection assays is not sufficient to block
PPRE-mediated reporter activity.

Down-regulation of PPARγ1 expression by PPARγ or MAZ 
shRNA decreases proliferation of MCF-7 breast cancer 
cells
Since one of the most important characteristics of tumor
development is enhanced cell growth, we tested whether
inhibition of PPARγ1 expression affects cellular prolifera-
tion in breast cancer cells. MCF-7 cells were transiently
transfected with scrambled, PPARγ, or MAZ shRNA and
the rate of BrdU incorporation during DNA synthesis was
assessed by using the BrdU proliferation assay (Roche).
The results revealed that down-regulation of PPARγ1 by
both PPARγ and MAZ shRNAs significantly decreased cel-
lular proliferation in MCF-7 breast cancer cells (Fig. 3A).
To confirm these results, we used a different approach to
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PPARγ1 is over-expressed in various breast cancer cell lines as compared to HMECFigure 1
PPARγ1 is over-expressed in various breast cancer cell lines as compared to HMEC. A. The representative West-
ern blot of PPARγ1 expression. Whole cell lysates (40 μg of total protein) from nine different cell lines were analyzed by West-
ern blot analysis as described in the methods section. B. Densitometry was used to quantify PPARγ1 expression. The chart 
represents data from the three different immunoblots (n = 3). Intensity of each band was normalized to actin. PPARγ1 expres-
sion is shown as a fold change in band intensity relative to HMEC. Statistical analysis was performed and demonstrated a signif-
icant difference in PPARγ1 expression in all tested cancer cell lines as compared to HMEC (p < 0.05).
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Effect of PPARγ and MAZ shRNAs applications on down-regulation of PPARγ1 expression and activity in the MCF-7 breast can-cer cell lineFigure 2
Effect of PPARγ and MAZ shRNAs applications on down-regulation of PPARγ1 expression and activity in the 
MCF-7 breast cancer cell line. A. To test the specificity of MAZ and PPARγ shRNAs for their target genes and estimate the 
efficiency of MAZ and PPARγ knock-down, Real-time PCR analysis of MCF-7 cells transfected with scrambled, MAZ, or PPARγ 
shRNA was performed. The fold change in gene expression was calculated using the ΔΔCt method. 18S was included as an 
internal control.B. Representative Western blot analysis of PPARγ1 expression in MCF-7 cells transiently transfected with 
scrambled, MAZ, or PPARγ shRNA. Densitometry was used to quantify PPARγ1 expression (n = 3). PPARγ1 expression is 
shown as a fold change in band intensity relative to control MCF-7 cells. Intensity of each band was normalized to actin. C. 
PPRE-mediated reporter activity was measured in MCF-7 cells transiently transfected with a 3XPPRE-mTK-pGL3 reporter 
plasmid and then co-transfected with MAZ or PPARγ shRNA expression plasmids. Cells were also subsequently treated with 
10 μM Rosi for 20 hours. Data is expressed as mean fold change in luciferase to renilla ratios compared to control.
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inhibit endogenous activity of PPARγ1. MCF-7 cells were
transiently transfected with a vector driving the expression
of a dominant-negative mutant of PPARγ, Δ462, or an
empty vector as control, and then a BrdU proliferation
assay was performed. Inhibition of endogenous PPARγ1
activity using the Δ462 mutant caused a decrease in cellu-
lar proliferation in MCF-7 cancer cells (Fig. 3B). To test
whether endogenous activation of PPARγ1 plays a similar
role in other types of breast cancer cells, the same experi-
ment was performed using the breast cancer cell line,
T47D. The level of PPARγ1 expression in this cell line was
evaluated using Western blot analysis (Fig. 3D). T47D
cancer cells were transiently transfected with either a con-
trol vector or a Δ462 expression vector and then a BrdU
proliferation assay was performed. Inhibition of PPARγ1
activity in these cells also led to a significant decrease in
cellular proliferation (Fig. 3C). To confirm that the
observed changes in cellular proliferation in both MCF-7
and T47D cell lines are indeed in response to the inhibi-
tion of PPARγ1 activity in a dominant-negative manner by
Δ462, a Luciferase assay was performed. Cells were trans-
fected with 3XPPRE-mTK-pGL3 reporter plasmid and
then co-transfected with control or Δ462 expression plas-
mids. Following transfection, cells were treated with 10
μM Rosi. In Rosi treated and untreated cells, application
of a Δ462 mutant resulted in a significantly lower level of
PPRE-mediated reporter activity (Fig. 3E), thus, demon-
strating that Δ462 efficiently inhibits endogenous activity
of PPARγ1 in MCF-7 and T47D cancer cells.

