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Abstract

Background: Micro-ribonucleic acid (miRNA)-199a-5p has been reported to be decreased in hepatocellular
carcinoma (HCC) compared to normal tissue. Discoidin domain receptor-1 (DDRT1) tyrosine kinase, involved in cell
invasion-related signaling pathway, was predicted to be a potential target of miR-199a-5p by the use of MiRNA
target prediction algorithms. The aim of this study was to investigate the role of miR-199a-5p and DDR1 in HCC
invasion.

Methods: Mature miR-199a-5p and DDR1 expression were evaluated in tumor and adjacent non-tumor liver tissues
from 23 patients with HCC undergoing liver resection and five hepatoma cell lines by the use of real-time
quantitative RT-PCR (gRT-PCR) analysis. The effect of aberrant miR-199a-5p expression on cell invasion was assessed
in vitro using HepG2 and SNU-182 hepatoma cell lines. Luciferase reporter assay was employed to validate DDRT as
a putative miR-199a-5p target gene. Regulation of DDRT expression by miR-199a-5p was assessed by the use gRT-

PCR and western blotting analysis.

but not SNU-182 hepatoma cells.

Results: A significant down-regulation of miR-199a-5p was observed in 65.2% of HCC tissues and in four of five
cell lines. In contrast, DDR1 expression was significantly increased in 52.2% of HCC samples and in two of five cell
lines. Increased DDR1 expression in HCC was associated with advanced tumor stage. DDR1 was shown to be a
direct target of miR-199a-5p by luciferase reporter assay. Transfection of miR-199a-5p inhibited invasion of HepG2

Conclusions: Decreased expression of miR-199a-5p contributes to increased cell invasion by functional
deregulation of DDRT activity in HCC. However, the effect of miR-199a-5p on DDRI varies among individuals and
hepatoma cell lines. These findings may have significant translational relevance for development of new targeted
therapies as well as prognostic prediction for patients with HCC.

Introduction

Hepatocellular carcinoma (HCC) is the fifth most com-
mon malignancy worldwide and has an increasing inci-
dence in western countries [1]. Although the risk factors
for HCC are well characterized, the molecular pathogen-
esis of this particular tumor type is not well understood
[2]. Micro-ribonucleic acids (miRNAs) represent an
abundant class of endogenous small RNA molecules of
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20-25 nucleotides in length [3] capable of mediating a
vast gene regulatory network [4]. MiRNAs can regulate
gene expression by direct cleavage of targeted messen-
ger-RNAs (mRNAs) or by inhibiting translation through
complementarity to targeted mRNAs at the 3'untrans-
lated regions (UTRs) [5]. Computational analysis indi-
cates that the total number of miRNAs may be greater
than 1% of the protein coding genes in the human gen-
ome [6]. To date, 721 human miRNAs are annotated in
the miRBase release 14.0 database [7]. Genes targeted by
miRNAs control multiple biological processes in health
and disease [8], including cancer development [9].
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Accumulating evidence suggests that some miRNAs may
function as oncogenes or tumor suppressors [10].
Recently, miRNA expression patterns have been investi-
gated in HCC [11-16]. Although decreased expression of
miR-199a-5p has been frequently demonstrated in HCC
[11,12,15], functional analysis and translational relevance
of this phenomenon has not been defined. The discoidin
domain receptor (DDR) belongs to a novel class of
receptor tyrosine kinases with a characteristic discoidin
homology domain, stalk region, transmembrane region,
juxtamembrane region, and kinase domain [17]. The
DDR family consists of two members, DDR1 and DDR2,
which can be alternatively spliced into five DDRI1 iso-
forms (DDR1a-e) [18]. Over-expression of DDRI was
detected in several human cancers including breast [19],
ovary [20], and lung [21]. The precise mechanism(s) by
which these receptors may contribute to oncogenesis
are not yet known. Targeted deletion of DDRI in mice
results in severe defects in placental implantation and
mammary gland development [22], suggesting a poten-
tial role in cell migration and extracellular matrix degra-
dation. Over-expression of DDR1 has been shown to
increase the migration and invasion of hepatoma cells in
vitro [23], implicating a causal role of DDR1 in promot-
ing tumor progression. DDRI is predicted to be a poten-
tial target of miR-199a-5p using publicly available
PicTar (4-way), TargetScanS, and miRanda algorithms
[24]. Thus, we postulated that aberrantly expressed
miR-199a-5p may contribute to invasion by modulation
of DDR1 expression in HCC patients.

