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Abstract

ovarian cancer samples.

Background: The polycomb group protein, BMIT plays important roles in chromatin modification, stem cell
function, DNA damage repair and mitochondrial bioenergetics. Such diverse cellular functions of BMIT could be, in
part, due to post-translational modifications, especially phosphorylation. To date, AKT has been reported as a kinase
that by site specific phosphorylation of BMIT modulates its oncogenic functions.

Methods: Immunoprecipitation in conjunction with kinase assay and mass spectrometry was used to determine
association with and site specific phosphorylation of BMIT by CK2a. Functional implications of the BMI1/CK2a axis
was examined in cancer cells utilizing siRNA and exogenous gene expression followed by biochemical and
phenotypic studies. Correlations between expression of CK2a and BMI1 were determined from cell lines and
formalin fixed paraffin embedded tissues representing the normal fallopian tube epithelium and high grade serous

Results: Here we report that CK2q, a nuclear serine threonine kinase, phosphorylates BMI1 at Serine 110 as
determined by in-vitro/ex-vivo kinase assay and mass spectrometry. In ovarian cancer cell lines, expression of CK2a
correlated with the phospho-species, as well as basal BMI1 levels. Preventing phosphorylation of BMIT at Serine 110
significantly decreased half-life and stability of the protein. Additionally, re-expression of the phosphorylatable but
not non-phosphorylatable BMI1 rescued clonal growth in endogenous BMI1 silenced cancer cells leading us to
speculate that CK2a-mediated phosphorylation stabilizes BMI1 and promotes its oncogenic function. Clinically,
compared to normal fallopian tube epithelial tissues, the expression of both BMIT and CK2a were significantly
higher in tumor tissues obtained from high-grade serous ovarian cancer patients. Among tumor samples, the
expression of BMI1 and CK2a positively correlated (Spearman coefficient =0.62, P=0.0021) with each other.

Conclusion: Taken together, our findings establish an important regulatory role of CK2a on BMI1 phosphorylation
and stability and implicate the CK2a/BMI1 axis in ovarian cancer.

Keywords: Post translational modification, Phosphorylation, Kinase assay, Protein stability, Formalin fixed paraffin
embedded tissues (FFPE), Fallopian tube epithelial (FTE) cells, High-grade serous ovarian cancer, Clonal growth

Background

BMI1 is a member of the polycomb repressor complex 1
(PRC1) that in complex with RinglB catalyzes mono-
ubiquitination of histone H2A (H2AK119) and mediates
gene silencing by regulating chromatin structure. Accu-
mulating evidences have established important roles for
BMI1 as a transcriptional repressor, a regulator of stem
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cell function [1, 2], a DNA damage repair protein [3-5] and
recently, a mitochondrial role has been described [6, 7].
The importance of BMII is further underscored by the
fact that it has been implicated in several different malig-
nancies including ovarian cancer leading to the develop-
ment of clinical small molecule inhibitors [8—10].

The BMI1 protein comprises of 326 amino acids with
an N-terminal RING finger (RF) domain, a middle helix
turn helix (HTH) domain and a C-terminal Proline-Serine
rich (PS/PEST) domain [11]. Post-translational modifica-
tions confer functional diversity to proteins and few such
modifications have been described for BMI1 [3, 5, 12—14].
When phosphorylated by 3 pK (MAPKAP kinase 3),
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specific sites unknown, BMI1 dissociated from the chro-
matin resulting in de-repression of targets [13]. Phosphor-
ylation by AKT at Ser 316 of BMI1, triggered its
dissociation from the INK4A/ARF locus resulting in in-
ability to promote tumor growth [12]. On the other hand,
AKT-mediated phosphorylation of BMI1 at Ser 251, 253
and 255 enhanced its oncogenic potential in prostate can-
cer [3]. It is notable that the described phosphorylation
sites reside within the PS/PEST domain, deletion of which
enhances stability of the BMI1 protein [15]. The func-
tional fate of phosphorylated BMI1 thus remains context
and cancer specific.

Like BMI1, the Ser/Thr kinase complex, Casein Kinase
2 (CK?2), is involved in various cellular processes affect-
ing clonal growth, survival, apoptosis and DNA damage
repair [16-18]. Similar to BMI1, CK2 is predominantly
present in the nucleus and comprises of a hetero-
tetramer of the catalytic a, o’ and two non-catalytic [
subunits [18]. Notably, expression of both CK2«a and
BMI1 is elevated in ovarian cancer and correlates with
poor overall survival [19-21]. Together with predictive
bioinformatics analysis, these evidences prompted us to
evaluate CK2a as a potential kinase in phosphorylating
BMI1. Here, we establish that CK2« is a novel kinase for
BMI1; CK2a phosphorylates BMI1 at Serl10, and this
phosphorylation imparts protein stability contributing to
clonal growth. The identified CK2a-BMI1 liaison is of
clinical significance as high CK2a expression strongly
correlates with the elevated BMI1 protein levels in high
grade serous ovarian cancer tissues. Our results impli-
cate the CK2a/BMI1 axis in ovarian cancer, thus target-
ing it might be potentially beneficial.

Methods

Materials

Lambda phosphatase was purchased from New England Bio
labs (#P0753S). Casein Kinase II Inhibitor I, TBB was pur-
chased from Calbiochem (#218708). CK2a-GST tagged or
CK2a untagged recombinant proteins were purchased from
Signalchem (#C71-10G-10) and Abcam (#90745) res-
pectively. GST-tagged or full-length BMI1 recombinant pro-
teins ~ were  purchased from  Mybiosource.com
(#MBS717171) and Origene (TP760041) respectively. GST
was purchased from Abcam (#89499). Nonradioactive ATP
(Adenosine triphosphate) was purchased from Thermo-
fischer (# R1441) and radioactive ATP labeled on the
gamma phosphate group with **P was purchased from
PerkinElmer (#NEG002A250UC). Cyclohexamide, MG132
and AKT inhibitor (Akti) were procured from Sigma
(#R750107) and Calbiochem (#474791; 124018) respectively.

