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Abstract

Cancer cells are frequently confronted with metabolic stress in tumor microenvironments due to their rapid growth
and limited nutrient supply. Metabolic stress induces cell death through ROS-induced apoptosis. However, cancer cells
can adapt to it by altering the metabolic pathways. AMPK and AKT are two primary effectors in response to metabolic
stress: AMPK acts as an energy-sensing factor which rewires metabolism and maintains redox balance. AKT broadly
promotes energy production in the nutrient abundance milieu, but the role of AKT under metabolic stress is in dispute.
Recent studies show that AMPK and AKT display antagonistic roles under metabolic stress. Metabolic stress-induced
ROS signaling lies in the hub between metabolic reprogramming and redox homeostasis. Here, we highlight the
cross-talk between AMPK and AKT and their regulation on ROS production and elimination, which summarizes the
mechanism of cancer cell adaptability under ROS stress and suggests potential options for cancer therapeutics.
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Background

Metabolic stress, prevalently existing in tumor microenvi-
ronments and characterized with nutrient, oxygen and
growth factor deprivation, is the consequence of aberrant
proliferation and relative inadequate angiogenesis and
vascularization [1-4]. Glucose deprivation is one of the
main patterns of metabolic stress due to the dramatic reli-
ance on glucose for energy production in cancer cells [5, 6].
It is estimated that glucose concentration in tumors may be
3-10 folds lower than noncancerous tissues [7]. This nutri-
ent deficiency directly reduces ATP production and leads
to reactive oxygen species (ROS) overproduction [8].

The ROS accumulation activates multiple pathways and
exerts discrepant impacts on cancer cell survival [9].
AMP-activated protein kinase (AMPK), the energy sensor
in cells, is activated in response to this stress and
promotes metabolic reprograming. AKT (also known as
protein kinase B, PKB), a proto-oncogene activated in
multiple cancers, acts as anti-apoptotic factor to a variety
of stimuli such as radiation, hypoxia and chemotherapy
[10]. However, growing number of studies indicate the
activation of AKT does not inhibit cell death, but renders

* Correspondence: nfyyshimin@163.com
Department of Oncology, Nanfang Hospital, Southern Medical University,
Guangzhou, China

( ) BiolVled Central

cells more sensitive to metabolic stress instead [11-14]. It
is anticipated that anti-apoptotic ability of AKT is coupled
with glucose metabolism. Glucose deprivation could
induce ROS overload, causing AKT hyperactivation and
accelerating cell death. This implies dual roles of AKT in
tumor growth and stress resistance [11].

From the view of ROS production and elimination in
combination with these two regulators under metabolic
stress, we review the metabolic reprogramming and
redox homeostasis of cancer cells, highlighting the
cross-talk between AMPK and AKT and their influence
on cancer progression and treatment.

ROS-mediated cross-talk between energy and redox
homeostasis

ROS are byproducts of biological reactions of energy gen-
eration, and are mainly produced in the mitochondria
through the oxidative metabolism [15, 16]. It is estimated
that ROS produced by mitochondria are about 1-2% of
the total rate of oxygen consumption in normal cells [17].
Cancer cells prevalently exhibit much higher ROS levels
than normal cells due to dysfunctional mitochondria,
oncogene activation and antioxidant imbalance [8, 18].
ROS are a double-edged sword for oncogenesis. Moderate
ROS inactivate the protein tyrosine phosphatases (PTP)
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such as phosphatase and tensin homolog (PTEN), facilitat-
ing phosphoinositide 3-kinase (PI3K) and tyrosine kinase
receptor (TKR) signaling, which ultimately leads to tumor
progression [19]. However, excess ROS damage cellular
structures, such as the lipid membrane, protein and
nucleic acid. Specifically for more proliferating cancer
cells, excess ROS induce DNA mutations and compromise
genome integrity, leading to cell senescence and death
[18]. Cancer cells develop an antioxidant system comprised
with ROS scavenging enzymes such as superoxide dismu-
tases (SODs), catalase (CAT), glutathione peroxidases
(GPX) as well as antioxidant agents like nicotinamide aden-
ine dinucleotide phosphate (NADPH) and glutathione
(GSH). The antioxidant capacities of cancer cells increase
with the rising ROS levels, potentially as a survival adapta-
tion [20-23]. The balance of ROS production and elimin-
ation maintains the cellular redox homeostasis, which is
vital to cell survival (Fig. 1a).