Methods

Patients, tissues, cell lines, and cultures

HCC tissues and adjacent non-tumor tissues (NTs) used
for qRT-PCR were collected from 23 HCC patients who
underwent liver resection between December 2000 and
March 2007 at the University Hospital Essen (Essen,
Germany). Tissues were snap frozen in liquid nitrogen
immediately after resection and then stored at -80°C
until use. Demographic patient data are presented in
Table 1. Tumor staging was performed according to the
American Joint Committee on Cancer and International
Union Against Cancer (AJCC/UICC) staging system
(6th edition, 2002). Histological tumor grading was per-
formed according to the Edmondson-Steiner classifica-
tion: grade 1-2 (well differentiated), grade 3 (moderately
differentiated), and grade 4 (poorly differentiated). The
study was approved by the local ethics committee and
all patients provided written informed consent. Hepa-
toma cell lines Hep3B (HB-8064), HepG2 (HB-8065),
SK-HEP-1 (HTB-52) and SNU-182 (CRL-2235) were
obtained from the American Type Culture Collection
(Manassas, VA, USA) and cultured as recommended by
the supplier. HuH-7 was a kind gift from Dr. Brigitte
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Table 1 Demographic data of patients (n = 23)

Variable Value + SD" (%)
Age (years) 636 + 155
Gender (male) 16 (69.5)
Underlying liver disease 16 (69.5)
Alcoholic liver disease 2 (8.7)
Cryptogenic cirrhosis 3(13.1)
Hepatitis B 3(13.1)
Hepatitis C 3(13.1)
Nonalcoholic fatty liver disease 521.6)
Multiple tumoral nodules 10 (43.5)
Tumor size - diameter of the biggest nodule (cm) 86 + 43
Tumor grade®

Well-differentiated (G1-2) 2 (87)
Moderately-differentiated (G3) 14 (60.9)
Poorly-differentiated (G4) 7 (304)
vicc/Aicc®

| 3(13.1)

Il 6 (26.1)

1l 13 (56.5)
vV 1423)

'Standard deviation
2Edmondson-Steiner

3International Union Against Cancer (UICC)/American Joint Committee on
Cancer (AJCC) tumor-node-metastasis (TNM) staging system (6™ version, 2002)

Pitzer (Department of Vectorology and Experimental
Gene Therapy, Biomedical Research Center, University
of Rostock, Rostock, Germany). Primary human hepato-
cytes were obtained from ScienCell (San Diego, CA,
USA).

Generation of firefly luciferase constructs

Standard molecular biology techniques were used for
generation of all constructs. For generation of a reporter
vector bearing a human DDR1 fragment with putative
miR-199a-5p binding sites, target sequences were cloned
in the pMIR-REPORT Luciferase vector (Ambion). The
pMIR-REPORT™ miRNA Expression Reporter Vector
System consists of an experimental vector with a firefly
luciferase reporter gene under the control of a cytome-
galovirus promoter/termination system and an asso-
ciated beta-galactosidase (B-gal) reporter gene control
plasmid. The 3'UTR of the luciferase gene contains a
multiple cloning site for insertion of predicted miRNA
binding targets. By cloning a predicted miRNA target
sequence into pMIR-REPORT, the luciferase reporter is
subjected to regulation that mimics the miRNA target.
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The pMIR-REPORT f-gal reporter plasmid is used for
transfection normalization. A human DDRI 3'UTR 457-
bp fragment bearing all 4 putative binding sites for miR-
199a-5p, which are identical among all the DDR1 splice
variants, was generated by RT-PCR from total RNA
extracted from HepG2 cells. Primers (Spel and HindIll
restriction sites are underlined) used to amplify this
fragment were 5'-ACTAGTTTCCTTCCTAGAAG
CCCCTGT-3' (forward primer) and 5-AAGCTTCCC-
CAAT CCCAATATTTACTCC-3' (reverse primer)
(Eurofins MWG Operon, Ebersberg, Germany). The
PCR product was purified on agarose gel, isolated and
first inserted into the pGEM-T easy vector (Promega)
following the manufacturer’s instructions. The pGEM-T
plasmids were digested with the appropriate restriction
enzymes and electrophoresed in agarose gel. The iso-
lated insert was then excised from the gel, purified and
subsequently subcloned in the HindIII/Spel site of the
pMIR-REPORT Luciferase vector. Plasmid constructs
were verified for correctness by DNA sequencing using
ABI PRISM°® 3130 Genetic Analyzer (Applied
Biosystems).