Down-regulation of PPARγ1 gene expression affects cell 
cycle distribution by decreasing the number of cells 
entering S-phase in MCF-7 cells
To elucidate the mechanism by which down-regulation of
PPARγ1 expression leads to inhibition of cellular prolifer-
ation in MCF-7 cells, fluorescence-activated cell sorting
(FACS) was performed. Analysis of cell cycle distribution
(Fig. 4) revealed that PPARγ1 down-regulation by PPARγ
or MAZ shRNA primarily affects cell transition from G1 to
S-phase in MCF-7 cells. Approximately 25 percent fewer
cells entered the S-phase when PPARγ1 expression was
suppressed directly or indirectly. This is consistent with
data from the BrdU proliferation assay. Therefore, these
results confirm our hypothesis and demonstrate that an
increase in PPARγ1 expression and its endogenous trans-
activation play an important functional role in promoting
cellular proliferation in breast cancer cells.

FACS analysis allowed us to assess changes in apoptosis as
well. Interestingly, the level of apoptosis (Fig. 4D) and the
percentage of debris and aggregates (data not shown) in
cells transfected with either PPARγ or MAZ shRNA was sig-
nificantly higher than in control cells or scrambled shRNA
transfected cells. This observation suggests that in addi-
tion to its involvement in regulation of proliferation,

PPARγ1 may also be involved in regulation of apoptosis in
MCF-7 cells.

Down-regulation of PPARγ1 gene expression increases 
apoptosis in MCF-7 breast cancer cells
To evaluate data from FACS analysis (Fig. 4D) and deter-
mine whether changes in PPARγ1 expression can affect
apoptosis, a Cell Death Detection ELISA assay was per-
formed which distinguishes between necrotic and apop-
totic cell death. MCF-7 cells were transfected with
scrambled, PPARγ, or MAZ shRNA using the same trans-
fection protocol and time points as for the proliferation
assay, FACS, and protein analysis. The results showed no
significant difference in necrotic cell death between
PPARγ knock-down and control cells (data not shown).
However, inhibition of PPARγ1 expression in MCF-7 cells
using PPARγ or MAZ shRNA resulted in a significant
increase in apoptosis as compared to control (Fig. 5A).
Interestingly, changes caused by down-regulation of
PPARγ1 directly by using PPARγ shRNA were more dra-
matic than through knock-down of MAZ. This suggests
that MAZ probably contributes to regulation of apoptosis
mostly through its mediation of PPARγ1 signaling in can-
cer cells. To confirm that down-regulation of PPARγ1
expression induces apoptosis, the expression of Bcl2, an
anti-apoptotic protein, which has been shown to promote
the survival of cancer cells [40] was evaluated. Statistical
analysis of densitometry for four Western blots demon-
strated that Bcl2 expression was significantly higher in
control and MCF-7 cells transfected with scrambled
shRNA versus cells transfected with PPARγ or MAZ shRNA
(Fig. 5B). We also assessed changes in poly (ADP-ribose)
polymerase-1, PARP-1, cleavage in cells transfected with
PPARγ or MAZ shRNA as compared to controls. PARP-1
cleavage by caspases is a well-known marker for apoptosis
[41]. Statistical evaluation of densitometry for three West-
ern blots (Fig. 5C) showed a significant increase in an 89
kDa C-terminal fragment, the product of PARP-1 proteol-
ysis, when PPARγ shRNA was applied to MCF-7 cells. This
data suggests that an increase in PPARγ1 expression fol-
lowed by transactivation during cancer development may
be an important factor that contributes not only to accel-
eration of cellular proliferation but also to cell evasion
from apoptosis.

