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Abstract

Background: MicroRNA-145 (miR-145) is considered to play key roles in many cellular processes, such as
proliferation, differentiation and apoptosis, by inhibiting target gene expression. DNA Fragmentation Factor-45
(DFF45) has been found to be the substrate of Caspase-3, and the cleavage of DFF45 by caspase-3 during
apoptosis releases DFF40 that degrades chromosomal DNA into nucleosomal fragments. There are currently no in-
depth studies on the relationship between miR-145 and the DFF45 gene.

Results: In this study, we identified DFF45 as a novel target of miR-145. We demonstrated that miR-145 targets a
putative binding site in the coding sequence (CDS) of DFF45, and its abundance is inversely associated with DFF45
expression in colon cancer cells. Using a luciferase reporter system, we found that miR-145 suppresses the
expression of the luciferase reporter gene fused to the putative binding site of DFF45. The level of DFF45 protein,
but not DFF45 mRNA, was decreased by miR-145, suggesting a mechanism of translational regulation. Furthermore,

induced tumor cell apoptosis in vitro.

underlie crucial aspects of cancer biology.

we demonstrate that this specific silencing of DFF45 by miR-145 accounts, at least in part, for the staurosporine-

Conclusions: Our study reveals a previously unrecognized function of miR-145 in DFF45 processing, which may

Background

MicroRNAs are important post-transcriptional regula-
tors of gene expression that control diverse physiological
and pathological processes, this control allows for fine-
tuning of the cellular processes, including regulation of
proliferation, differentiation and apoptosis [1]. Micro-
RNAs are initially transcribed as long primary miRNA
by RNA polymerase II or III, and cleaved sequentially
by the microprocessor complex Drosha-DGCRS8 to yield
the precursor miRNA in the nucleus. Precursor miRNA
is then exported from the nucleus and processed in the
cytoplasm by Dicer. The mature miRNA is loaded
together with Ago2 proteins into the RNA-induced
silencing complex (RISC), where it guides RISC to
silence target mRNAs through mRNA cleavage, transla-
tional repression, or deadenylation [2-4]. Most notably,
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changes in the abundance of a single miRNA may affect
the levels of expression of hundreds of different proteins
[5,6]. Although the number of verified human miRNAs
is still expanding, the functions of only a few of them
have been described. Recent studies have shown that the
deregulation of microRNA expression contributes to the
multistep processes of carcinogenesis in human cancer,
either by oncogenetic or tumor suppressor function
[7,8].

A putative tumor suppressing miRNA, miR-145, has
been shown to be decreased in various human cancers
[9-13], and it decreases the apoptosis and proliferation
rate of colorectal cancer cells [14]. We have demon-
strated that miR-145 targets a putative binding site in
the 3’-UTR of the Friend leukemia virus integration 1
(Fli-1) gene, and its abundance is inversely related with
Fli-1 expression in colon cancer tissues (data not
shown). Some other targets of miR-145 include impor-
tant regulators of cell apoptosis and proliferation, such
as c-Myc and IRS-1 [15,16]. IRS-1, a docking protein for
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both the type 1 insulin-like growth factor receptor and
the insulin receptor, delivers anti-apoptotic and anti-
differentiation signals. MiR-145 also down-regulates the
proto-oncogene c-Myc, whose aberrant expression is
associated with aggressive and poorly differentiated
tumors. Recently, the roles of miRNAs in cellular apop-
tosis have been explored widely. However, the connec-
tion between apoptotic networks and miRNA biogenesis
machineries has not been investigated in depth [17-20].
In this report, we demonstrate that DFF45 expression
is controlled at the translational level by miR-145, using
bioinformatic and proteomic techniques. DFF45 is a cas-
pase-3 or caspase-7 substrate that must be cleaved
before apoptotic DNA fragmentation can proceed
[21,22]. DFF45 exists as a heterodimer with a 40 kDa
endonuclease termed DFF40, by a conserved domain of
80 amino acids at their N-terminus [23,24]. DFF45
serves as both a specific inhibitor of DFF40 and as a
molecular chaperone to allow for the appropriate folding
of DFF40 to become an activatable nuclease [25-27].
During apoptosis, Caspase-3 and Caspase-7-mediated
cleavage of DFF45 induces the release and activation of
DFF40, leading to the generation of double-stranded
breaks in inter-nucleosomal chromatin regions and
chromatin condensation [28]. The presence of this DNA
ladder has been used extensively as a typical biochemical
marker for apoptotic cell death [22,26,29]. Thus, the
DFF45 may play a role in malignant transformation and
metastasis, and up- or down-regulation of DFF45
expression might correlate with aggressive cancers
[30,31]. By gain-of-function and loss-of function
approaches, we showed that the endogenous levels of
DFF45 are controlled post-transcriptionally by miR-145
in human colon cancer cells. We further investigated
the function of miR-145 in apoptosis, and showed that
miR-145 is necessary and sufficient to modulate the
apoptotic progression through the DFF45 pathway.