Plasmids and constructs
The plasmids FLAG-BMI1WT (wild-type) construct as
previously described (Fan et. al. 2008), was used to
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generate SI10A mutant BMI1 FLAG. Quick Change Site
directed mutagenesis kit (Agilent) and the following pair
of primers were used to generate the mutant. Both the
plasmids were sequenced and the integrity was confirmed
before performing experiments. (Forward primer: CTGA
TGCTGCCAATGGCGCTAATGAAG ATAGAGGA; Re-
verse Primer: TCCTCTATCTTCATTAGCGCCATTGG
CAGCATCAG). pZW6 (CK2a) was a gift from David
Litchfield (Addgene plasmid # 27086) [22].

Cell culture and transfection
CP20 cells (developed by sequential exposure of the
A2780 parental cell line to increasing concentrations of
cisplatin) and OV90 cells were kindly gifted by Dr. Anil
Sood, MD Anderson Cancer Center. OVCAR4 was a
kind gift from Dr. Ronny Drapkin, formerly at the Dana-
Farber Cancer Institute, Boston, MA. Immortalized nor-
mal fallopian tube epithelial cells (FTE-188) were a kind
gift from Dr. Jinsong Liu, MD Anderson Cancer Center.
OVSAHO and TKYNU cell lines were obtained from
the Japanese Collection of Research Bioresources Cell
Bank (JCRB). These were routinely cultured in RPMI/
DMEM/MCDB-Med199 (Sigma) supplemented with
10% FBS and 1X penicillin-streptomycin (Gibco, NY,
USA) in a 5% CO, humidified atmosphere.
Lipofectamine 3000 (Invitrogen) was used for plasmid
transfection and co-transfection with siRNA as per manu-
facturer’s protocol. Gene silencing was performed using
Hiperfect (Qiagen) and 33 picomoles siRNA (scrambled
control, Dharmacon; BMII SASI_HS01_ 00175765 from
Sigma and CK2a siRNA #6389, CST). All experiments
were performed 48—60 h after transfection, unless stated
otherwise.

Protein extraction, determination of protein
concentration, and A-Phosphatase treatment

Total Cell Lysate was prepared in RIPA (Boston
Bioproducts) or Cell Lytic M (Sigma) compatible with
enzymatic assay and immunoprecipitation.

For the formalin fixed paraffin embedded (FFPE) patient
sample, samples were prepared as previously described
with slight modification [23]. First, samples were deparffi-
nized with 1 ml of xylene; vortexed and stored for 10 min,
followed by centrifugation at 14,000 g x5 min and then
supernatant was removed. Deparffinization process was re-
peated thrice following which samples were gradiently hy-
drated starting from 100% ethanol followed with 80% and
50% ethanol. After each step the samples were centrifuged
at 14,000 g x 5 min and supernatant was removed. Samples
were stored overnight at 4 °C in 1 ml of DEPC-treated
water and then centrifuged at 14,000 g x 15 min and the
pellet was resuspended in 2% SDS buffer with brief pulse
of sonication (10 sx3 times), centrifuged (14,000 g x
15 min) and supernatant collected for downstream assay.
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Concentration of the extracted protein was determined
by Bichonic acid assay (BCA) method using Pierce Kit
(#23225). For most assays 10-30 pg of the lysate
was used.

A- Phosphatase treatment was performed on 50 pg of
cellular protein incubated with 200units of the
phosphatase at 25 °C for 1 h as per the manufacturer’s
protocol. Reaction was terminated by addition of the
4 x lamelli buffer.

Immunoblotting, immunoprecipitation and kinase
reaction

Immunoprecipitation was performed using Agarose A/G
beads (SCBT-2003) or the Pierce crosslink IP kit (Cat
No # 26147) and cell lysates or immunoprecipitated
proteins were separated by SDS-PAGE and Western im-
munoblotting analysis was performed using standard
protocol as described previously [24]. The cell lysate
were separated on 10 or 12% glycine SDS-PAGE gel or
Phos-tag™SDS-PAGE (for analysis of BMI1 phosphoryl-
ation in a panel of normal and high grade serous
ovarian cancer cells; Wako Cat No # 304-93521). For
Mn?*-Phos-tag SDS-PAGE, 50 uM Phos-tag™ acrylamide
and 2 eq of MnCl, when added to the resolving part of
10% acrylamide gel provided a convenient method for the
simultaneous analysis of a phosphoprotein isoform(s) and
its non-phosphorylated counterpart [25-27]. Gels were
transferred to PVDF membrane. Membranes were
blocked in 5% non-fat dry milk in TBS with 0.1%
TWEEN-20 (TBST) for 1 h at room temperature followed
by incubation with indicated primary antibodies in TBST
with 5% BSA. Antibodies were purchased from following
venders: Santa Cruz Biotechnology (CK2a #sc-373894,
Akt1/2/3 #sc-8312, p-Aktl/2/3 (Serd73) #sc-7985);
Proteintech  (HSP60#66041-1-Ig); Life-Technologies
(BMI1#375400); ABCAM (a - Tubulin #ab4074) and
Sigma (FLAG #F1804, secondary antibodies con-
jugated with horseradish peroxidase IgG Rabbit and
Mouse).

10 pg of required antibody (BMI1 or CK2a) was first
crosslinked to resin using DSS following crosslinking
protocol of the manufacturer (Pierce, crosslinking IP
protocol). Alternately, 1 mg of precleared lysate was incu-
bated with the antibody overnight at 4 °C in spin wheel.
The beads were added to the protein/antibody homogen-
ate on the next day and incubated at 4 °C for 1 h in a spin
wheel. The beads were collected by centrifugation, washed
and suspended in 15 pL IP buffer to be used for radio-
active or nonradioactive kinase assay. Radioactive assay
for CK2a was performed using 10 pg of BMI1/BMI1-GST
with 9 pl of final immunoprecipitate bead in 15 pl reaction
mix respectively containing 50 mM Tris—Cl pH 8.0,
10 mM MgCl2, 50 uM ATP and 5 pCi of [y-32P] ATP
(3000 Ci/mmol). The reactions were carried out for
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15 min at 25 °C after which they were stopped by adding
4 x samples loading buffer. The samples were subjected to
SDS-PAGE, the gels were dried and exposed at —80 °C as
required on an X-ray film and developed. Non-radioactive
assay for CK2a used similar protocol with only the radio-
active ATP being replaced by 200 mM of cold ATP and
BMI1/BMI1-GST being used as substrate. The films were
scanned and quantified using Image J software.