Discussion
In this report, we confirmed that PPARγ1 is highly
expressed in cultured breast cancer cell lines as compared
to HMEC [37,42]. High expression of PPARγ1 has also
been reported in human breast cancer tissues [43]. How-
ever, questions about the mechanism and role of endog-
enous transactivation of PPARγ1 during development of
breast cancer still remain unanswered. We have previously
shown that the increase in expression of PPARγ1 from
normal human mammary epithelia to breast cancer is due
Page 6 of 13
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to the recruitment of a distal, tumor-specific promoter
[34]. We identified MAZ as a transcription factor that
directly binds to this promoter and drives expression of
PPARγ1 in MCF-7 breast cancer cells [37]. Our results also
indicated that MAZ is highly expressed in MCF-7 cells as
compared to HMEC [36]. In this study, statistical analysis
of three different Western Blots demonstrated an increase
in PPARγ1 expression in a panel of different breast cancer
lines and confirmed that it is a feature attributed not only
to MCF-7 cells but also to other tested breast cancer cell
lines. This observation suggests that the proposed model
of endogenous PPARγ1 transactivation may apply not

only to a particular cell line, but also to breast cancer in
general. Currently this hypothesis is being tested in the lab
using pathological sections from normal and breast can-
cer specimens.

In efforts to explore the role of PPARγ activation in cancer,
most of the recent studies employed pharmacological
approaches. The anti-cancer activity of PPARγ ligands,
such as TZDs, demonstrated in multiple in vitro studies,
has raised discussion about the possibility of using PPARγ
receptors as a target for breast cancer therapy. However,
the "off target" effects of PPARγ agonists [44,45], the dual

Decreased PPARγ1 expression is associated with a less proliferative phenotype for MCF-7 cellsFigure 3
Decreased PPARγ1 expression is associated with a less proliferative phenotype for MCF-7 cells. A. Cell prolifera-
tion of MCF-7 cells transfected with or without scrambled, MAZ, or PPARγ1 shRNA was measured based on incorporation of 
the pyrimidine analog BrdU into DNA (BrdU proliferation ELISA). Data is shown as mean fold changes in cell proliferation 
compared to control cells. Error bars represent the standard error of the mean (s.e.m.) and the bars that do not share a letter 
designation were determined to be significantly different by Tukey's pairwise comparison (p < 0.05). B. MCF-7 cells were tran-
siently transfected with a Δ462 expression plasmid or control plasmid. Cell proliferation was measured by BrdU proliferation 
ELISA. C. T47D cells were transiently transfected with a Δ462 expression plasmid or control plasmid. Cell proliferation was 
measured by BrdU proliferation ELISA. In Fig. B and Fig. C Student's t-test showed a significant difference (p < 0.01). D. The 
level of PPARγ1 expression in HMEC, MCF-7, and T47D cells was determined using Western blot analysis. Densitometry was 
used to quantify PPARγ1 expression in MCF-7 and T47D (n = 3). PPARγ1 expression in T47D is shown as a fold change in band 
intensity relative to MCF-7 cells. Intensity of each band was normalized to actin. E. PPRE-mediated reporter activity was meas-
ured by Luciferase assay in MCF-7 and T47D cells transfected with a dominant-negative mutant, Δ462, or control plasmid. 
Cells were also subsequently treated with 10 μM Rosi for 20 hours. Data is shown as mean fold change in cell proliferation 
compared to control cells. Error bars represent the standard error of the mean (s.e.m.). * Significantly different from appropri-
ate control at p < 0.01.
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role that some ligands play when they are applied to the
cells at different concentrations [46], and the paradoxical
anti-cancer effect of PPARγ antagonists [47] necessitated
the use of other approaches to evaluate the consequences
of PPARγ transactivation in cancer. For the first time, using
an in vitro model, we have addressed questions about the
role that endogenous transactivation of PPARγ1 plays in
the pathogenesis of breast cancer. Using RNAi techniques

to inhibit PPARγ1 expression we demonstrated that an
increase in PPARγ1 signaling can significantly affect pro-
liferation and apoptosis in breast cancer cells. It is widely
accepted that the dysfunctional balance between cellular
proliferation and apoptosis can contribute to the initia-
tion and progression of cancer. Here, we demonstrated
that down-regulation of PPARγ1, directly or indirectly via
knock-down of its transcriptional regulator MAZ, leads to