Results

Mature miR-145 is down-regulated in colon cancer cells
We first used qRT-PCR to examine the expression of pri-
mary, precursor and mature miR-145 in normal colon
cells, and in colon cancer cells at a different neoplasm
staging. Compared to the normal colon cells, all cancer
cells showed a significant decrease in the abundance of
precursor or mature miR-145, especially in LS174T cells.
However, the primary miR-145 did not change among
the samples tested (Fig. 1A). We also tested the expres-
sion of wild-type p53 or mutant p53 protein in these
samples, considering that it may affect the transcription
or processing of miR-145 [32]. The p53 status of SW480
(Mutant p53), LS174T (Wild-type p53), SW620 (Mutant
p53), COLO320DM (Mutant p53) and COLO205
(Mutant p53) has been reported previously [33]. The
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expression of p53 protein (wild-type p53 or mutant p53)
was reduced to varying degrees in most of the colon can-
cer cells (Fig. 1D).

Expression of DFF45 is inversely related to that of
miR-145 in colon cancer cells

LS174T cells that express very little mature miR-145
were tranfected with a miR-145 mimic and its inhibitor.
The ectopic expression of mature miR-145 was con-
firmed by the Hairpin-it"miRNAs Real-Time PCR
Quantitation Assay. As expected, about a 6-fold increase
in mature miR-145 was detected in the miR-145 mimic-
transfected cells. In contrast, transfection with the miR-
145 inhibitor reduced mature miR-145 by almost 50% in
LS174T cells (Fig. 1B).

We then performed an antibody microarray to obtain
insights into protein deregulation in LS174T cells treated
with the miR-145 mimic. The five most significantly
decreased proteins in the miR-145 mimic-treated group
relative to the control are listed in Table 1. Among these
proteins, DFF45 decreased dramatically in the cells trea-
ted with the miR-145 mimic (Fig. 1C). The other four
proteins, however, were not reduced significantly after
treatment with the miR-145 mimic by Western blotting
(data not shown). To seek the link between miR-145 and
DFF45, we measured the endogenous expression of
DFF45 in normal colon cells and colon cancer cells. As
shown in Figure 1D, DFF45 was overexpressed in colon
cancer cells, especially in LS174T cells, in which the level
of mature miR-145 was very low (Fig. 1A).

MiR-145 targets a putative binding site in the coding
sequence of DFF45

We used an efficient computational method (RNA22)
for the prediction of the putative miR-145 binding sites
in the full-length sequence of DFF45, based on minimiz-
ing the free energy of duplex structure. An alignment of
human DFF45 at the predicted miR-145 binding site is
shown in Figure 2A.

We chemically synthesized these putative binding
sites, and tested their functions by cloning them into
the Xbal site of the pGL3 reporter vector (Fig. 2B).
Using this reporter system, a functional putative binding
site was identified by simply measuring luciferase activ-
ity. In LS174T cells, only the upstream binding site
(854~876) responded to miR-145 over-expressed exo-
genously (Fig. 2C), and in normal colon cells endogen-
ously over-expressing miR-145 (Fig. 2D).