Transfections

Pre-miR™ miRNA precursors of miR-199a-5p and non-
targeting control miRNA precursors (Pre-miR™ miRNA
Precursor Molecules-Negative Control #1) were pur-
chased from Ambion, Inc. (Austin, TX, USA). Short
interfering RNA (siRNA) against DDRI mRNA (DDRI-
siRNA) and a negative control siRNA were obtained
from Qiagen (Hilden, Germany). Transfections of
miRNA, siRNA as well as cotransfections of miRNA
precursors and reporter vectors were performed using
Lipofectamine 2000 (Invitrogen Corporation, Carlsbad,
CA, USA). Conditions for HepG2 and SNU-182 cells
were optimized to yield transfection efficiencies of 78%
and 67%, respectively, with a cell viability > 80%.
GAPDH knockdown and cell viability were both
assessed by the KDalert™glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) assay kit (Ambion) for small
RNA transfection.

gRT-PCR

Total RNA from tissues and cells was prepared using
the miRNeasy Mini Kit (Qiagen). The integrity and
quantity of extracted RNA were assessed using Agilent
RNA 6000 Nano Chip kit (Agilent Technologies, Wald-
bronn, Germany) with an Agilent 2100 Bioanalyzer (Agi-
lent Technologies). Samples with RNA integrity number
(RIN) values higher than 5 or higher than 8 were con-
sidered to have good and perfect total RNA quality,
respectively, for downstream qRT-PCR application [25].
Therefore, RNA samples with RIN values lower than 5
were excluded from this study. Total RNA was treated
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with TURBO DNA-free"kit (Ambion) to remove any
contaminating DNA from the RNA preparations. Taq-
Man® qRT-PCR assays (Applied Biosystems, Darmstadt,
Germany) were performed for qRT-PCR analysis to
determine the quantity of mature miRNA. The primer
and probe design for miRNA was done according to
Chen et al. [26]. A multiplex reverse transcription reac-
tion was carried out using 50 ng of total RNA and the
TaqMan® MicroRNA Reverse Transcription Kit as
described by Tang et al. [27]. PCR was performed using
TagMan® Universal PCR Master Mix without AmpErase®
uracil N-glycosylase according to the manufacturer’s
instructions. PCR efficiency of each set of primers and
probes for each run was determined by a series of 2-fold
c¢DNA dilutions of total RNA from primary human
hepatocytes. DDRI mRNA expression was determined
by qRT-PCR assay using the SYBR® Green QuantiTect
RT-PCR Kit (Qiagen). Again, a series of 2-fold RNA
dilutions was performed to determine PCR efficiency.
All samples were run in triplicate on 96-well reaction
plates with the iQ5 multicolor real-time PCR detection
system (Bio-Rad, Hercules, CA, USA). Data were
rescaled using qBase (version 1.3.5) [28], and the opti-
mal reference genes were determined using geNorm
(version 3.5) [29]. One sample was used as an inter-run
calibration control to compare quantities between plates.
Expression of mature miR-199a-5p was normalized with
expression of small nucleolar RNA C/D box 44
(RNU44) and hydroxymethyl-bilane synthase (HMBS).
Expression of DDRI mRNA was normalized with opti-
mal reference genes as previously described [30]. The
sequences of primers and probes are shown in Table 2.

Actinomycin D treatment for determination of mRNA
stability

HepG2 cells were plated in 24-well plates and trans-
fected with 10 nM of miR-199a-5p, miR-control or 100
nM si-DDRI as a positive control. After transfection for
6 hours, cells were incubated with or without 4 pg/ml
of actinomycin D (Sigma-Aldrich, Chemie GmbH, Stein-
heim, Germany) for additional 36 hours. Total RNA was
extracted from cells and DDR1 mRNA was quantified
by qRT-PCR described above. The expression levels of
DDRI are presented as values normalized against 10°
copies of B-actin transcripts.

Luciferase reporter assay

The pMIR-DDRI-3'-untranslated region (UTR) lucifer-
ase vector, containing the putative binding site for miR-
199a-5p in the multiple cloning site within the 3' UTR
of the luciferase gene in the pMIR-REPORT™ miRNA
Expression Reporter Vector (Ambion) was constructed
according to the manufacturer’s instructions. HepG2
cells were plated at 2 x 10° cells/well in triplicate in
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Table 2 Primers and probes for miR-199a-5p, DDR1 and reference genes