Down-regulation of PPARγ1 or expression of MAZ prevents S-phase entry in MCF-7 breast cancer cellsFigure 4
Down-regulation of PPARγ1 or expression of MAZ prevents S-phase entry in MCF-7 breast cancer cells. 
Changes in cell cycle distribution of MCF-7 cells transfected with or without scrambled, MAZ, or PPARγ1 shRNA were ana-
lyzed by FACS. Cells were stained with propidium iodide (PI). Mean and s.e.m. from five independent experiments are shown. 
Error bars that do not share a letter designation were determined to be significantly different by Fisher's LSD pairwise compar-
ison (p < 0.05). A. Inhibition of PPARγ1 or MAZ expression leads to a decrease in a number of cells entering S-phase. B. A 
decrease in the number of proliferating cells in PPARγ1 or MAZ shRNA transfected cells is associated with an increase in the 
number of G0-G1 arrested cells. C. There was no significant difference in M-G2 phase cell number observed among all groups. 
D. Down-regulation of PPARγ1 as well as MAZ leads to an increase in the number of apoptotic cells.
Page 8 of 13
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Down-regulation of PPARγ1 increases apoptosis in MCF-7 breast cancer cellsFigure 5
Down-regulation of PPARγ1 increases apoptosis in MCF-7 breast cancer cells. A. Apoptosis was measured by spe-
cific determination of mono- and oligonucleosomes in the cytoplasmic fraction of cell lysates from control and shRNA trans-
fected MCF-7 cells. Data is shown as mean fold changes in cell apoptosis compared to control. Error bars represent s.e.m. and 
the bars that do not share a letter designation were determined to be significantly different by Tukey's pairwise comparison (p 
< 0.05). B. Representative Western blot analysis of PPARγ1 and Bcl2 expression in control and shRNA transfected MCF-7 cells 
showed that a decrease in PPARγ1 expression leads to a decrease in Bcl2 expression. Densitometry was used to quantify Bcl2 
expression (n = 4). Bcl2 expression is shown as a fold change in band intensity relative to control MCF-7 cells. Intensity of each 
band was normalized to actin. C. Western blot analysis of PARP-1 demonstrated an increase in induction of PARP-1 cleavage 
in MCF-7 cells transfected with PPARγ1 shRNA. Densitometry was used to quantify an 89 kDa fragment of PARP-1 cleavage (n 
= 3). It is shown as a fold change in the 89 kDa band intensity relative to control MCF-7 cells. Intensity of each band was nor-
malized to actin. * Significantly different from control at p < 0.05.
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a decrease in cellular proliferation in MCF-7 breast cancer
cells. Interestingly, changes in cellular proliferation
caused by direct PPARγ1 inhibition by PPARγ shRNA were
analogous to changes in PPARγ1 expression when inhib-
ited via down-regulation of MAZ. This suggests that in
addition to its role as a mediator of tumor-specific expres-
sion of PPARγ1, MAZ may also be involved in the regula-
tion of other growth control genes in MCF-7 breast cancer
cells. The ongoing project in our lab is to further investi-
gate the role of MAZ in breast cancer development.