Specific targeting of the DFF45 putative binding site by
miR-145

To test the specificity of miR-145 at the 854~876 site,
we co-transfected LS174T cells with luc-854 and the
miR-145 mimic at various abundances, and found that
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Figure 1 Expression of endogenous miR-145 and DFF45 protein in colon cancer cells. A. The expression levels of primary, precursor and
mature miR-145 were examined in normal colon cells (normal), Dukes’ type B cells (SW480 and LS174T), Dukes’ type C cells (SW620 and
COLO320DM) and Dukes' type D cells (COLO205) by real time PCR. U6 RNA was used as the quantification control. B. Detection of mature miR-
145 in LS174T cells transfected with the miR-145 mimic and inhibitor. Expression of mature miR-145 in LS174T cells was quantitated 48 hours
after transfection of miR-145 mimic or inhibitor by Hairpin-it™miRNAs Real-Time PCR Quantitation Assay. Assays were performed in triplicate and
are shown as the mean + SD. *: P < 0.05. C. Deregulation of the DFF45 protein was identified by antibody microarray analysis in LS174T cells
transfected with the miR-145 mimic. D. Expression of endogenous DFF45 or p53 protein (wild-type or matant). Western blotting analysis was
performed with total protein isolated from normal colon cells and different colon tumor cells.
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the inhibition of the luciferase activity by miR-145 was
dose-dependent (Fig. 3A). In normal colon cells trans-
fected with the miR-145 inhibitor, the luciferase activity
was increased significantly compared to the inhibitor
control at 24 hours and 36 hours (Fig. 3B).

To further demonstrate the importance of the putative
binding site (854~876), a substitution mutation was gen-
erated to test its activity. In the DFF45-854-Mutation

Table 1 The five most significantly decreased proteins in
the miR-145 mimic-treated group relative to the control

Name  Standard value Standard value  M/C Fold
(M¥) (C*) change
DFF45 0.1829 07215 0.2535 -3.9448
p73a 02419 0.8912 02714 -3.6841
Paxillin 03404 06529 05213 -1.9180
CXCR4 06769 1.1607 05832 -1.7147
Actin 0.6538 1.0844 06029  -16585

* M: miR-145 mimic-treated cells; C: miRNA control-treated cells

vector, seven nucleotides (gagcGgga) were replaced with
ctegGecet (Fig. 3C). We cloned the entire region (coding
region plus 3'UTR) of DFF45 downstream of the repor-
ter. As expected, down-regulation of reporter activity
was detected in the construct that contains the entire
region of DFF45. Correspondingly, we demonstrated
that the mutation in the putative binding site (854~876)
abolished the miR-145-mediated inhibition of the repor-
ter gene (Fig. 3D). Taken together, these data suggest
that the miR-145 binding site (854~876) present in the
DFF45 is critical for miR-145-mediated gene regulation.

MiR-145 regulates DFF45 at the translational level

To identify whether DFF45 potentially regulated by
miR-145, we measured the expression levels of DFF45
by quantitative polymerase chain reaction and Western
blotting after treatment with the miR-145 mimic in
LS174T cells. Ectopic expression of miR-145 signifi-
cantly reduced the level of DFF45 protein at 24 hours
and 48 hours (Fig. 4C). However, we did not detect the
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Figure 2 MiR-145 targets a putative binding site in the coding sequence of DFF45. A. Sequence alignment of miR-145 with the putative
binding sites in the human DFF45 gene. The numbers are relative to the start codon site. B. Schematic diagram of the luciferase reporter
construct. Putative binding sites (PBS) predicted by bioinformatics were cloned at the Xbal site into the 3'UTR of the luciferase gene. C.
Regulation of reporter gene expression by ectopic miR-145. LS174T cells were co-transfected with the miR-145 mimic and a luciferase reporter
containing one putative binding site. D. Regulation of reporter gene expression by endogenous miR-145. Normal colon cells were transfected
with the pGL3 vector or a luciferase reporter containing the 854-876 putative binding sites (luc-854). These experiments were performed in

inhibition of DFF45 at the mRNA level, as measured by
qRT-PCR (Fig. 4A) and real-time PCR (Fig. 4B). These
results suggest that miR-145 targets DFF45 by function-
ing at the level of translational regulation.