Quantitative RT-PCR
Cellular RNA was isolated (Zymo RNA isolation kit, Cat
No: R1050) and 1 pg of total RNA was reverse tran-
scribed to ¢cDNA (iScript cDNA synthesis kit, Bio-Rad).
Total of 1 pl of the 40 pl reverse transcription reaction
were used as template for real-time detection (Bio-Rad
CEX connect) using Sybr green (Bio-Rad) and primers
as described below. Gene expression was quantified for
the tested genes and endogenous control gene 18 S
rRNA. Relative mRNA level was calculated by normaliz-
ing the gene expression levels of tested genes to that of
the control 18 S rRNA gene.

CK2a: Fwd: 5 TAGGGGGTTGGTATCTCGTG3;
Rev: 5 TGATGTAAGCGACCAGCAAG3’

BMI1: Fwd::5 CCTTCATTGTCTTTTCCGCCC; Rev:5
AAGTACCCTCCACAAAGCAC ¥

18 S rRNA: Fwd:5’ TCGATGGGCGGCGGAAAATA;
Rev: 5 TTGGTGAGGTCAATGTCTGCT3’

Clonal growth assay

48 h post transfection 200 single cells of CP20 or OV90
cells in RPMI medium containing 10% FBS were seeded in
the same medium in each well of 6-well plate. After 10 days
(CP20) or 14 days (OV90), the colonies were stained with
the crystal violet solution (0.75% crystal violet, 50% etha-
nol, 0.25% NaCl, 1.57% formaldehyde), imaged using Leica
EZAHD (Buffalo Grove, IL 60089 USA). 9 images from 3
independent experiments were quantified using Image ]
(image processing and analysis in Java, NIH).

Data analysis and statistics

All the experiments were repeated independently at least
3 times and in triplicate where applicable. Data are
expressed as mean * standard deviation (SD). Compari-
sons between two groups were evaluated using Student’s
t-test with equal/unequal variances. For comparisons
among multiple groups, we performed ANOVA. If the
overall test was significant, we compared each treatment
to control with Dunnett's method for multiple compari-
sons. For densitometry analysis of immunoblots, Image |
software (NIH) was used. BMI1 expression levels were
compared between normal and primary tumor samples
using Wilcoxon rank-sum test. The CK2a detection
rates were compared between the groups (normal vs.
primary tumor) using Fisher’s exact test. Spearman
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correlation coefficient was used to assess the correlation
between CK2a and BMI1 expression levels among pri-
mary tumor samples. P < 0.05 was considered statistically
significant. All tests were two-sided.

Results

Identification of Casein Kinase 2q, a candidate BMI1
kinase

AKT has been identified as the predominant kinase
phosphorylating BMI1 on Ser 251, 253, 255 and 316 re-
spectively, resulting in its altered cellular activity [3, 12].
However, inhibition of AKT by specific inhibitors (AKT1)
reduced but did not eliminate the characteristic
phospho-bands of BMI1 in ovarian cancer cells, CP20
and OV90 (Fig. 1la). That the slower migrating species
represented phosphorylated form of BMI1 (Fig. 1a) was
confirmed by A-phosphatase treatment [15]. This suggests
that in ovarian cancer cells additional kinases might be in-
volved in phosphorylating BMI1. Stringent bioinformatics
analysis (NetPhos2.0 Server [28], cutoff <0.9) of the BMI1
protein sequence revealed nine potential sites of phos-
phorylation (Table 1) including Ser 253, 255 and 316 that
were previously described [3, 12]. Interestingly, all of the
previously reported phosphorylation sites of BMI1 lie

Page 4 of 10

within the PS/PEST domain (236—326 amino acids), dele-
tion of which increases half-life of the protein [15]. Inter-
rogation of these phosphorylation sites with KinasePhos2
[29] analysis (Table 1) predicted previously reported
kinases such as AKT [3, 12], as well as novel candidate
kinases such as Ataxia Telangiectasia Mutated (ATM) and
Casein Kinase II (CK2) (Table 1). While ATM/ATR
dependent recruitment of BMI1 to sites of DNA damage
has been reported [4], any association with CK2 remains
unknown.

CK2 is a serine-threonine kinase comprising of two
catalytic (o, a') and two regulatory () subunits. CK2 is up-
regulated in major lethal malignancies where its expres-
sion correlates with poor overall survival [16, 18, 19].
Interestingly of these subunits, high levels of CK2a corre-
lated with poor overall survival in ovarian cancer [19].
Using immunoblotting, we determined that CK2a levels
were significantly elevated in ovarian cancer cell lines
compared to the non-malignant Fallopian Tube Epithelial
(FTE188) cells (Fig. 1b). Since BMI1 is reportedly phos-
phorylated by AKT, we determined the expression of ac-
tive AKT (Phospho AKT-S*"?) in these cell lines. With the
exception of OV90, AKT was significantly phosphorylated
in all the cancer cell lines compared to FTE188 (Fig. 1b).
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Fig. 1 Expression and regulation of BMIT and CK2a in ovarian cancer cells. a Slow migrating phospho-BMI1 bands were reduced upon treatment
with A-Phosphatase but not with AKT inhibitor. OV90 and CP20 cells were treated with 5 uM AKT inhibitor (AKTi) or vehicle (C) for 15 h. Protein
extracted from the vehicle treated cells (C) were further subjected to A-phosphatase (\-P) treatment or left untreated. Expression of BMIT and
Phospho-AKT (Serine 473) were determined in the C, A-P and AKTi treated cells. a-Tubulin and AKT were used as a loading control. Slow migrating
BMIT bands that were removed on phosphatase treatment is considered as the phospho species of BMI1 and is indicated by the open arrow
head whereas the basal BMI1 is indicated by the closed arrow head. b Expression of BMI1, CK2q, and AKT (5473) in a panel of ovarian cancer cells.
Protein expression was determined in 4 cell lines representing high grade serous ovarian cancer (TYKNU, OVSAHO and OV90) or cisplatin resistant
CP20 and compared to the normal Fallopian Tube Epithelial Cells (FTE188). a-Tubulin and AKT served as a loading. Open and closed arrow heads
represent phospho species of BMIT and basal BMI1 respectively. c-d Effect of CK2a knockdown on BMIT. ¢ OV90 and CP20 cells were either
transfected with scrambled siRNA (siCTL) or siRNA against the CK2a gene (siCK2a) and expression of BMI1, RING1A and CK2a were determined by
immunoblotting. d Relative mRNA expression of BMI1 and CK2a were determined by RT-qPCR. Gene expression of 18 s rRNA was used as an
endogenous control. Values represent mean fold change (+ standard deviation) over control (siCTL). Open and closed arrow heads represent
phospho species of BMIT and basal BMI1 respectively. e Effect of CK2a overexpression on BMI1. FTE188 cells were transfected with CK2a plasmid
and 24 h post transfection the expression of BMI1 and CK2a were determined by immunoblotting. Open and closed arrow heads represent
phospho species of BMIT and basal BMI1 respectively
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Table 1 Bioinformatics analysis of the potential phospho sites
on BMIT protein sequence