The observed pro-survival effect of PPARγ1 signaling in
MCF-7 cancer cells was also confirmed by using a different
approach to inhibit endogenous activity of PPARγ1. We
took advantage of a PPARγ1 mutant, Δ462, which lacks
helix12, critical for ligand binding and co-activators
recruitment. Thus, Δ462 functions in a dominant-negative
manner. Data from BrdU proliferation assays demon-
strated that inhibition of PPARγ1 activity using Δ462
decreases cell proliferation not only in MCF-7 cells but in
another widely studied breast cancer cell line, T47D. In
our previous study, we have shown that the T47D cell line
also has a functional peroxisomal response [42]. Here,
using Western blot analysis, we demonstrated that T47D
cancer cells as well as MCF-7cells have high level of
PPARγ1 expression as compared to HMEC. However, the
direct comparison of PPARγ1 expression in MCF-7 and
T47D cells showed the lower level of PPARγ1 in a latter
cell line. The differential expression of PPARγ1 in these
cell lines can explain the more prominent changes in cel-
lular proliferation in MCF-7 cells compare to T47D cells
when Δ462 are applied to the cells. The specificity of Δ462
in the inhibition of endogenous PPARγ1 activity was con-
firmed using Luciferase assay. We measured PPRE-medi-
ated reporter activity when either MCF-7 or T47D cells
were transfected with Δ462 or control plasmids and then
treated with10 μM Rosi. Data revealed that PPRE reporter
activity is significantly lower in cells transfected with the
Δ462 expression plasmid compared to control, thus, pro-
viding the evidence that this mutant acts in dominant-
negative manner, decreasing activity of PPARγ1 in MCF-7
and T47D cancer cells. Moreover, a similar effect was
observed with Rosi, confirming the specificity of Δ462
action in these cell lines. In summary, these results suggest
that PPARγ1 transactivation enhances cell growth in
breast cancer cells and that this phenomenon is not spe-
cific to MCF-7 cells.

To further investigate the mechanism by which PPARγ1
regulates cell growth, we performed fluorescence-acti-
vated cell sorting (FACS). Cell cycle distribution analysis
confirmed results from the BrdU proliferation assay and
demonstrated that an increase in PPARγ1 signaling accel-
erates the transition of cells from G1-phase to S-phase and,
thus, increases cellular proliferation.

Blockage of apoptosis is a likely requirement for cancer
maintenance [48]. In fact, FACS analysis revealed that the
number of cells which undergo apoptosis is much higher
in MCF-7 cells with decreased PPARγ1 expression. This
observation was tested and confirmed by measuring DNA
fragmentation in control and PPARγ or MAZ shRNA trans-
fected cells. The data demonstrated that down-regulation
of PPARγ1 expression in MCF-7 cells leads to a significant
increase in apoptosis. The induction of apoptosis in cells
with PPARγ1 or MAZ knockdown was also confirmed by
analyzing the expression of Bcl2, a protein that is known
to block cell death [40], and by evaluation of PARP-1
cleavage, a widely accepted marker for apoptosis. The
results showed that inhibition of PPARγ1 leads to down-
regulation of Bcl2 which may in turn favor re-activation of
signaling pathways to induce apoptosis. The increase in
PARP-1 cleavage in MCF-7 cells, which have a decreased
level of PPARγ1 expression, verified the induction of
apoptosis as well. Together these results suggest that accel-
erated PPARγ1 signaling can interfere with apoptotic path-
ways and promote cancer cell survival during breast
tumor development. However, the molecular mecha-
nisms that drive these events are not known and will be
the subject of future investigation in the lab.

In summary, this study demonstrates that the increase in
PPARγ1 expression observed in breast cancer results in an
increase in PPARγ1 signaling that in turn promotes prolif-
eration and inhibits apoptosis and thus, may significantly
contribute to the progression of disease to a more malig-
nant stage. Our findings are consistent with results from a
study that evaluated the consequences of intrinsic PPARγ1
activation using transgenic mice. This study demonstrated
that constitutive over-expression of PPARγ1 in mice,
which were predisposed to breast cancer, leads to a greater
number of tumors and higher mortality in both male and
female animals, thus suggesting that increased PPARγ1
signaling serves as a tumor promoter in the mammary
gland [31]. Since constitutive PPARγ1 signaling did not
affect mammary gland differentiation or function when
introduced in wild-type mice, the authors emphasized
that consequences of PPARγ1 transactivation are different
in normal and transformed cells. This observation is con-
sistent with our previous data, which demonstrated differ-
ent mechanisms of transcriptional regulation of PPARγ1
in breast cancer cells as compared to HMEC [34,37].