Detection of apoptosis by DNA fragmentation

DNA fragmentation is the typical biochemical index of
cell apoptosis. These ladders of DNA fragments are the
size of integer multiples of the length of a nucleosome
(180-200 bp) [34]. In DNA ladder assays, cells trans-
fected with miR-145 mimic/siRNA-DFF45 (50 nM) were
exposed to staurosporine. DNA isolated from LS174T
cells showed the characteristic “ladder” pattern of apop-
tosis in a time-dependent manner (Fig. 5A). As time
went on, the ladder showed up more obviously in the
miR-145 mimic/siRNA-DFF45-treated group. However,
the time-dependent changes were not seen in DNA
samples extracted from normal colon cells treated with
the miR-145 mimic (Fig. 5B). To further understand the
mechanisms underlying this phenomenon, we also mea-
sured by Western blotting the expression levels of
DFF45 protein isolated from LS174T cells (Figs. 5C, D),
or normal colon cells (Figs. 5E, F) transfected with the
miR-145 mimic/siRNA-DFF45. In colon cancer cells,
but not in normal colon cells, the miR-145 mimic or

siRNA-DFF45 negatively regulates DFF45 expression
during apoptotic progression. Non-malignant colon cells
are not apparently affected by the ectopic expression of
miR-145, consistent with its high level of expression in
normal colon cells (Fig. 1A).

Morphology of apoptosis detected by Hoechst staining
One of the events in apoptosis is the condensation of
nuclear chromatin. After being exposed to staurosporine
for 12 h, the morphology of LS174T cells was investi-
gated by Hoechst 33528 dye staining and visualization
under a fluorescent microscope. Hoechst dye binds to
the AT rich regions of double stranded DNA and exhi-
bits enhanced fluorescence. Cells treated with the miR-
145 mimic/siDFF45 displayed the typical apoptotic
nuclear morphology (DNA condensation) (Figs. 6D, H),
whereas the nuclear morphology was intact and normal
in the controls. The percentage of cell death was calcu-
lated by counting the number of cells with condensed
chromatin among the cells (Fig. 6K).

Discussion

Given the great importance of DFF45 in apoptotic net-
works, it is reasonable to propose that a proper expres-
sion level of DFF45 will be required to achieve sensitivity
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Figure 5 Effects of miR-145 on staurosporine-induced DNA fragmentation. LS174T cells (A), or normal colon cells (B) were transfected with

the miR-145 mimic or siRNA-DFF45 (50 nM), and then exposed to staurosporine. DNA ladders in samples were collected at various times after

treatment with staurosporine and visualized on a 1.5% agarose gel. After transfection with the miR-145 mimic or siRNA-DFF45, down-regulation

of DFF45 protein was detected by Western blotting at 6, 12 and 18 hours in LS174T cells (C), but not in normal colon cells (E). Values in D and
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F are the means of three separate experiments + SD. *, P < 0.05.

to drug-induced apoptosis, and that up- or down-
regulation of DFF45 expression might correlate with can-
cer aggression. Induction of DFF45 seems to be involved
in the production of heterogenous subclones in human
gastric cancer cells, and in their enhanced ability to avoid
apoptosis [35]. Hara et al. found that when DFF45 is
overexpressed in human renal cell carcinoma cells, it ren-
ders them highly resistant to therapy-induced apoptosis
[36,37]. Additionally, thymocytes from DFF45 mutant
mice exhibit neither DNA laddering nor chromatin con-
densation when exposed to apoptotic stimuli [38,39].
DFF45 was expressed preferably in low-stage neuroblas-
toma tumors, and to a lesser degree in high-stage neuro-
blastomas [40]. However, the molecular mechanism
resulting in aberrant expression of human DFF45 in can-
cer cells is poorly understood.