Gene Primer Sequence (5'—3’)
miR-199a-5p RT CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGAACAGGT
Forward ACACTCCAGCTGGGCCCAGTGTTCAGACTAC
Reverse CTCAACTGGTGTCGTGGAGTCGGCAA
Probe (6-FAM) TTCAGTTGAGGAACAGGT (MGB*)
RNU44 Forward CCTGGATGATGATAGCAAATGC
Reverse GGCAATTCAGTTGAGAGTCAGTTAGA
Probe (6-FAM) ACTGAACATGAAGGTCTT (MGB*)
HMBS Forward ATGTCTGGTAACGGCAATGC
(TagMan assay)
Reverse GTACCCACGCGAATCACTCT
Probe (6-FAM) CTGCAACGGCGGAAGAAAACAGC
DDR1 Forward AATCGCAGACTTTGGCATGAG
Reverse CGTGAACTTCCCCATGAGGAT
GAPDH Forward TGCACCACCAACTGCTTAGC
Reverse GGCATGGACTGTGGTCATGAG
HMBS Forward TGCAACGGCGGAAGAAAA
(SYBR Green assay)
Reverse ACGAGGCTTTCAATGTTGCC
HPRT1 Forward TGACACTGGCAAAACAATGCA
Reverse GGTCCTTTTCACCAGCAAGCT
SDHA Forward TGGGAACAAGAGGGCATCTG
Reverse CCACCACTGCATCAAATTCATG

*MGB: minor grove binder with non fluorescent quencher; miR-199a-5p: microRNA excised from the 5 arm of microRNA-199a precursor; RNU44: small nucleolar
RNA, C/D box 44; HMBS: hydroxymethyl-bilane synthase; DDR1: discoidin domain receptor-1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HPRT1:
hypoxanthine phosphoribosyl-transferase 1; SDHA: succinate dehydrogenase complex, subunit A.

12-well plates. The pMIR-DDRI1-3'-UTR construct
(200 ng) together with B-gal expression vector pMIR-
REPORT f-gal (200 ng) (Ambion) was cotransfected
with Pre-miR™ miRNA Precursor Molecules or negative
control miRNA precursors (Ambion). Luciferase assays
and B-gal enzyme assays were performed 24 hours after
transfection according to the manufacturer’s protocol
(Promega Corporation, Madison, WI, USA). Firefly luci-
ferase activity was normalized to B-gal expression for
each sample.

Matrigel matrix invasion assay

Cell invasion assays were conducted using BD BioCoat
Matrigel Invasion chambers (BD Biosciences Clontech,
Heidelberg, Germany). Briefly, 48 hours after transfec-
tion 4 x 10* HepG2 cells or 2 x 10* SNU-182 cells were
seeded into the top chamber with a Matrigel coated fil-
ter and 750 pl Dulbecco’s Modified Eagle Medium con-
taining 5% fetal bovine serum was used as a
chemoattractant. Simultaneously, 100 pl of the cell sus-
pension was seeded into 96-well plate in five replicates
for cell number normalization using WST-1 assay.
Inserts were incubated at 37°C with 5% CO, for
22 hours. After incubation, cells that were still on the
upper side of the filters were mechanically removed.
Cells that migrated to the lower side were fixed with

100% methanol and stained with 1% toluidine blue
(Sigma-Aldrich) in 1% borax (Sigma-Aldrich). Cells were
counted in five fields for triplicate membranes at 10x
magnification using an inverted optical microscope
(Nikon ECLIPSE TS100, Nikon, Japan). The WST-1
assay was also performed and the invasion index was
normalized to cell numbers.

Cell proliferation assay

Cell proliferation was assessed using the water-soluble
tetrazolium-1 (WST-1) assay following the manufac-
turer’s protocol (Roche Applied Science). Cells were pla-
ted at the density of 8,000/well in 96-well plates (BD
Biosciences, Rockville, MD), transfected as described
above, and incubated at 37 °C. Cell proliferation was
assessed after 72 hours in 5 replicates.

Western blotting

Transfected cells were washed once with ice-cold PBS
and lyzed in 1 x blue loading buffer (Cell Signaling
Technology, Danvers, MA, USA) supplemented with a
protease inhibitor cocktail (Roche Diagnostics). Protein
samples were subjected to 10% of SDS-PAGE and
blotted with primary antibody selectively recognizing
DDR1 (C-20, Santa Cruz Biotechnology). To determine
the amounts of loaded proteins, blots were probed with
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GAPDH (Cell Signaling Technology). Protein bands
were visualized using ECL Plus Western blotting detec-
tion reagents (Amersham Biosciences, Buckinghamshire,
UK) after incubation with appropriate HPR-conjugated
secondary antibodies (Jackson Immuno Research
Laboratories, West Grove, PA, USA), followed by expo-
sure to Kodak Bio-Max films (Carestream Health, Paris,
France).

