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mTOR signaling is activated by FLT3 kinase and
promotes survival of FLT3-mutated acute myeloid
leukemia cells
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Abstract

Activating mutations of the FLT3 gene mediate leukemogenesis, at least in part, through activation of PI3K/AKT.
The mammalian target of rapamycin (mTOR)-Raptor signaling pathway is known to act downstream of AKT.
Here we show that the mTOR effectors, 4EBP1, p70S6K and rpS6, are highly activated in cultured and primary
FLT3-mutated acute myeloid leukemia (AML) cells. Introduction of FLT3-ITD expressing constitutively activated FLT3
kinase further activates mTOR and its downstream effectors in BaF3 cells. We also found that mTOR signaling con-
tributes to tumor cell survival, as demonstrated by pharmacologic inhibition of PI3K/AKT/mTOR, or total silencing of
the mTOR gene. Furthermore, inhibition of FLT3 kinase results in downregulation of mTOR signaling associated
with decreased survival of FLT3-mutated AML cells. These findings suggest that mTOR signaling operates down-
stream of activated FLT3 kinase thus contributing to tumor cell survival, and may represent a promising therapeutic
target for AML patients with mutated-FLT3.

Background
The FMS-like tyrosine kinase-3 (FLT3) receptor, also
known as CD135, is a tyrosine kinase type III normally
involved in hematopoietic progenitor cell proliferation,
survival, and differentiation. Previous studies have
shown that constitutive activation of FLT-3 is involved
in leukemogenesis, partially through phosphorylation/
activation of the serine-threonine kinase AKT, which
occurs in a substantial subset of acute myeloid leukemia
(AML) cases [1,2]. A frequent mechanism of FLT3 acti-
vation is mutation of the FLT3 gene, either internal tan-
dem duplication (ITD) within the juxtamembrane
domain (FLT3-ITD), or point mutations within the acti-
vation loop of the second tyrosine kinase domain
(FLT3-D835/836). FLT3 gene mutations are found in
approximately one third of AML patients, and are asso-
ciated with inferior prognosis [3].
The mammalian target of rapamycin (mTOR), an

important downstream effector of AKT, is a master

regulator of cell growth and metabolism [4]. There are
two mTOR multi-protein complexes, mTOR-Raptor/
mTORC1 and mTOR-Rictor/mTORC2. mTOR-Raptor/
mTORC1 is sensitive to the natural macrolide rapamycin
and regulates the rate of protein translation [4,5]. This
regulation is accomplished, partially, through phosphory-
lation of the ribsosomal protein S6 kinase (p70S6K) and
subsequent phosphorylation of the ribosomal protein S6
(rpS6), or phosphorylation and inactivation of the eukar-
yotic initiation factor 4E (eIF4E)-binding protein-1
(4E-BP1), dissociating 4E-BP1 from the RNA cap-binding
protein eIF4E, thus promoting cap-dependent translation
of mRNAs [4,5]. mTOR-Rictor/mTORC2, usually insen-
sitive to rapamycin, phosphorylates AKT at serine resi-
due 473, contributing to AKT activation, and establishing
an autoregulatory loop [6].
Recent studies have shown that rapamycin, and its

analogs, have substantial antitumor activity in hematolo-
gic malignancies, including AML [7,8]. However, the sig-
nificance of FLT3 gene mutation in the activation of the
mTOR pathway is not clear. In this study we hypothe-
zised that the mTOR signaling pathway has an onco-
genic role in FLT3-mutated AML cells. We show that
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mTOR signaling is highly activated in FLT3-mutated
AML cell lines and primary cells. We also demonstrate
that total inhibition of mTOR signaling results in cell
death, specifically of FLT3-mutated AML cells, whereas
inhibition of the FLT3 kinase results in downregulation
of mTOR signaling. Our findings suggest that mTOR
signaling operates downstream of mutated FLT3 kinase
and that AML patients harboring FLT-3-mutations may
benefit from experimental therapies that target mTOR
signaling.

Results and Discussion
The mTOR signaling pathway is activated in FLT3-
mutated AML cells
Initially, we investigated the mTOR pathway activation
status by immunohistochemistry and Western blot ana-
lysis of bone marrow samples and primary peripheral
blood AML cells, respectively, in patients harboring
FLT3 mutations. Imunohistochemical analysis showed
that 10/12 (83%) p-mTOR, 10/13 (77%) p4E-BP1, 13/14
(93%) p-p70S6K, and 11/12 (83%) p-rpS6 indicating
mTOR activation. All AML tumors (n = 6) with dual
mutations (FLT3-ITD and tyrosine kinase point muta-
tions) were positive for p-mTOR, p-p70S6K, and p-rpS6.
Also, all AML tumors (n = 15) expressed high levels of
eIF4E (Figure 1A). This is the first immunohistochemis-
try study of mTOR signaling proteins in AML. We also
showed activated mTOR signaling by Western blot ana-
lysis (Figure 1), in agreement with others [9]. To further
investigate a possible causal association between FLT3
mutation and the mTOR activation status, we used sta-
bly transfected FLT3-mutant BaF3 cells. Introduction of
FLT3-ITD in BaF3 cells resulted in activation of mTOR
signaling (Figure 1).