In this report, we show that DFF45 is a direct target
for miR-145. Our studies indicated that the levels of
mature miR-145 were significantly lower in colon cancer
cells compared with their levels in normal colon cells.
Antibody microarray and Western blotting analyses on
suitably prepared cell extracts showed that DFF45 levels

in colon cancer cells far exceed the levels exhibited by
normal colon cells (Fig. 1). There may have been a rela-
tionship between these differences in DFF45 levels and
miR-145 levels. Based on these results, we selected
LS174T cells for further studies. Using a luciferase
reporter system, we identified a putative binding site in
the CDS of human DFF45 for miR-145 (Figs. 2, 3). In
LS174T cells, the miR-145 can negatively regulate
DFF45 expression at the translational level (Fig. 4). The
importance of miR-145 in this response was confirmed
by transfection of the miR-145 mimic into LS174T cells,
and the restoration of DNA fragmentation or chromatin
condensation to levels similar to that of normal colon
cells (Figs. 5, 6). Further, on the basis of the modest
protein silencing observed in these studies, miR-145
may act to fine-tune protein expression rather than act-
ing as an all-or-none switch. These results provided a
mechanism for how the regulation of DFF45 signaling
causes cancer cells to become sensitive to drug-induced
apoptosis.

We also tested the expression of p53 protein that is
lost or mutated in more than half of all human cancers



Zhang et al. Molecular Cancer 2010, 9:211 Page 7 of 10
http://www.molecular-cancer.com/content/9/1/211
J K 2
@
o
Q ~
g8
a
(o]
o
[y
i s s s SR Stk S 0, 2
000/9000'?,}%4.’,,]’);9 % 0”? 00’7.? O‘:f‘ s Pogy,
or Yo 20 Moy g O s B T, ¥
% % %4 ]

Figure 6 Nuclear staining of LS174T cells with Hoechst 33258. After transfection with the miR-145 mimic or siRNA-DFF45 (50 nM), and
subsequent exposure to staurosporine (STA) for 12 h, LS174T cells were stained with Hoechst 33258, and visualized using a fluorescence
microscope. (A) MiRNA control-treated group. (B) MiRNA control with STA-treated group. (C) MiR-145 mimic-treated group. (D) MiR-145 mimic
with STA-treated group. (E) siRNA control-treated group. (F) siRNA control with STA-treated group. (G) siRNA-DFF45-treated group. (H) siRNA-
DFF45 with STA-treated group. (I) Untreated group. (J) STA-treated group. LS174T cells treated with the miR-145 mimic or siRNA-DFF45 showed
apoptotic morphology: chromatin condensation. (K) The percentage of cell death was calculated by counting the number of cells with
condensed chromatin over the total number of cells. The data represent the mean + SD of three independent experiments. At least 300 cells

were counted for each condition.

[32]. p53 is a transcription factor that induces the
expression of miR-145 by interacting with a potential
p53 response element in the miR-145 promoter [15].
Additionally, in response to DNA damage, p53 interacts
with the Drosha processing complex, and facilitates the
processing of primary miR-145 to precursor miR-145
[41]. It is possible that the loss of p53 function may fail
to stimulate miR-145 expression. Consistently, precursor
miR-145 or mature miR-145 was decreased in all colon
tumor cells tested, all of which had down-regulated
wild-type or mutant p53 protein (Fig. 1). Based on these
results, an appealing hypothesis to explain the miR-145
suppression observed in colon cancer cells is that it is
linked to a deficit in miRNA processing, and there is no
relation between processing of primary miR-145 to pre-
cursor miR-145 and the p53 status (wild-type or
mutant).