Score? Sequence® Site® Predicted kinase

0.994 KFLRSKMDI S181 PKB/ATM/Aurora/MAPK

0.993 LESDSGSDK S253 ATM/PLK1/CK2

0.991 PRKSSVNGS S316 PKB/ATM/Aurora/IKK/CAMK/PLK1
0.987 SDSGSDKAN S255 ATM/Aurora/CDK

0.987 RPRKSSVNG S315 ATM/Aurora/IKK/CAMK

0.984 DKANSPAGG S260 ATM/Aurora/PLK1/MAPK/CK1
0.955 TPVQSPHPQ 5281 ATM/Aurora/MAPK/CDK/CK1
0.951 AANGSNEDR S110 ATM/CK2

0918 YLETSKYCP S50 ATM

The data derived from NetPhos2.0 server and KinasePhos 2 are indicated by
2 and P respectively

Interestingly, the phosphorylated species of BMI1 was
present in all the cancer cell lines including OV90 that
expressed minimal phospho-AKT, thereby implicating
other kinases in phosphorylation of BMI1. Since the ex-
pression of CK2« correlated with the phospho-species of
BMI1, we next determined if altering cellular levels of
CK2a affected phosphorylation of BMII. Silencing CK2a
by siRNA significantly reduced both phospho-species as
well as basal BMI1 levels in CP20 and OV90 cells (Fig. 1c¢).
However the PRC1 complex partner of BMI1, RINGI1A
levels remained unchanged (Fig. 1c). Subsequently we
confirmed that in CK2a silenced cells, reduction in basal
BMI1 level was not due to decreased transcription thus
implicating post-translational events (Fig. 1d). These ob-
servations were further complemented by expressing
CK2a in FTE188 cells that resulted in enhanced basal ex-
pression as well as phosphorylation of BMI1 (Fig. 1le).
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Together these results suggest that CK2a might poten-
tially phosphorylate BMI1 and directly or indirectly regu-
late its post translational expression.

CK2a phosphorylates BMI1

To determine if BMI1 is a direct substrate of CK2a, we
performed reciprocal co-immunoprecipitation of en-
dogenous BMI1 and CK2a using covalently cross-linked
antibodies to protein A/G agarose beads. BMI1 and
CK2a co-precipitated from lysates of both CP20 and
OV90 cells (Fig. 2a), indicating that BMI1 might be a
novel phosphorylation substrate of CK2a.

To confirm these observations, we performed an
in vitro kinase assay using purified CK2«, GST-tagged
BMI1 and [y->?P] ATP. The autoradiograph clearly
demonstrated that BMI1 was phosphorylated by CK2a
(Fig. 2b). Additionally, as previously reported [30],
autophosphosphorylation of CK2a was also observed
(Fig. 2b). To further confirm these observations we first
immunoprecipitated CK2a from cellular lysates of CP20
cells using antibody-conjugated agarose beads (Fig. 2c-left
panel). Equal amount of these agarose beads were incu-
bated with recombinant BMI1 and [y - **P] ATP either in
presence or absence of different concentrations of the
CK2 inhibitor, TBB (4,5,6,7-tetrabromobenzotriazole) [31].
The autoradiograph clearly demonstrated that BMI1 was
phosphorylated by CK2a and the signal significantly
diminished with TBB (Fig. 2c-right panel). Together these
results demonstrate that CK2a phosphorylates BMI1.