Conclusion
This study provides insight into the functional signifi-
cance of increased PPARγ1 expression and endogenous
transactivation in breast cancer in an in vitro model. The
results suggest that increased PPARγ signaling can act as a
pro-survival factor by enhancing cancer cell proliferation
and blocking the ability of the cell to undergo apoptosis.
Furthermore, modulation of the PPARγ1 signaling path-
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way remains a promising tool for breast cancer therapy.
The findings presented in this paper warrant further inves-
tigation regarding the use of PPARγ1 ligands, such as
TZDs, in patients who are predisposed or already diag-
nosed with breast cancer. However, more broad and
detailed studies are required to evaluate the impact of
PPARγ1 signaling in breast cancer progression.

Methods
Cell culture
MCF-7 and T47D breast cancer cells were obtained from
the American Type Culture Collection (Rockville, MD).
Cells were cultured in modified DMEM (Gibco BRL,
Gaithersburg, MD) supplemented with 10% fetal bovine
serum (Hyclone). Normal human mammary epithelial
cells (HMEC) (Cambrex) were cultured in MEGM® with
SingleQuot® supplements. All cell lines were grown in
media lacking phenol red at 37°C in a 5% CO2 atmos-
phere.

Western blot analysis
The whole cell lysates were prepared using passive lysis
buffer. Concentrations were determined using a Bradford
Assay (BioRad). 30 μg of total cell lysate per sample was
run on a 10% or 12% SDS polyacrylamide gel. The pro-
teins were transferred to a nitrocellulose membrane,
blocked in 5% TBST, and incubated at 4°C overnight with
primary antibody. The membrane was then washed and
incubated for 4 hours with secondary IgG-HRP antibody.
After incubation the membrane was washed, incubated
with Chemiluminescence substrate (Pierce) for 5 min,
and expose to film. The following primary antibodies
were used: PPARγ mouse monoclonal IgG antibody 1:200
dilution (Santa Cruz Biotechnology, sc-7273), Bcl2
mouse monoclonal antibody 1:1000 dilution (Santa Cruz
Biotechnology, sc-509), PARP-1 rabbit polyclonal anti-
body 1:1000 dilution (Santa Cruz Biotechnology, sc-
2578). Appropriate secondary goat anti-mouse (Santa
Cruz Biotechnology, sc-2055), or bovine anti-goat (Santa
Cruz Biotechnology, sc-2378), or goat anti-rabbit second-
ary antibody 1:1000 dilution (Santa Cruz Biotechnology,
sc-2004) antibodies 1:1000 dilution were applied. Anti-
actin raised in rabbit 1:2000 dilution (Sigma, A 5060) and
goat anti-rabbit secondary antibody 1:1000 dilution
(Santa Cruz Biotechnology, sc-2004) were used to visual-
ize actin. Western Blot Stripping Buffer (Pierce, # 21059)
was used to restore membranes.

shRNAs constructs
The set of five shRNAs for PPARγ1 (TRCN 0000001670-
74) and MAZ (TRCN 0000015343-47) genes as well as
scrambled shRNA and non-hairpin TRC controls were
purchased from The RNAi consortium (TRC) Human
shRNA Library (Open Biosystems). The shRNA construct
includes a hairpin of 21 base pairs, a sense and antisense

stem, and a 6 base-pair loop. Each hairpin sequence is
cloned into a lentoviral vector (pLKo1). Based on struc-
tural evaluation and Western blot analysis the most effi-
cient shRNAs for PPARγ1 (TRCN 0000001672) and MAZ
(TRCN 0000015345) were chosen for transient transfec-
tions.