Redox homeostasis is closely linked to glucose metabol-
ism. Cancer cells make prevalent use of glycolysis to pro-
duce energy even in aerobic environments, a phenomenon
known as the Warburg effect [24]. Although this mode of
energy production is less efficient than mitochondrial res-
piration per unit of glucose, the rate of glycolysis is 10—100
times faster [25]. Glycolysis is an uncomplete energy release
process and produces less ROS than mitochondria oxida-
tion. The excess carbons from glycolytic intermediates are
ingredients for biosynthesis of lipids, nucleic acids and pro-
teins, which are necessary for increased de novo synthesis
of cellular building blocks [26]. Increased glucose absorp-
tion is diverted directly or indirectly to pentose phosphate
pathway (PPP) to produce NADPH [27], which further
facilitates the conversion of oxidized glutathione (GSSG) to
reduced GSH by acting as co-substrate of glutathione
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reductase (GR) [28]. The increased NADPH and GSH not
only facilitate biosynthesis, but also create reductive milieu
to resist oxidative stress [29]. In different phases of the cell
cycle, the main energy-production methods may fluctu-
ate between glycolysis and oxidative phosphorylation
(OXPHOS). Glycolysis is a primitive method to produce
energy in proliferating cells such as early embryonic cells,
stem cells and cancer cells when compared to those rest
cells. Enhanced glycolysis contributes to alleviating ROS
stress and diminishing the chance of spontaneous muta-
tion during DNA replication [30-32]. Therefore, glycoly-
sis is a protective strategy for rapid ATP synthesis with
less ROS stress in cancer cells [33].

The conflicts of redox and metabolic homeostasis under
metabolic stress

Under metabolic stress, the redox balance is damaged. Lim-
ited glucose sources impair glycolysis, and glycolysis-based
NADPH production is depleted by reduced utilization of
the PPP [34]. Additionally, glucose limitation leads to over-
burdening of mitochondria energy production. As a result,
the metabolism rewires from glycolysis to OXPHOS and
subsequent pro-oxidant production, primarily superoxide
and hydrogen peroxide, leads to ROS overload [35, 36].
The disequilibrium of ROS production over ROS scaven-
ging leads to ROS stress (Fig. 1b), which further activates
apoptotic pathways. A study by NA Graham et al. based on
phospho-tyrosine proteomics showed that metabolic stress
provoked a supra-physiological level of TKR signaling,
causing a positive feedback loop between ROS, PTPs and
TKR signaling, and ultimately leading to cell death [37].
Meanwhile, by using ROS scavenger N-acetylcysteine
(NAC), the kinase activation could be reversed under glu-
cose deprivation [38, 39]. In addition, it is reported in M
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Gao’s study that Reverse Phase Protein Arrays (RPPA) ana-
lysis detected the signal change after glucose deprivation. A
variety of kinases were activated, which was consistent with
NA Graham’s study [37]. Interestingly, though the study of
M Gao exhibited a dramatic difference in the spectrum of
activated kinases between transient and prolonged glucose
deprivation [40]. It was hypothesized that the kinase activa-
tion after glucose deprivation and its role in cell survival
might be time-dependent and specific to cell lines. These
studies underline the importance of the kinase activation
loop in mediating ROS-induced cell death.

Although Otto Warburg, who proposed the theory of the
Warburg effect, declares mitochondrial dysfunction leads
to prevalent use of glycolysis in cancer cells, there are
studies suggesting that many cancer cells prioritize
OXPHOS to generate ATP [41]. It is generally agreed that
enhanced glycolysis in cancer cells does not necessarily cor-
respond to impaired OXPHOS [32]; particularly under
metabolic stress, mitochondrial-based energy production is
essential for viability. Under metabolic stress, other inter-
mediates like glutamine [42, 43], lactate [44, 45], fatty acids
and others [7, 46] are alternatively consumed to produce
ATP. ] Yun et al. reported that colorectal cancer cells dem-
onstrated higher expression of KRAS and GLUT1 under
glucose deprivation [47]. Additionally, glucose deprivation
stimulated the tricarboxylic acid (TCA) cycle through
mitochondrial glutamine metabolism, which was a source
of ATP and generated a-ketoglutarate (a-KG) for biosyn-
thesis [43, 48]. However, enhanced mitochondrial burden
under metabolic stress increases the ROS production. The
conflicts of producing energy versus maintaining ROS
homeostasis dramatically impacts the fate of cancer cells.

ROS regulation by AMPK and AKT under glucose
deprivation

Glucose deprivation leads to ATP depletion and ROS
accumulation, which in turn activates AMPK. AMPK is a
heterotrimer complex, including a catalytic subunit (a) and
two regulatory subunits (f and y). It is phosphorylated on
the Thr-172 in the presence of high AMP/ATP ratios due
to ATP depletion, allowing it to act as an energy sensor for
the cell. It is also regulated by its upstream LKB1, CaMMK
or other factors like ADP or Ca** [49]. In addition, ROS
directly activate AMPK through S-glutathionylation of
cysteines on the AMPKa and [ subunit [31].