CK2a phosphorylates BMI1 at S110
To determine the potential site/s on BMI1 that are
phosphorylated by CK2q, full-length purified BMI1 was
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Fig. 2 BMI1 is a substrate of CK2a. a Co-precipitation of BMIT with CK2a. Reciprocal immunoprecipitation (IP) assay was performed with BMIT and
CK2a antibodies crosslinked with the agarose resin and immunoprobed with CK2a and BMIT antibodies respectively. b In vitro kinase assay with CK2a and
BMI1. In vitro kinase assay was performed with 400nM CK2a, 200nM or 400nM BMI1-GST and radioactive ATP and representative autoradiograph image is
presented.. Reaction mixture without substrate (lane 1), only GST protein (lane2), without enzyme (lane 3), and enzyme with GST only (lane 4) served as
negative controls. ¢ Kinase assay with immunoprecipitated (IP) endogenous CK2a and purified BMI1. CK2a was immunoprecipitated from CP20 cells using
agarose A/G beads, the beads was washed and incubated in a kinase assay buffer supplemented with purified BMIT-GST and radiolabeled ATP, in presence
or absence of the specific CK2 inhibitor TBB. A representative autoradiograph is provided in the right panel. Efficient Immunoprecipitation is demonstrated
in the left panel by immunoblotting a small fraction of the IPed beads with CK2a antibody
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subjected to the in vitro kinase reaction in presence or
absence of purified CK2a and non-radioactive ATP and
then analyzed by mass spectrometry (MS). 19% of the
detected BMI1 peptides were phosphorylated at Ser110
compared to none without CK2a as shown in the
phosphopeptide spectrum (Fig. 3a and Additional file 1:
Figure S1). The extracted ion chromatogram for the
peptide is shown in the inset of Fig. 3a. By site-directed
mutagenesis of the FLAG tagged wild-type BMI1 (WT)
construct, we generated a SI10A mutant and expressed
these constructs in CP20 cells. Immunoblotting and
densitometric analysis demonstrated that comparable
expression could be achieved by transfection 1.5 pg of
WT and 2 pg of the S110A-BMI1 mutant (Mut-BMI1)
constructs respectively (Fig. 3b). Next, WT or Mut-
BMI1 was immunoprecipitated using anti-FLAG anti-
body conjugated to protein A/G agarose beads (Fig. 3c,
left panel). Equal amount of beads were incubated with
full-length GST-tagged CK2a and [y - *P] ATP for the
in vitro kinase assay. Autoradiograph signals were ob-
tained with WT-BMI1 but not with Empty vector (EV)
control or with the Mut-BMI1 (Fig. 3c, right panel).
Together these results indicate that BMI1 is phosphory-
lated by CK2a at the S110 residue.

Mutation at S110 residue decreases half-life of BMI1
Modulation of cellular CK2« levels impacted not only
BMI1 phosphorylation but also total protein levels
(Fig. 1c-d). In addition, though the plasmid backbones
were identical we consistently observed lower expression
of S110A compared to wild-type BMI1 (Fig. 3b) suggest-
ing issues with stability of the mutant (non-phosphoryla-
table) protein. To investigate this possibility, the half-life
of the FLAG tagged WT and S110A-BMI1 was deter-
mined in CP20 cells using 100 pg/ml cyclohexamide
(CHX). As evidenced by immunoblotting and densitom-
etry, WT-BMI1 had a half-life of ~23 min while SI10A
with a half-life of ~11 min degraded faster (Fig. 4a). Prior
studies have reported a half-life of ~25-30 min for WT-
BMI1 that is specifically degraded by the 26S proteasome-
mediated pathway [15]. To determine if decreased sta-
bility of mutant BMI1 was due to proteasome-
mediated degradation, we treated plasmid transfected
CP20 cells with the proteasome inhibitor MG132
(10 uM) for the indicated times. Compared to the
wild-type protein, consistently more S110A-BMI1 ac-
cumulated after treatment with MG132 suggesting that
the mutation and thereby lack of phosphorylation ren-
dered the protein less stable and more amenable to
degradation by the proteasome (Fig. 4b). Similarly,
compared to the control more accumulation of en-
dogenous BMI1 could be observed in the MG132
treated CK2a silenced cells (Fig. 4c) further supporting
that phosphorylation at S110 affects stability of BMI1.

Page 6 of 10

Importance of the CK2a/BMI1 axis in ovarian cancer
BMI1 confers clonal self-renewal property to cells.
Therefore using clonal growth assays, we determined the
effect of WT or S110A-BMI1 in OV90 and CP20 cells.
Simultaneously, endogenous BMI1 was silenced by a
3'UTR targeted siRNA and comparable levels of WT or
S110A-BMI1 was expressed in these cells. Significant
knockdown of endogenous BMI1 by siRNA and re-
expression of the FLAG tagged WT and S110A-BMI1
was confirmed by immunoblotting (Fig. 5a). Compared
to the control, significant decrease in clonal growth was
observed in the BMI1 silenced cells (~55% in OV90
and ~45% in CP20; Fig. 5b-c). Re-expression of WT-BMI1
almost completely rescued clonal growth in endogenous
BMI1 silenced cells while the S1I10A-BMI1 had no effect
(Fig. 5b-c).

Based on these results we posited that if CK2a medi-
ated BMI1 phosphorylation led to protein stability, then
a correlation between CK2a and BMIL protein levels
would be expected in ovarian cancer clinical specimens.
Therefore, we analyzed BMI1 and CK2a levels in a panel
of twenty high-grade serous ovarian tumors and two
normal fallopian tube epithelial (FTE) tissues [32] by im-
munoblotting. BMI1 expression was significantly higher
in primary tissues (p =0.0398) and CK2a was detected
in a significantly higher proportion of primary tissues
(p = 0.013). Remarkably within the tumor samples, signifi-
cant correlation between CK2a and BM11 expression was
observed (Fig. 5d, Spearman correlation coefficient is 0.62,
p =0.0021). While patients with higher expression of both
BMI1 and CK2a showed a trend towards shorter pro-
gression free survival, the data did not reach statistical sig-
nificance likely due to the limited sample size (Additional
file 1: Figure S2). Together, these results demonstrate that
phosphorylation of BMI1 at Ser110 by CK2a is important
for both stability and functionality of the protein.

Discussion
Given the important role of BMI1 in cancer biology it is
important to investigate its post-translational modifications
because they confer functional diversity to proteins and
few such modifications of BMI1 have been previously de-
scribed. Here we report that CK2a by phosphorylating at
the Ser110 residue regulates stability of the BMI1 protein.
Interestingly, all of the previously reported phosphor-
ylation sites of BMI1 lie within the C-terminal PS/PEST
domain (236-326 amino acids) and involve AKT [3, 12].
Though bioinformatics analysis predicted a number of
potential kinases that could phosphorylate BMI1, we
focused on CK2a because the hetero-tetrameric CK2
complex with constitutive kinase activity is predomin-
antly present in the nucleus like BMI1. Also, ovarian
cancer cells that expressed CK2oa but minimally acti-
vated AKT maintained phosphorylated species of BMI1.
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sample was sent for mass spectrometric analysis. The spectrum of the BMI1 phospeptide is presented with the extracted ion chromatogram for
the peptide with phosphate shown in the inset (indicated by #). b Relative expression of WT and mutant BMI1: Phospho mutant BMIT with
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mutagenesis. CP20 cells were transfected with increasing DNA concentration (0.5 pg -2 pg) of wild-type or mutant BMI1 and 30 h post transfection
samples were harvested for immunoblotting with FLAG antibody. HSP60 is used as a loading control. Right panel shows a representative immunoblot
for the expression of the WT and Mut-BMI1. To determine DNA concentration required to achieve comparable expression between WT and Mut-BMI1,
a densitometry analysis of the bands was performed using Image J software (NIH, Bethesda, MD), and the graph was generated by plotting fold
intensity vs DNA concentration. The broken line indicates equivalent expression level of WT and Mut-BMI1.
were transfected with EV (2 pg), WT (1.5 pg) and Mut-BMIT (2 ug) and 30 h post transfections cells were harvested for immunoprecipitation with
FLAG antibody and agarose beads. A fraction of the agarose beads were processed for immunoblotting to ensure efficient immunoprecipitation and
depicted as an immunograph in the left panel. The right panel shows radiograph for kinase assay reaction with the immunoprecipitated beads and in