Together, our results define the role of miR-145 in the
posttranscriptional regulation of DFF45, and suggest
that miR-145 provides a possible link between p53 and
DFF45 in this gene regulatory network. The potential
use of a natural miRNA to sensitize cells to execute full-

blown apoptosis is exciting, and will hopefully lead to a
new therapeutic strategy for the treatment of colon
cancer.

Conclusions

Our study revealed a previously unrecognized function
of miR-145 in DFF45 processing; this function may
underlie crucial aspects of cancer biology. This function
may provide the possibility that the effect of chemother-
apeutics for human colon cancer may be improved by
utilization of miR-145 in the near future.

Methods and materials

Tumor cells and materials

Human colon cancer cells SW480 (ATCC Number:
CCL-228™), LS174T (ATCC Number: CL-188™), SW620
(ATCC Number: CCL-227™), COLO320DM (ATCC
Number: CCL-220™) and COLO205 (ATCC Number:
CCL-222") were obtained from American Type Culture
Collection. Normal colon cells were collected at Renji
hospital, Shanghai, China. Fresh tissue samples were
immediately put into liquid nitrogen, followed by
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primary culture in DMEM high glucose medium con-
taining antibiotics. MiR-145 mimic/inhibitor was pur-
chased from Ambion (Austin, TX). SYBR Premix Ex
Taq™(perfect Real Time) was obtained from Takara Bio
(Madison, WI). DFF45 antibody and p53 antibody were
purchased from ProteinTech Group Inc (Chicago, IL).
SiRNA for DFF45 and control siRNA were purchased
from GenePharma (Shanghai, China). Staurosporine was
purchased from Sigma (Milwaukee, WI).

Cell transfection

Transfection of cells was performed with Lipofectamine
2000 Reagent (Invitrogen, Carlsbad, CA) following the
manufacturer’s protocol. Briefly, the cells were seeded in
6-well plates at 30% confluence the day before transfec-
tion. MiR-145 mimic/inhibitor and miRNA control (50
nM each), were used for each transfection.

Antibody Microarray analysis

Forty-eight hours after transfection with miR-145
mimic, total protein was isolated from LS174T cells and
measured using BCA Protein Assay Reagent (Pierce). A
human Antibody Microarray-720 slides kit was pur-
chased from SPRING BIOSCIENCE. Briefly, the mem-
branes were blocked with a blocking buffer, and then
0.1 mg Biotin Labeled Protein Sample was added and
incubated at room temperature for 2 h. The membranes
were washed, and 1 ml of Streptavidin Solution was
added and incubated at room temperature for 45 min.
The membranes were incubated with 1 ml of Detection
Antibody-Cy3 at room temperature for 45 min. The
slides were exposed to film and processed by
autoradiography.

MicroRNA and mRNA detection

QRT-PCR assays were performed for measurement of
the expression levels of primary, precursor and mature
miRNAs. Briefly, total RNA was extracted with a mir-
Vana miRNA Isolation Kit (Ambion) and subjected to
reverse transcription with the Reverse Transcription kit
(Promega). QRT-PCR was performed with the Rotogene
3000 real time PCR system. For detection of mature
miRNAs, Hairpin-it"miRNAs Real-Time PCR Quantita-
tion Kit (GenePharma, China) was used in accordance
with the manufacturer’s protocol. Results were normal-
ized to U6 snRNA. For measurement of the primary
and precursor miRNA expression, real-time PCR was
performed using the SYBR method and B-actin RNA
was used for normalization. The primer sequences used
were pre-miR-145 forward 5-GTCCA GTTTT CCCAG
GAATC-3', reverse 5'-AGAAC AGTAT TTCCA
GGAAT-3'; pri-miR-145 forward 5'-TGGAT TTGCC
TCCTT CCCA-3', reverse 5'-TTGAA CCCTC ATCCT
GTGAG CC-3'; B-actin forward 5'-TCACC CACAC
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TGTGC CCATC TACGA-3', reverse 5'-CAGCG
GAACC GCTCA TTGCC AATGG-3'; U6 snRNA for-
ward 5'-CTCGC TTCGG CAGCA CA-3’, reverse 5'-
AACGC TTCAC GAATT TGCGT-3' [41].