AMPK mediates metabolic reprogramming to survive
glucose deprivation by promoting catabolism (glucose
uptake, glycolysis, fatty acid oxidation, autophagy, etc.) and
suppressing anabolism (protein, fatty acid, glycogen syn-
thesis) [49-52] (Fig. 2). AMPK also regulates the redox
state by alleviating the glucose deprivation-induced
NADPH depletion via decreased fatty acid synthesis and
increased fatty acid oxidation [46]. Further, B Chaube et al.
found that AMPK could enhance mitochondrial biogenesis
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and OXPHOS by activating p38/PGCla pathway [53]. This
indicatess AMPK is not only involved in glycolytic
regulation, but also participates in ATP generation from
OXPHOS.

The serine/threonine kinase AKT is widely acknowledged
as a proto-oncogene. It is activated by extracellular signals
(mostly growth factors through PI3K signaling) and is
downregulated by PTEN. AKT mediates carcinogenesis
and tumor progression mainly through promoting cell
survival and inhibiting apoptosis [54] (Fig. 2). In addition,
AKT is evolutionarily conserved and regulates glucose me-
tabolism [14]. AKT promotes glycolysis through increasing
GLUT1 trafficking to the cell surface, and through phos-
phofructokinase (PFK) and hexokinase (HK) activation
[12]. Moreover, by stimulating oxidative metabolism, AKT
promotes mitochondria oxygen consumption and contrib-
utes to ROS accumulation [55]. AKT is downstream to
multiple growth factors such as EGE, IGF and HGE, etc.
These growth factors are increased via autocrine or para-
crine signals in nutrient-abundant conditions [56], indicat-
ing the role of AKT in proliferation is closely related to a
well suitable growth milieu.

Recently, some studies indicate that the ability of AKT
to inhibit cell death is dependent on glucose metabolism
[13, 57]. JL Coloff et al. found that AKT suppressed
Bim-induced cell death only when glucose was present
[12]. Additionally, AKT activation rendered glioblastoma
cells more sensitive to glucose withdrawal-induced cell
death [13], and overexpression of PTEN dramatically re-
versed this process [37]. Further, V Nogueira et al. found
that AKT activation rendered cells more susceptible to
ROS-mediated premature senescence and cell death by
increasing oxygen consumption and suppressing FOXO
activity [14]. These studies imply that AKT acts as a pro-
apoptotic factor under ROS stress, which is at odds with
the established cognition of AKT as a tumor protective
gene. Moreover, AKT is one of the factors involved in
the aforementioned glucose deprivation-induced cell
death via strengthening the kinase activation loop [37].

The cross-talk between AMPK and AKT under metabolic
stress

It is interesting that under glucose deprivation, AKT plays
antagonistic roles from AMPK in ROS-mediated cell
apoptosis. mTOR and FOXO are two main downstream
effectors regulated by both AMPK and AKT, which exert
antagonistic effects on ROS homeostasis. In addition,
AMPK and AKT also regulate mutual phosphorylation
directly or indirectly.

mTOR signaling

mTOR is a nutrient and growth factor sensing complex,
which lies the intersection between glucose and amino acid
metabolism and contributes to biosynthesis and autophagy
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Fig. 2 Cross effects of AMPK and AKT on the cellular metabolism and redox state: The targeted proteins regulated by AMPK and AKT and their regulatory
effects are depicted, AMPK is a key player in response to metabolic stress by regulating the metabolism of glucose, lipid and protein. AMPK promotes
glucose uptake and glycolysis, facilitating antioxidant production. AMPK also stimulates fatty acid oxidation and limits the fatty acid synthesis. mTOR and
FOXO are two main downstream effectors of AMPK. AMPK inhibits mTOR activity, which induces protein synthesis inhibition and autophagy activation.
AMPK also promotes FOXO activity to maintain the redox balance through enhanced antioxidant production and glucose metabolism. On the other side,
AKT exerts antagonistic effect to regulate mTOR and FOXO activity. AKT stimulates mTOR signaling to promote glucose metabolism and protein synthesis,
leading to increased ROS production. Meanwhile, it inhibits FOXO activity and renders cells susceptible to ROS toxicity