Statistical analysis

Data are expressed as mean = SD unless otherwise indi-
cated. Categorical data are described as frequency of the
subjects with a specific characteristic. Chi-square test or
Fisher’s exact test was used for comparing categorical
data and Student’s t-test, Mann-Whitney-U-test, one-
way ANOVA or Kruskal-Wallis test, when appropriate,
was used for comparing continuous variables. Spear-
man’s rank test correlation coefficient was used to mea-
sure the degree of association between two quantitative
variables. Agreement of quantitative variables was evalu-
ated by the correlation coefficient (r). To identify poten-
tial predictors of AJCC/UICC stage III-1V, univariate
and multivariate analyses were performed. A forward
stepwise selection method was used to select variables
for the multivariate regression model. Two-tailed
p-values less than 0.05 were considered statistically sig-
nificant. Statistical analysis was performed using SPSS
software version 12.0 (SPSS Inc., Chicago, IL, USA).

Results

Patient demographic data

A total of 23 patients were enrolled in the study and
their characteristics are shown in Table 1. The mean
age of the patients was 63.6 + 15.5 years and 69.6%
were male. There was no difference between cirrhotic
and non-cirrhotic patients regarding number and size of
tumors, AJCC/UICC stage, recurrence, or intrahepatic
metastasis.

Decreased miR-199a-5p expression in human HCC tissues
and cell lines

Matched tumoral and non-tumoral tissues of 12 patients
were also included in another study, in which global
miRNA profiling using miRNA microarray was per-
formed (data not shown). MiR-199a-5p expression data
acquired by real time RT-PCR correlated well with
microarray data (r = 0.8077, p < 0.001), indicating that
the qRT-PCR results are reliable. A significant down-
regulation of miR-199a-5p (mean 0.15, SE 0.05, 95% CI
0.04-0.25, range 0.00-0.61) was noted in 15 of 23
(65.2%) HCC tissues compared to NTs (mean 1.24, SE
0.13, 95% CI 0.96-1.53, range 0.65-2.22, p < 0.0001,
Figure 1A). No correlation between miR-199a-5p
expression and clinical parameters was encountered. We
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Figure 1 Expression of miR-199a-5p and DDR7 in HCC
specimens. qRT-PCR analysis was performed using 23 paired
surgical specimens of HCC tissues and adjacent normal tissues for
miR-199a-5p (A) and DDR1 (B). Expression levels normalized to
expression of reference genes, RNU44 and HMBS (A) and HMBS and
GAPDH (B), are shown. Quantitative values representing the mean
and SD from experiments performed in triplicate are presented.
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next compared miR-199a-5p expression between hepa-
toma cell lines and primary human hepatocytes. Simi-
larly to results obtained from HCC tissues, expression of
miR-199a-5p was significantly (p < 0.001) decreased in
four HCC cell lines (Hep3B, HepG2, HuH-7, and SK-
HEP-1). However, increased expression of miR-199a-5p
was found in another hepatoma cell line, SNU-182,
compared with primary human hepatocytes (Figure 2A).

Expression of DDR1 in human HCC tissues and cell lines

DDR1 was found to be significantly (p < 0.001) upregu-
lated in HCC tissues (mean 8.49, SE 2.03, 95% CI 4.02-
12.95, range 2.45-23.36) compared to matched NTs
(mean 2.3, SE 0.58, 95% CI 1.02-3.57, range 0.74-8.15)
in 12 of 23 (52.2%) patients (Figure 1B). Similarly, in
two out of five hepatoma cell lines, HepG2 and SNU-
182, DDRI expression was significantly (p < 0.001) upre-
gulated compared to primary human hepatocytes (Figure
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Figure 2 Expression of miR-199a-5p and DDR1 in human HCC
cell lines. Expression levels of miR-199a-5p (A) and DDR1 (B) were
determined by gRT-PCR analysis for 5 HCC cell lines (Hep3B, HepG2,
HuH7, SK-Hep-1 and SNU-182) and primary human hepatocytes
(HH). The expression levels were normalized to reference genes,
RNU44 and HMBS (A) and HMBS and GAPDH (B). Quantitative values
representing the mean and SD from experiments performed in
triplicate are presented. *p < 0.001 vs. primary human hepatocytes.