To detect relative levels of DFF45 mRNA, real-time
PCR was performed using the SYBR method at the fol-
lowing conditions: 95°C 30 s, 1 cycle; 95°C 5 s, 55°C 20
s, 72°C 15 s, 40 cycles. PCR primers were DFF45 for-
ward 5'-GTTGC CTTGA ACTGG GACA-3/, reverse 5'-
CGCTG CTGCT ATGTG GG-3'.

Bioinformatic prediction of miR-145 targets

Putative miR-145 binding sites in DFF45 genomic
sequence were predicted by the RNA22 program based
on minimizing folding energy and maximizing number
of paired-up bases in heteroduplex http://cbcsrv.watson.
ibm.com/rna22.html.

Plasmid construction

Though bioinformatic analysis, the putative binding site
of miR-145 was chemically synthesized and cloned into
pGL3 control vector (Promega) at Xbal site. To con-
struct the DFF45-854-Wild vector, the entire region
(coding region plus 3'UTR) of DFF45 was amplified
from the cDNA of LS174T cells using DFF45 PCR pri-
mers: forward-primer 5-GGTCC CACCT TGTGG
AGGAT and reverse-primer 5-TGAGA CGGAG
TCTCG CTCTG TT, and then cloned into the pGL3
control vector at Xbal site. To create the DFF45-854-
Mutation vector, seven nucleotides (TTCAG GAGGC
CTGT gagcG ggaG) were changed for the reporter
construct.

Luciferase assay

LS174T cells or normal colon cells were plated in tripli-
cate wells of a 24-well plates and transfected with luci-
ferase reporters fused with putative binding site for
miR-145, and miR-145 mimic/inhibitor. Transfection
efficiency was corrected by a renilla luciferase vector
(pRL-CMYV, Promega). The cells were harvested for luci-
ferase assays 24 hour after transfection. The Dual-
Luciferase Reporter Assay System (Promega) was used
to measure the reporter activity according the manufac-
turer’s protocol.

Western blotting assay

Protein concentration was measured using Pierce BCA
Protein Assay Reagent (Thermo-Fisher Scientific, Rock-
ford, IL). Cell lysates (50 pg) were electrophoresed
through 10% polyacrylamide gels and transferred to a
NC membrane. The membrance was incubated with
DFF45 antibody or p53 antibody. Secondary antibodies
were labeled with IRDyes. Signals were visualized using
an Odyssey Infrared Imaging System.
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Nuclear DNA fragmentation assay

LS174T cells (10°) and normal colon cells were treated
with the indicated chemicals for appropriate time point.
Cells were incubated in lysis buffer [10 mmol/l Tris, 1
mmol/l EDTA, 100 mmol/l NaCl, 5 g/l SDS, 1 pg/ul
RNase A, pH 8.0] at 37°C for 30 min. At the end of
incubation, proteinase K was added to a final concentra-
tion of 0.1 mg/ml and the incubation was continued at
50°C for 8 h. DNA was extracted with phenol/chloro-
form and precipitated with ethanol. DNA pellets were
dissolved in TE buffer and analyzed on a 1.5% agarose
gel with UV light after ethidium bromide staining.

Condensed chromatin

Cells were seeded on sterile cover glasses placed in the
12-well plates. When they grew to approximately 70%
confluence, cells were washed twice in ice-cold PBS (pH
7.4). After washing, the cells were fixed with 4% parafor-
maldehyde in PBS for 30 minutes at 4°C, washed twice
with PBS and stained with Hoechst 33258 (Invitrogen)
at a final concentration of 10 pug/ml at room tempera-
ture for 5 min. Nuclear morphology was then examined
using an IX71fluorescent microscope (Olympus).

Statistical analysis

All of the results are expressed as mean + standard
deviation. Statistical analysis was performed with Stu-
dent’s t-test for comparison of two groups. In both
cases, differences with P < 0.05 were considered to be
statistically significant.
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