mTOR Signaling contributes to FLT3-mutated AML cell
survival
We assessed the role of mTOR signaling in the regulation
of cell growth and survival of AML cell lines. Most pre-
vious studies investigating this issue were based on rapa-
mycin treatment of AML cells resulting frequently in
conflicting conclusions [10,11]. However, recently it was
realized that rapamycin not only can indirectly and
unpredictably inhibit the rapamycin-insensitive mTORC2
after prolonged treatment, but also frequently inhibits
partially and not totally mTORC1, which is regarded as
the specific target of rapamycin. For this reason, we
employed the pharmacologic PI3K inhibitor LY294002,
known to inhibit both the PI3K and mTOR kinase activ-
ity with the same kinetics, or total silencing of the mTOR
gene using an mTOR-specific siRNA [12,13].
As shown in the Figure 1, treatment with LY294002

resulted in a dose-dependent decrease in phosphorylation
of AKT, mTOR, 4E-BP1, p70S6K, and rpS6, associated

with reduced cell viability due to increased apoptosis
(additional file 1, Figure S1). Although changes in the
levels of mTOR signaling proteins are similar in both
FLT3-mutated AML cell lines, it seems that MV4-11 cell
viability depends more on mTOR signaling (Figure 1,
Dright, and additional file 1, Figure S1) and this differ-
ence is also observed after combined inhibition of
mTOR with rapamycin and FLT3 with GTP14564 (addi-
tional file 2, Figure S2). The biologic explanation for this
finding is uncertain. The latter biologic effects were
linked to downregulation of anti-apoptotic proteins
involved in both extrinsic and intrinsic (mitochondrial)
apoptotic pathways (additional file 1, Figure S1). In addi-
tion, transient transfection with mTOR-specific siRNA
resulted in decreased phosphorylation/activation of
4EBP1, p70S6K, and rpS6 in a concentration-dependent
manner (Figure 1). Of note, mTOR silencing was asso-
ciated with decreased levels of p-AKT indicating that
mTOR/Rictor complex may contribute to AKT activation
in this cell system. Silencing of mTOR also resulted in
decreased viability of the AML cell lines, MV4-11 and
MOLM13 (both mutated-FLT3) as opposed to Wt-FLT3
U937 cells which were unresponsive (Figure 1).
Taken together, our findings from mTOR gene silen-

cing and pharmacologic studies suggest that mTOR sig-
naling may contribute to the survival of AML cells
harboring FLT3 mutations, and are concordant with the
results of other studies [8,14,15].