Dominant-negative PPARγ1 construct
The dominant-negative PPARγ1 mutant was a kind gift of
Dr. Stephen O'Rahilly and Dr. V. Krishna K Chatterjee,
Department of Medicine, Addenbrook's Hospital, Cam-
bridge, U.K. Sequence analysis revealed a single base dele-
tion introducing a premature stop codon (5'-1380
GACAGACTGA1390-3') leading to translation of protein
truncated just before the AF-2 domain.

Transfection assays
Cells were transiently transfected with 3.6 μg of pGL3
plasmid containing 3XPPRE-mTK-Luc and Renilla
(Allred, 2005) per 24-well plate and then co-transfected
with scrambled, PPARγ or MAZ shRNAs, Δ462, or control
plasmids using FuGENE transfection reagent (Roche). 4
hours after transfection cells were subsequently treated
with 10 μM Rosi for 20 hours. Cells were lysed in 80 μl of
passive lysis buffer and treated according to manufacture's
instructions (Promega dual luciferase assay kit). Lumi-
nometry was performed on a Berthold Technologies
Lumat 9507 (Wildbad, Germany). Results were calculated
as raw Luciferase units divided by raw Renilla units
(RLU's). Data is presented as mean fold changes in treated
cells as compared to control cells.

Real-time PCR
Total mRNA was isolated using an RNeasy Mini Kit (Qia-
gen, CA) according to manufactures instructions. Real-
time PCR was performed on total RNA using the TaqMan
One-Step RT-PCR Master Mix Reagents Kit (Applied Bio-
systems). The pre-optimized primers and probes for MAZ,
PPARγ1, and 18S were purchased from Applied Biosys-
tems.

BrdU proliferation assay
MCF-7 cells were seeded at 0.1 × 104 cells/well in 96-well
tissue culture plates. Cells were transiently transfected on
the second and third day using 0.05 μg of plasmid and 0.3
μl of FuGENE 6 transfection reagent (Roche) per well.
Control MCF-7 cells were treated with FuGENE6 only. 16
wells per each shRNA and control were used. The same
experimental set-up was used when cells were transfected
with a dominant-negative form of PPARγ1, Δ462. The
media was changed before the second transfection. Cell
Proliferation ELISA, BrdU (colometric) (Roche) was per-
formed on the fifth day according to the manufacture
instructions.
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Apoptosis assay
The same protocol as for the proliferation assay was used
to plate and transfect MCF-7 cells. A Cell Death Detection
ELISA (Roche) was performed on the fifth day. The assay
is based on quantitative sandwich-enzyme-immunoassay-
principle and uses mouse monoclonal antibodies directed
against DNA and histones. Cells were lysed in a 96-well
plate, centrifuged, and 20 μl of supernatant was trans-
ferred into streptavidin-coated wells. A mixture of anti-
bodies was added and the plate was then incubated for 2
hours. The unbound components were removed by wash-
ing. ABTS substrate was added and the amount of mono-
and oligonucleosomes were measured photometrically
using the ELISA-plate reader according manufacture
instructions (Roche).

Cell cycle analysis
The DNA content of control and shRNAs transfected MCF-
7 cells was analyzed using a detergent-trypsin method
(Vindelov, 1983). MCF-7 cells were seeded at 1 × 106 cells
in 100 mm culture plates. Cells were transiently trans-
fected on the second and third day with 6 μg of plasmid
using 18 μl of FuGENE6 transfection reagent (Roche). On
the fifth day the propidium iodide labeling procedure and
fluorescence-activated cell sorting (FACS) using Mod
FitLT V.3.1 software was performed (University of Ken-
tucky Flow Cytometry Facility).

Statistics
Data was analyzed by a two-way analysis of variance
(ANOVA) using the StatServer 6.1(Insightful, Seattle, WA)
from the server maintained by the University of Ken-
tucky's Department of Statistics. In every 2-way ANOVA,
Tukey's pair-wise comparison test was used post-hoc. P-
values of less than 0.05 were considered to be significant.
One-way ANOVA with Fisher's LSD or Tukey's pair-wise
comparison post-hoc test were also used where appropri-
ate. When appropriate, Student's t-test was also used for
data analysis on Microsoft Excel.
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