¢ Kinase assay with Mutant BMI. CP20 cells

Following prediction, we showed that CK2a reciprocally
co-precipitated with BMI1. Using in vitro kinase assays
and Mass spectrometry we confirmed that CK2a phos-
phorylates BMI1 at the Ser110 residue.

Prior reports indicate that protein turnover of BMI1 is
regulated by BTrCP recognizing a degron motif within the
PS/PEST domain, where all the previously described phos-
phorylation sites reside [33]. Deletion of the PS/PEST do-
main thus increases the half-life and stability of the protein
[15]. Other mechanisms of BMI1 stability include direct as-
sociation with the FALI long noncoding RNA resulting in

increased clonogenicity and tumorigenicity in an ovarian
cancer model [34]. Phosphorylation can differentially regu-
late proteosomal degradation [35-38]. Our results suggest
that phosphorylation at Ser110 by CK2a stabilizes BMI1
because mutation to non-phosphorylatable alanine signifi-
cantly reduces half-life of the protein resulting in increased
accumulation upon addition of MG132 indicating proteaso-
mal degradation. Phosphorylation-mediated alteration in
protein conformation resulting in reduced ubiquitination or
enhanced interaction with other stabilizing proteins, akin to
many other cellular proteins [39, 40] may be envisioned.
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b Effect of proteosomal inhibition on Wild-type (WT) and ST10A mutant BMIT (Mut-BMIT). 30 h post transfection, CP20 cells were treated with 10 pM
MG132, for different time points (0-120 min) to determine the accumulation of WT or mutant BMI1. Left panel represents the immunoblots for FLAG
and HSP60 and quantification of the accumulated proteins by densitometry analysis of signal present in respective lanes (normalized to the individual
HSP60) is graphically represented in the right panel. ¢ Effect of proteosomal inhibition on BMIT protein accumulation in CK2a silenced cells. CP20 cells
were transfected with scrambled siRNA (siCTL) or siRNA against CK2a (siCK2a) and 48 h post transfection, cells were treated with 10 uM MG132, for
different time points (0-120 min) to determine the effect of silencing CK2a on MG132 induced accumulation of endogenous BMI1. siCTL or siCK2a
transfected cells were harvested after each time point and analyzed for accumulation of the endogenous BMI1 protein by western blot analysis and
using HSP60 as a loading control (bottom left panel). Efficient silencing by CK2a siRNA was also determined (top left panel). The accumulated proteins
were quantified by densitometry analysis of signal present in respective lanes and by normalizing it to the individual HSP60 and graphically represented
in the right panel

Conclusions

Our results, generally, demonstrate a correlation be-
tween expression of CK2«a and phosphorylated BMI1 in
ovarian cancer cell lines and patient tissues. Interestingly
previous reports suggest that expression of both CK2a

ovarian cancer cells leading us to speculate that CK2a-
mediated phosphorylation stabilizes BMI1 and promotes
its oncogenic function.

and BMI1 is elevated in ovarian cancer and correlates
with poor overall survival (19, 20). Also, in vivo studies
in mice bearing A2780-xenografts, confirmed that anti-
tumor efficacy could be enhanced by combining the
CK2 inhibitor with cisplatin, carboplatin, or gemcitabine
[41]. However, in these studies, the expression of BMI1
was not determined. We find that re-expression of
phosphorylatable but not non-phosphorylatable BMI1
rescues clonal growth in endogenous BMI1 silenced

Additional file

<
Additional file 1: Figure S1. The spectrum obtained from MS analysis of
Phospheptide of BMIT (DFYAAHPSADAANGS#NEDRGEVADEDKR). Figure S2.
Association between BMI1+ CK2a (categorized into “high BMIT + high CK2a”

vs “others”) and patient survival (PFS). Expression of CK2a and BMIT in the
ovarian cancer patient samples (N = 20) were determined by immunoblotting,
quantified by densitometry analysis as described in the “methods section” and
grouped as high BMI1/high CK2a expressers versus all others. While PFS was
worse in the high BMIT + high CK2a group, the result was not statistically
significant (P=04), possible due to small sample size. (DOCX 78 kb)
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d Coexpression of CK2a and BMI1 in primary tissues. Protein was extracted from the 20 primary tumors (T1 to T20) and 2 normal fallopian tube
epithelial (FTE 1, 2) samples as described in the material and methods section and were quantified by densitometry analysis using Image J. Expression
of CK2a and BMIT were individually normalized to their respective a-tubulin levels. Left Panel represents immunograph for BMIT and CK2a expression
in primary tissues. Right panel represents scatterplot of CK2a vs. BMIT with overlaid linear regression line among tumor tissue samples (N = 19).
Spearman correlation coefficient is 0.62 (p =0.0021)

Abbreviations Availability of data and materials

BMI1: B lymphoma Mo-MLYV insertion region 1 homolog; CK2a: Casein kinase
2 alpha subunit; FFPE: Formalin Fixed Paraffin Embedded; FTE: Fallopian Tube
Epithelial; PRCT: Polycomb repressor complex 1; RT-PCR: Reverse Transcription
and Polymerase Chain reaction

Acknowledgements

We thank the Taplin Biological Mass Spectrometry Facility for their excellent
assistance. We thank the Institutional Development Award (IDeA) from the
National Institute of General Medical Sciences of the National Institutes of
Health under grant number P20 GM103639 for the use of Histology and
Immunohistochemistry Core at Stephenson Cancer Center which provided
processing and embedding/tissue staining/immunohistochemistry service.