2B). DDRI1 expression was correlated significantly with
both AJCC/UICC stage (r = 0.45, p = 0.03) and tumor
status (r = 0.42, p = 0.04) in patients. Relative DDRI
expression values of AJCC/UICC stage III-IV patients
(mean 7.11, SE 1.91, 95% CI 2.97-11.24, range 0.18-
26.36) were significantly higher than those of AJCC/
UICC stage I-II patients (mean 2.19, SE 0.64, 95% CI
0.71-3.67, range 0.25-5.65, p = 0.01) (Figure 3). Analyz-
ing predictive factors for advanced tumor stage at diag-
nosis of HCC (Table 3), we found a significant
association between AJCC/UICC stage III-IV and the
following variables: histological grade of HCC (poorly
differentiated) (p = 0.01), presence of macrovascular
invasion (p = 0.04), and increased expression of DDRI
compared to NTs (p = 0.01). Multivariate logistic
regression analysis performed for the variables that were
significant (p < 0.05) in the univariate analysis, indicated
that high DDRI1 expression was the only single
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Figure 3 Box plots of DDR1 expression in AJCC/UICC stages of
HCC. The relative expression levels of DDRT in 23 human HCC
tissues categorized according to AJCC/UICC stage |-l and AJCC/
UICC stage llI-IV are presented. The boxes enclose the interquartile
ranges (IQRs), with the median values denoted by the horizontal
lines. Circles (0) represent outliers (values >1.5 x IQR). * p < 0.07 vs.
AJCC/UICC stage I-Il.

independent factor associated with HCC at AJCC/UICC
stage III-IV (p = 0.04). There was no correlation
between the expression of DDRI and miR-199a-5p in
tissues (r = 0.36, p = 0.09).

MiR-199a-5p differentially regulates the expression of
DDR1 in HepG2 and SNU-182 cells

DDR1 mRNA is predicted to be a potential target of
miR-199a-5p using PicTar (4-way), TargetScanS, and
miRanda algorithm (Table 4) [24]. To assess whether
miR-199a-5p can directly alter the expression of DDRI
luciferase reporter assays were employed. A fragment of
the 3'-UTR of DDRI mRNA, containing the putative
miR-199a-5p-binding sequence, was cloned into a firefly
luciferase reporter construct and co-transfected with a
control B-gal reporter construct into HepG2 cells
together with miR-199a-5p-specific precursor or control.
A significant (p < 0.001) decrease in relative luciferase
activity was observed when miR-199a-5p precursor was
cotransfected with the luciferase reporter construct con-
taining the fragment of the 3'-UTR of DDRI mRNA. In
contrast, no change in relative luciferase activity was
observed in cells transfected with pMIR-REPORT™



Shen et al. Molecular Cancer 2010, 9:227
http://www.molecular-cancer.com/content/9/1/227

Page 7 of 12

Table 3 Results of univariate analysis for factors associated with advanced HCC stage at diagnosis

Variable AJCC/UICC stage I-lI AJCC/UICC stage llI-IV p value
Male gender 66.7% 714% 0.80
Age (years) 694 + 80 60 + 18.1 0.20
Multiple tumor nodules 44.4% 42.9% 0.94
Diameter of the biggest nodule (cm) 6.7 + 44 98 +40 0.10
Viral infection 22.2% 28.6% 0.73
Cirrhosis 44.4% 28.6% 043
Poorly differentiated HCC (G4) 0% 50% 0.01
Macrovascular invasion 22.2% 64.3% 0.04
Mir-199a expression (median value) 0.07 0.36 0.17
DDR1 expression (median value) 154 5.05 0.01

firefly luciferase reporter control vector without the
insert consisting of the 3'-UTR of DDRI mRNA frag-
ment (Figure 4A). These results indicate that miR-199a-
5p can modulate gene expression directly via the DDRI
3’-UTR. In agreement with these data, qRT-PCR and
western blotting shows that enhanced expression of
miR-199a-5p as well as knockdown of DDRI by siRNA
result in a significant decrease of endogenous DDR1
mRNA and protein levels in HepG2 cells (Figures 4B
and 5A). In mRNA stability assays we established that
mir-199a-5p-mediated regulation of DDRI in HepG2
cells is mainly achieved by degradation of DDRI mRNA
(Figure 5C). In contrast, transfection of miR-199a pre-
cursor in another hepatoma cell line, namely SNU-182,
was not associated with an alteration of DDRI mRNA
expression (Figure 4C). However, a notable decrease of
DDR1 protein levels became evident after miR-199a-5p
precursor transfection (Figure 5B).

MiR-199a-5p differentially modulates invasion of
hepatoma cell lines in vitro

We assessed the role of miR-199a-5p in tumor invasion
by the ability of hepatoma cells to cross an extracellular

matrix, a key determinant of malignant progression and
metastasis formation. HepG2 cells were transfected with
10 nM miR-199a-5p precursor or 100 nM DDRI-siRNA,
and invasive potential was assessed after 48 hours.
Expression of miR-199a-5p precursors (p = 0.004) and
DDRI1-siRNA (p = 0.003) significantly decreased inva-
sion of the HepG2 cell line (Figure 6A). These results
suggest that altered expression of miR-199a-5p in
HepG2 cells may contribute to increased cell invasive-
ness by functional deregulation of the activity of DDRI.
However, only transfection of DDR1-siRNA (p = 0.002)
but not of miR-199a-5p precursors (p = 0.820) signifi-
cantly decreased invasion of another hepatoma cell line,
namely SNU-182 (Figure 6A).