mTOR signaling acts downstream of mutated-FLT3 Kinase
To further test this hypothesis, we evaluated the selective
FLT3 inhibitor, GTP-14564, on mTOR signaling in AML
cells. No changes in activation of mTOR signaling pro-
teins, as well cell proliferation or death were observed in
Wt-FLT3 U937 cells after treatment (Figure 2). However,
treatment of the FLT3-mutated AML cell lines MV4-11
and MOLM13 resulted in a concentration-dependent
decrease of p-mTOR, p-p70S6K, p-rpS6 and p-4EBP1.
These changes were slightly more pronounced in the
homozygously mutated MV4-11 compared with the het-
erozygously mutated MOML13 (Figure 2). Unexpectedly,
AKT (p-AKT) activation was affected minimally or not at
all (Figure 2). The biologic explanation for this finding is
uncertain, however, the possibility that activation of the
mTOR signaling pathway induced by mutated FLT3
kinase may partly involve AKT-independent mechanisms
cannot be excluded. These changes were accompanied by
a proportional decrease in cell proliferation, and increase
in cell death (Figure 2). These biologic effects were
further augmented when combined treatment with GTP-
14564 and Rapamycin was used (additional file 2, Figure
S2). Downregulation of mTOR signaling accompanied by
similar biologic effects were also observed after GTP-
14564 treatment of FLT3-mutated primary AML cells
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Figure 1 mTOR signaling pathway is activated and contributes to the survival of AML cells harboring mutated FLT-3. A. Western blot
analysis of primary AML cells with mutated FLT3-ITD showed activation (phosphorylation) of mTOR kinase and downstream mTOR mediators
(left panel). These data were confirmed also with immunohistochemistry on FLT3-mutated AML bone marrow samples (right panel). In positive
cases, the majority of tumor cells show expression of phosphorylated (activated) mTOR, p70S6K, rpS6 and 4EBP1 with a cytoplasmic staining
pattern (DAB chromogen, hematoxylin & eosin [H&E] counterstain, original magnification ×400). B. A causal association between activation status
of mTOR signaling pathway and activating mutations of FLT3 was further supported by the upregulation of mTOR, Raptor as well as
phosphorylation (activation) of downstream effectors such as p70S6K and rpS6 proteins in BaF3 cells stably transfected with mutated FLT3
compared with BaF3 cells transfected with Wt-FLT3, as shown by Western blot analysis (left panel), or immunohistochemistry performed in cell
blocks (right panel). C. Western blot analysis of AML cell lines showed that pharmacologic inhibition of PI3K and mTOR kinases by LY294002
resulted in downregulation of p-AKT and downstream mediators of the mTOR pathway. This effect was more pronounced in the MV4-11 and
MOLM13 cell lines harboring mutated FLT3 comparing with the U937 cell line with Wt-FLT3. D. Silencing of the mTOR gene by transient
transfection of mTOR-specific siRNA resulted in downregulation of mTOR and p-AKT signaling (left panel), associated with decreased survival of
FLT3-mutated MOLM13 and MV4-11 cells by 30% and 62%, respectively, as compared with a small decrease by 13% of the Wt-FLT3 U937 cells
(p < 0.05), 48 hours after treatment (right panel).
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Figure 2 Inhibition of FLT-3 results in downregulation of mTOR signaling, accompanied by decreased survival of AML cells harboring
mutated FLT-3. A. Pharmacologic inhibition by the FLT3-specific inhibitor GTP14564 resulted in a concentration-dependent downregulation of
downstream mTOR mediators in the FLT3-mutated AML cell lines MV4-11, and MOLM13, with no effect on the Wt-FLT3 U937 cell line, 48 hours
after treatment. However, note that pAKT is minimally affected in all three cell lines. B. Treatment of homozygously mutated-FLT3 MV4-11 cells
with increasing concentrations of GTP14564 (up to 5 uM) resulted in dose-dependent decrease in cell proliferation, up to 33%, and apoptotic
cell death was increased, up to 15%. Concentrations up to 1 uM had no significant effect on survival and the proliferation of the heterozygously
FLT3-mutated MOLM13 cells. However, after treatment with 5 uM GTP14564, the proliferation of MOLM13 cells was decreased, up to 44%, and
apoptotic cell death was increased, up to 19%. GTP14564 had no significant antitumor activity against Wt-FLT3 U937 cells (p < 0.05). C.
Pharmacologic inhibition of FLT-3 by increasing concentrations of GTP14564 (up to 5 uM) resulted in a concentration-dependent decrease of cell
viability, up to 31% (after 72 hours) (left panel, p < 0.05), accompanied by downregulation of mTOR signaling, as shown by Western blot analysis
(right panel) in FLT3-mutated primary AML cells.
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(Figure 2). These data provide evidence that mTOR
signaling is an important downstream mediator of the
oncogenic pathway activated by mutated FLT3 kinase
(Figure 3), and that direct inhibition of mTOR may possi-
bly augment the therapeutic potential of FLT3 inhibitors
[16]. Our findings are in agreement with previous obser-
vations that rapamycin in combination with the FLT3
inhibitor, PKC-412, markedly inhibits cell proliferation in
murine BaF-FLT3-ITD cells and AML samples bearing
FLT3 gene dual mutations of ITD and point mutation
types, and that rapamycin inhibits cell proliferation in
murine 32D-FLT3-ITD cells [2,8,17].

Conclusions
In conclusion, our results taken together suggest that
FLT3 mutations may lead to activation of mTOR signal-
ing pathway and thus contribute to tumor cell survival

and growth in AML (Figure 3). Therefore, selective inhi-
bition of mTOR signaling pathway seems to be a
promising therapeutic target for patients with FLT3-
mutated AML.