Funding

This study was supported by the National Institutes of Health (NIH) CA 157481
(RB) and HL120585 (PM), the funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

All data generated or analyzed during this study are included in this
published article [and its supplementary information files].

Authors’ contributions

SBM, PKC, PM and RB designed the experiments; SBM, PKC and SKDD,
performed the experiments; SBM, PKC, KM, KD and RB analyzed the data;
SBM, PKC and RB wrote the manuscript. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
For experiments that involve the use of human subjects, the work described
has been carried out in accordance with The Code of Ethics of the World



Banerjee Mustafi et al. Molecular Cancer (2017) 16:56

Medical Association (Declaration of Helsinki). Informed consent was obtained
for experimentation with human subjects. The privacy rights of human
subjects were also observed.

Author details

'Peggy and Charles Stephenson Cancer Center (OUHSC), University of
Oklahoma Health Science Center, 975 NE 10th Street, BRC-14098, Oklahoma
City, OK 73104, USA. 2Departmem of Obstetrics and Gynecology, University
of Oklahoma Health Science Center, Oklahoma City, OK, USA. “Department
of Pathology, University of Oklahoma Health Science Center, Oklahoma City,
OK, USA. “Department of Cell Biology, University of Oklahoma College of
Medicine, Oklahoma City, OK, USA. SDepartmem of Biostatistics and
Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma
City, OK, USA.

Received: 2 December 2016 Accepted: 20 February 2017
Published online: 07 March 2017

References

1.

2.

Park IK, Morrison SJ, Clarke MF. Bmi1, stem cells, and senescence regulation.
J Clin Invest. 2004;113(2):175-9.

Siddique HR, Saleem M. Role of BMI1, a stem cell factor, in cancer
recurrence and chemoresistance: preclinical and clinical evidences. Stem
Cells. 2012;30(3):372-8.

Nacerddine K, Beaudry JB, Ginjala V, Westerman B, Mattiroli F, Song JY,

van der Poel H, Ponz OB, Pritchard C, Cornelissen-Steijger P, et al. Akt-mediated
phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity,
and DNA damage repair activity in mouse prostate cancer. J Clin Invest.
2012;122(5):1920-32.

Ginjala V, Nacerddine K, Kulkarni A, Oza J, Hill SJ, Yao M, Citterio E,

van Lohuizen M, Ganesan S. BMIT is recruited to DNA breaks and contributes
to DNA damage-induced H2A ubiquitination and repair. Mol Cell Biol.
2011;31(10):1972-82.

Ismail IH, Gagne JP, Caron MC, McDonald D, Xu Z, Masson JY, Poirier GG,
Hendzel MJ. CBX4-mediated SUMO modification regulates BMIT recruitment
at sites of DNA damage. Nucleic Acids Res. 2012;40(12):5497-510.

Liu J, Cao L, Chen J, Song S, Lee IH, Quijano C, Liu H, Keyvanfar K, Chen H,
Cao LY, et al. Bmi1 regulates mitochondrial function and the DNA damage
response pathway. Nature. 2009,459(7245):387-92.

Banerjee Mustafi S, Aznar N, Dwivedi SK, Chakraborty PK, Basak R, Mukherjee P,
Ghosh P, Bhattacharya R. Mitochondrial BMIT maintains bioenergetic
homeostasis in cells. FASEB J. 2016;30(12):4042-55.

Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T, Cao L,
Baiazitov R, Du W, Sydorenko N, et al. Self-renewal as a therapeutic target in
human colorectal cancer. Nat Med. 2014;20(1):29-36.

Mayr C, Wagner A, Loeffelberger M, Bruckner D, Jakab M, Berr F, Di Fazio P,
Ocker M, Neureiter D, Pichler M, et al. The BMI1 inhibitor PTC-209 is a
potential compound to halt cellular growth in biliary tract cancer cells.
Oncotarget. 2016;7(1):745-58.

Dey A, Mustafi SB, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R.
Inhibition of BMIT induces autophagy-mediated necroptosis. Autophagy.
2016;12(4):659-70.

Bhattacharya R, Mustafi SB, Street M, Dey A, Dwivedi SK. Bmi-1: At the crossroads
of physiological and pathological biology. Genes Dis. 2015;2(3):225-39.

Liu'Y, Liu F, Yu H, Zhao X, Sashida G, Deblasio A, Harr M, She QB, Chen Z,

Lin HK et al. Akt phosphorylates the transcriptional repressor bmi1 to block its
effects on the tumor-suppressing ink4a-arf locus. Sci Signal. 2012,5(247):ra77.
Voncken JW, Niessen H, Neufeld B, Rennefahrt U, Dahlmans V, Kubben N,
Holzer B, Ludwig S, Rapp UR. MAPKAP kinase 3pK phosphorylates and
regulates chromatin association of the polycomb group protein Bmi1.

J Biol Chem. 2005;280(7):5178-87.

Sustackova G, Kozubek S, Stixova L, Legartova S, Matula P, Orlova D, Bartova E.
Acetylation-dependent nuclear arrangement and recruitment of BMIT protein
to UV-damaged chromatin. J Cell Physiol. 2012,227(5):1838-50.

Yadav AK, Sahasrabuddhe AA, Dimri M, Bommi PV, Sainger R, Dimri GP.
Deletion analysis of BMI1 oncoprotein identifies its negative regulatory
domain. Mol Cancer. 2010;,9:158.

Litchfield DW. Protein kinase CK2: structure, regulation and role in cellular
decisions of life and death. Biochem J. 2003;369(Pt 1):1-15.

Meggio F, Pinna LA. One-thousand-and-one substrates of protein kinase
CK2? FASEB J. 2003;17(3):349-68.