MiR-199a-5p does not modulate proliferation of HepG2
and SNU-182 cells in vitro

To characterize the effect of miR-199a-5p on hepatoma
proliferation, we performed overexpression studies using
the miR-199a-5p specific precursor. Proliferation of
HepG2 and SNU-182 cells was neither altered by pre-
cursor miR-199a-5p (p = 0.486 and p = 0.073, respec-
tively) nor by DDR1-siRNA (p = 0.980 and p = 0.141,

Table 4 DDR1T mRNA is predicted to be a potential target of miR-199a-5p by TargetScanS

predicted consequential pairing of target region (top)
and miRNA (bottom)

Position 1165-1185 of DDR1 3" UTR

hsa-miR-199a-5p 3
Position 1199-1219 of DDR1 3’ UTR 5
hsa-miR-199a-5p 3
Position 1260-1280 of DDR1 3" UTR 5.
hsa-miR-199a-5p 3
Position 1383-1403 of DDR1 3" UTR 5

hsa-miR-199a-5p 3

5" ..AGAAAUAUAGGAUAGACACUGGA..

CUUGUCCAUCAGACUUGUGACCC
..GGAGCACCUGGGCCCCACUGGAC...

CUUGUCCAUCAGACUUGUGACCC
CUCUCUCCCUGUCACACACUGGA...

CUUGUCCAUCAGACUUGUGACCC
..CCUCCAUCACCUGAAACACUGGA..

CUUGUCCAUCAGACUUGUGACCC
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respectively) (Figure 6B). These studies indicate that
DDRI is rather involved in the process of tumor cell
invasion than in tumor growth.

Discussion

Decreased miR-199a-5p expression in HCC has been
repeatedly reported, but its functional relevance has not
been elucidated to date [11,12,15]. A pivotal role for
miRNAs in the process of malignant transformation has
been suggested in the literature [9,31]. However, the
precise molecular mechanisms by which miRNAs modu-
late tumor cell biology are largely unknown. MiRNAs
from animals were first reported to repress translation
without affecting mRNA levels [32]. More recent evi-
dence indicated that miRNAs and siRNAs can control

post-transcriptional gene expression by directing the
endonuclease cleavage of target mRNA, which is
referred to as “slicer” activity [33]. Endonucleolytic clea-
vage is generally favored by perfect base-pairing between
miRNA and mRNA. Some mismatches, however, can be
tolerated and still allow endonucleolytic cleavage to
occur [34]. The majority of animal miRNAs are only
partially complementary to their targets [35]. Several
reports have shown that animal miRNAs can also
induce significant degradation of target mRNAs despite
imperfect mRNA-miRNA base-pairing [36,37], referred
to as “slicer"-independent decay. This phenomenon
emphasizes mRNA degradation as an important aspect
of miRNA-mediated repression of gene expression.
There is also some evidence that “slicer"-independent
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mRNA decay induced by miRNAs might occur through
promotion of mRNA decapping and 5'-3'-degradation
[33]. The contribution of translational repression or
mRNA degradation to gene silencing appears to differ
for each miRNA:target pair and is likely to depend on
the particular set of proteins bound to the 3'UTR of the
mRNA [38]. MiR-199a-5p, which is partially comple-
mentary to the 3' UTR of DDRI mRNA, induced signifi-
cant degradation of DDRI mRNA in hepatoma cells in
our study. Thus, DDRI has been experimentally vali-
dated as a target gene of miR-199a-5p. MiR-199b-5p,
which has a very similar nucleotide sequence, is also

predicted to target DDRI. However, miR-199b-5p was
only detectable in four out of 24 tissue samples in a
miRNA microarray assay (data not shown) and it has
never been reported to be de-regulated in HCC in litera-
ture. Therefore, the regulatory function of miR-199b-5p
was not further assessed in this study.