Methods
Cells and Reagents
Three human AML cell lines were used; MOLM-13 (het-
erozygous for FLT3-ITD), MV4-11 (homozygous for
FLT3-ITD) [18], U937 (wild-type FLT3), and murine
BaF3 cells transfected with wild-type (Wt) FLT3 (BaF3/
FLT3) or mutated FLT3 (FLT3/ITD and FLT3/D835G)
were cultured under standard conditions as previously
described [18]. The murine cell line BaF3 was kindly pro-
vided by Dr. M Andreeff (M.D. Anderson Cancer Center,
Houston, TX). All four cell lines (MOLM-13, MV4-11,
U937, BaF3) were tested negative for mycoplasma by

Figure 3 FLT3/mTOR signaling in AML.
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standard polymerase chain reaction (PCR) methods.
Ficoll-purified (Sigma Chemical, St Louis, MO) periph-
eral blood mononuclear cells from 4 AML patients hav-
ing >60% blasts in blood and harboring FLT3-ITD
mutations were also used for in vitro studies. The PI3K
inhibitor LY294002, the mTOR inhibitor rapamycin and
the FLT3 inhibitor GTP-14564 (all from Calbiochem.
San Diego, CA) were applied at different concentrations
and durations of time as indicated. The kinase inhibition
experiments were performed at least three times with
reproducible data.

Immunohistochemistry
Fifteen formalin-fixed, paraffin-embedded, AML bone
marrow samples (9 harboring FLT3-ITD mutation, and
6 harboring dual, FLT3-ITD and point mutations) were
used for the construction of a tissue microarray. Immu-
nohistochemistry was performed using histologic sec-
tions of the tissue microarray or cell blocks, and
antibodies specific for p-mTOR, p-p70S6K, p-rpS6,
p-4E-BP1, and eIF4E (Cell Signaling Technology) as pre-
viously described [19]. AML cases were considered
immunohistochemically positive for any of the proteins
analyzed if at least 10% of tumor cells showed expres-
sion after examination of 10 representative high-power
fields (magnification ×400). The study was approved by
The University of Texas M.D. Anderson Cancer Center
institutional review board.

Western Blot Analysis
Western blot analysis was performed as previously
described[19]. The antibodies used included Ser473pAKT
(p-pAKT), total Akt, p-mTOR, p-p70S6K, p70S6K,
p-rpS6, rpS6, p4E-BP1, 4E-BP1, eIF4E (Cell Signaling
Technology, Beverly, MA), and b-actin (Sigma, St.
Louis, MO).

Silencing of mTOR by siRNA
The sequences of mTOR small interfering RNA (siRNA)
(5’-GGAGUCUACUCGCUUCUAUTT-3’ [sense]; 5’-
AUAGAAGCGAGUAGACUCCTC-3’ [antisense] and a
negative control siRNA were purchased from Ambion,
Inc, (Austin, TX). Transient transfection was performed
by electroporation using nucleofector system (Amaxa
Biosystems, Gaithersburg, MD), according to the manu-
facturer’s instructions. Gene silencing experiments were
performed twice with reproducible results.

Cell Death, Apoptosis and Proliferation Studies
Cell viability was evaluated by trypan blue exclusion
cell assay in triplicate. Annexin-V staining (BD Bio-
sciences Pharmingen, San Diego, CA), detected by flow
cytometry, was used to assess apoptosis, as previously
described [20].

Proliferation of the cells was assessed by using a tetra-
zolium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-car-
boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium,
MTS] (Promega, Madison, WI, USA), as previously
described [20]. All experiments were performed at least
twice.

Statistical analysis
Data for cell viability, growth and apoptosis are shown
in diagrams as mean +/- SD and their differences
between different cell lines and concentrations were
evaluated using Student t-test. p-values < 0.05 were con-
sidered statistically significant.

Additional material

Additional file 1: Inhibition of the AKT-mTOR signaling pathway
results in apoptotic cell death of AML cells harboring mutated FLT-
3 (Figure S1). A. Pharmacologic inhibition of the AKT-mTOR signaling
pathway by using 10 μg/ml LY249002 resulted in decreased cell viability
and apoptotic cell death by 32% and 31% respectively in MOLM13 cells
harboring heterozygously mutated FLT3 and by 48% and 75%
respectively in MV4-11 cells harboring homozygously mutated FLT3, 48
hours after treatment (p < 0.05) (Figure S1A). B. Western blot analysis
showed that LY249002-mediated cell death was accompanied by
downregulation of the inhibitor of the extrinsic apoptotic pathway FLIPS/
L and the inhibitor of the intrinsic apoptotic pathway BCL-XL in both
MOLM13 and MV4-11 cells (Figure S1B).

Additional file 2: Combined treatment of AML cells with a FLT-3
inhibitor and a small dose of rapamycin results in enhanced
cytotoxicity specifically in AML cells harboring mutated FLT-3
(Figure S2). Combination of 5 nM GTP14564 with 1 nM rapamycin
resulted in enhanced apoptotic cell death, by 28% and 63%, in MOLM13
and MV4-11 cells harboring heterozygously and homozygously mutated
FLT3 respectively (p < 0.05) (Figure S2), as compared to 19% and 15%
induced by 5 nM GTP14564 alone (Figure 2). No effect was observed in
U937 cells harboring wt-FLT3.
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