20.

21.

22.

23.

24

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Page 10 of 10

Niefind K, Guerra B, Ermakowa |, Issinger OG. Crystal structure of human
protein kinase CK2: insights into basic properties of the CK2 holoenzyme.
EMBO J. 2001;20(19):5320-31.

Ortega CE, Seidner Y, Dominguez I. Mining CK2 in cancer. PLoS One.
2014;9(12):2115609.

Bhattacharya R, Nicoloso M, Arvizo R, Wang E, Cortez A, Rossi S, Calin GA,
Mukherjee P. MiR-15a and MiR-16 control Bmi-1 expression in ovarian
cancer. Cancer Res. 2009;69(23):9090-5.

Abd El hafez A, El-Hadaad HA. Immunohistochemical expression and
prognostic relevance of Bmi-1, a stem cell factor, in epithelial ovarian
cancer. Ann Diagn Pathol. 2014;18(2):58-62.

Turowec JP, Duncan JS, French AC, Gyenis L, St Denis NA, Vilk G, Litchfield
DW. Protein kinase CK2 is a constitutively active enzyme that promotes cell
survival: strategies to identify CK2 substrates and manipulate its activity in
mammalian cells. Methods Enzymol. 2010;484:471-93.

Guo H, Liu W, Ju Z, Tamboli P, Jonasch E, Mills GB, Lu Y, Hennessy BT,
Tsavachidou D. An efficient procedure for protein extraction from formalin-
fixed, paraffin-embedded tissues for reverse phase protein arrays. Proteome
Sci. 2012;10(1):56.

Banerjee Mustafi S, Grose JH, Zhang H, Pratt GW, Sadoshima J, Christians ES,
Benjamin 1J. Aggregate-prone R120GCRYAB triggers multifaceted modifications
of the thioredoxin system. Antioxid Redox Signal. 2014;20(18):2891-906.
Kinoshita E, Kinoshita-Kikuta E, Koike T. Separation and detection of large
phosphoproteins using Phos-tag SDS-PAGE. Nat Protoc. 2009;4(10):1513-21.
Bekesova S, Komis G, Krenek P, Viyplelova P, Ovecka M, Luptovciak |, llles P,
Kucharova A, Samaj J. Monitoring protein phosphorylation by acrylamide
pendant Phos-Tag in various plants. Front Plant Sci. 2015;6:336.
Kinoshita-Kikuta E, Aoki Y, Kinoshita E, Koike T. Label-free kinase profiling
using phosphate affinity polyacrylamide gel electrophoresis. Mol Cell
Proteomics. 2007;6(2):356-66.

Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction
of eukaryotic protein phosphorylation sites. J Mol Biol. 1999;294(5):1351-62.
Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, Yang YH, Chu CH, Huang
HD, Ko MT, Hwang JK. KinasePhos 2.0: a web server for identifying protein
kinase-specific phosphorylation sites based on sequences and coupling
patterns. Nucleic Acids Res. 2007;35(Web Server issue):W588-94.
Donella-Deana A, Cesaro L, Sarno S, Brunati AM, Ruzzene M, Pinna LA.
Autocatalytic tyrosine-phosphorylation of protein kinase CK2 alpha and
alpha’ subunits: implication of Tyr182. Biochem J. 2001;357(Pt 2):563-7.
Ruzzene M, Penzo D, Pinna LA. Protein kinase CK2 inhibitor
4,56,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent
degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat
cells. Biochem J. 2002;364(Pt 1)41-7.

Li J, Fadare O, Xiang L, Kong B, Zheng W. Ovarian serous carcinoma: recent
concepts on its origin and carcinogenesis. J Hematol Oncol. 2012,5:8.
Sahasrabuddhe AA, Dimri M, Bommi PV, Dimri GP. betaTrCP regulates BMI1
protein turnover via ubiquitination and degradation. Cell Cycle. 2011;10(8):1322-30.
Hu X, Feng Y, Zhang D, Zhao SD, Hu Z, Greshock J, Zhang Y, Yang L, Zhong X,
Wang LP, et al. A functional genomic approach identifies FALT as an
oncogenic long noncoding RNA that associates with BMIT and represses p21
expression in cancer. Cancer Cell. 2014;26(3):344-57.

Musti AM, Treier M, Bohmann D. Reduced ubiquitin-dependent degradation of
¢-Jun after phosphorylation by MAP kinases. Science. 1997;275(5298):400-2.
Brondello JM, Pouyssegur J, McKenzie FR. Reduced MAP kinase
phosphatase-1 degradation after p42/p44MAPK-dependent
phosphorylation. Science. 1999,286(5449):2514-7.

Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent
phosphorylation pathways regulate Myc protein stability. Genes Dev.
2000;14(19):2501-14.

Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond.
Mol Cell. 2007;28(5):730-8.

Moll UM, Petrenko O. The MDM2-p53 interaction. Mol Cancer Res.
2003;1(14):1001-8.

Sheng J, Kumagai A, Dunphy WG, Varshavsky A. Dissection of c-MOS
degron. EMBO J. 2002;21(22):6061-71.

Siddiqui-Jain A, Bliesath J, Macalino D, Omori M, Huser N, Streiner N, Ho CB,
Anderes K, Proffitt C, O'Brien SE, et al. CK2 inhibitor CX-4945 suppresses DNA
repair response triggered by DNA-targeted anticancer drugs and augments
efficacy: mechanistic rationale for drug combination therapy. Mol Cancer Ther.
2012;11(4):994-1005.



	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Materials
	Plasmids and constructs
	Cell culture and transfection
	Protein extraction, determination of protein concentration, and λ-Phosphatase treatment
	Immunoblotting, immunoprecipitation and kinase reaction
	Quantitative RT-PCR
	Clonal growth assay
	Data analysis and statistics

	Results
	Identification of Casein Kinase 2α, a candidate BMI1 kinase
	CK2α phosphorylates BMI1
	CK2α phosphorylates BMI1 at S110
	Mutation at S110 residue decreases half-life of BMI1
	Importance of the CK2α/BMI1 axis in ovarian cancer

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