DDRI1 is a tyrosine kinase receptor for collagen [22]
and its activation can cause tumor invasion which
appears to be mediated by matrix metalloproteinases
(MMP)2 and MMP9 [19,23]. Indeed, we found a posi-
tive correlation between the expression of DDRI and
MMP?2 in our patient cohort (data not shown), further
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supporting the important role of DDR1 for tumor inva-
sion. Consistent with recently published findings [23]
and our results indicating a critical role for DDR1 in
HCC progression, we found a significant correlation
between the expression of DDRI and AJCC/UICC
tumor stage. Analyzing predictive factors for advanced
tumor stage at the time of HCC diagnosis, we found a
positive correlation between AJCC/UICC stage III-IV
and poor tumor differentiation, presence of macrovascu-
lar invasion, and high DDRI expression. In addition,
multivariate logistic regression analysis identified high
DDR1 expression as the single independent factor asso-
ciated with advanced tumor stage, and, hence, poor
prognosis. In line with this clinicopathological observa-
tion, we found that DDRI gene silencing by transfection
of miR-199a-5p into HepG2 cells significantly decreased
tumor cell invasion in vitro. However, our studies also
indicate that DDR1 is rather involved in the process of

tumor invasion than in tumor growth. These results
demonstrated that miR-199a-5p is capable to modulate
tumor cell invasion at least in part by targeting DDRI.
Although in our study DDRI has been validated as a
target gene of miR-199a-5p, no significant correlation
between miR-199a-5p and DDRI mRNA expression was
found in tumor samples from our patient cohort. In
addition, SNU-182 hepatoma cells exhibited increased
levels of expression of both miR-199a-5p and DDRI
mRNA. Transfection of miR-199a-5p did not induce a
change in DDR1 mRNA expression, but significantly
down-regulated DDR1 protein in SNU-182 cells. How-
ever, no significant inhibitory effect on tumor invasion
was noted. Considering the preexisting high expression
of miR-199a-5p in SNU-182 cells, our results might
hint at a certain independence of DDRI to miR-199a-
5p-mediated gene regulation and function in these cells.
Our data hint at a more complex regulation network
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between DDRI and miR-199a-5p in HCC. One reason
might be that HCC is a very heterogeneous tumor entity
and distinct cellular components might interfere with
the effect of miR-199a-5p on DDRI1 [39]. For instance,
by the use of miRNA target prediction algorithms other
23 miRNAs were also predicted to target DDR1 [24]. In
addition, DDR1 has been demonstrated to be a direct
transcriptional target of the p53 tumor suppressor gene
[40] and, therefore, the p53 status in tumor cells may
also affect the expression of DDRI. Finally, recent find-
ings reveal a more diverse role for small RNA molecules
in the regulation of gene expression than previously
recognized. For instance, miRNAs can act also as trans-
lation activators under specific cellular conditions [41].
In addition, double strand RNAs can activate rather
than repress gene expression by targeting non-coding
regulatory regions in gene promoters [42]. To date, the
only reported stimulatory effect of miRNA on RNA
expression is represented by the interaction between
miR-122 and replication of hepatitis C virus RNA in
hepatocytes [43]. MiR-199a-5p expression has also been
shown to be diversely deregulated in other cancer types.
For instance, miR-199a-5p was also found to be down-
regulated in ovarian cancer [44] and oral squamous cell
carcinoma [45], but up-regulated in cervical carcinoma
[46] and bronchial squamous cell carcinoma [47]. More-
over, increased expression of miR-199a-5p has been
considered a signature for high metastatic risk and a
poor prognosis in uveal melanoma [48].

Thus, the complexity of the regulation of mRNA by
miRNA encountered in our and other studies indicates
that the effect of miRNA on its target gene is cell type
and environment dependent. However, our study
demonstrates a previously uncharacterized biological
function of miR-199a-5p such as the ability to inhibit
tumor invasion through targeting DDRI.

Less than half of patients with HCC are eligible for
potential curative treatment including liver resection
and transplantation because of advanced tumor stage at
time of diagnosis. The combination of clinical and biolo-
gical predictors may increase diagnostic accuracy of
tumor staging, thus permitting optimized therapeutic
management of HCC patients. Although DDRI expres-
sion was shown to be the only predictive factor for
advanced HCC, our study was clearly limited by the
small sample size which may tend to overestimate the
prognostic value of DDRI expression. Thus, prospective
studies that seek and independently validate the prog-
nostic utility of DDR1 expression for patients with HCC
in a larger and carefully selected cohort should be con-
ducted. Patient survival after surgical treatment is ham-
pered by frequent tumor recurrence and systemic
chemotherapy is largely ineffective [49]. In recent years,
kinase inhibitors have become an attractive target class
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for drug development [50], and it was shown recently
that systemic application of a multikinase inhibitor
improves survival of patients with HCC [51]. Further
investigation of therapeutic strategies targeting the miR-
199a-5p-DDRI signaling network is therefore warranted.
In conclusion, identification of the miR-199a-5p:DDR1
target pair and its crucial role in tumor cell invasion
highlight the translational relevance for both prognostic
prediction and targeted molecular therapy for patients
with HCC.
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