[58]. Active mTOR1 phosphorylates ribosomal protein S6
kinase (S6K) and eukaryotic translation initiation factor 4E
(eIF4E) binding proteins (4E-BPs), controlling the activity
of eukaryotic initiation factors (elFs) and eukariotic elong-
ation factors (eEFs). This promotes the protein synthesis
and ribosome biosynthesis [31, 58]. In addition, mTOR1
inactivates UNC51like kinase 1 (ULK1) at Ser-757 to inhibit
autophagy. Interestingly, AMPK phosphorylates ULK1 at
Ser-317 and Ser-777 to initiate Beclinl-mediated autophagy
[59]. AMPK phosphorylates the regulatory-associated
protein of mTOR (Raptor) at Ser-792/Ser-722 and
tuberous sclerosis complex 2 (TSC2) at Ser-1387, indir-
ectly leading to inhibition of mTOR1 (Fig. 3). mTOR1
activity is positively correlated with mitochondrial
activity and promotes oxidative metabolism [60, 61].
Under glucose deprivation, AMPK inhibits mTOR1
activity, thereby decreasing protein synthesis and in-
creasing autophagy. Decreased anabolism reduces ROS
production, while enhanced autophagy and glycolysis
increases the resilience of cells to ROS.

However, opposed to AMPK, AKT activates mTOR
by inhibiting TSC2 and subsequently allowing Rheb-
GAP to phosphorylate mTORI1. Additionally, AKT
inactivates PRAS40, which alleviates the PRAS40-
mediated inhibition of mTORC1 (Fig. 3). By activating
mTORC1, AKT promotes oxygen consumption and
increases ROS production under glucose deprivation
[54, 62], rendering cancer cells closer to the death
threshold of ROS.

FOXO signaling

FOXO acts in response to starvation and oxidative stress.
FOXO normally exists in cytoplasm in an inactive form
and translocate to nucleus to initiate transcriptional activity
once activated [63]. FOXO activation increases resistance
to oxidative stress by targeting the expression of SOD,
catalase and sestrin, which are the antioxidant enzymes that
maintain redox homeostasis [64]. In addition, FOXO par-
ticipates in glucose metabolism by regulating phosphoenol-
pyruvate carboxykinase (PEPCK), Glucose-6-phosphatase
(G6Pase) and peroxisome proliferator-activated receptor y
coactivator la (PGCla). PEPCK is the key enzyme in
gluconeogenesis which is enhanced in energy deprivation
and promotes glucose and glutamine metabolism [65, 66];
PGCla is a major transcription coactivator closely related
to mitochondria biogenesis and OXPHOS [67], PGCla
positive cells exhibit increased ROS detoxification capacities
in some cancers such as melanoma [68]. In addition, FOXO
induces expression of autophagy-related genes (ATG6,
ATG7, ATG12, etc.) to elevate autophagic flux and in-
creases the production of mainly fatty acid and amino acids
consumed by mitochondria OXPHOS [64, 69].

AMPK can directly regulate FOXO. AMPK enhances
FOXO3-mediated transcriptional activity by recruiting
CREB-binding protein (CBP) and p300 [63, 70, 71]. It also
regulates S-phase kinase-associated protein 2/coactivator-
associated arginine methyltransferase 1 (SKP2/CARM]1)
signaling by FOXO3 phosphorylation to induce autophagy
under glucose starvation [72]. In EL Greer’s study, AMPK-
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Fig. 3 Signaling of AMPK and AKT on the ROS homeostasis via mTOR and FOXO regulation: Under metabolic stress, AMPK inhibits mTOR mainly via
two ways:phosphorylates TSC2 at Ser-1387 which stimulates the TSC1-TSC2 complex to inhibit Rheb's ability to activate mTOR; phosphorylates Raptor
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phosphorylates FOXO, promoting the translocation to nucleus. AMPK also facilitates FOXO acetylation and enhances its transcriptional activity of
antioxidant genes: SOD, Catalase, Sestrin. Additionally, AMPK promotes NADPH production via the PPP. On the other hand, AKT phosphorylates FOXO
and leads to the translocation from the nucleus to the cytoplasm. By ubiquitination of FOXO, AKT leads to its degradation in cytoplasm

mediated FOXO3 phosphorylation did not affect the nu-
clear localization of FOXO3 [73], indicating AMPK influ-
ences FOXO3 activity only when it is in the nucleus.
Conversely, there are also conflicting studies that suggest
that AMPK may in fact facilitate FOXO3 nuclear
localization [64, 74]. The exact effect of FOXO phosphoryl-
ation remains unclear. In addition, AMPK may increase nu-
clear FOXO acetylation and mediate localization to nuclear
promyelocytic leukemia (PML) bodies, which act as tran-
scriptional co-activators [75]. AMPK indirectly promotes
FOXO acetylation by retaining class II histone deacetylase
(HDAC) in the cytosol [63, 76]. Taken together, FOXO
post-translational modifications greatly influence its func-
tion and AMPK is crucial in this process (Fig. 3).

In contrast to AMPK, FOXO is negatively regulated by
AKT signaling. Glucose deprivation-derived ROS produc-
tion induces the nucleus translocation of FOXO and

thereby promotes transcriptional activity of antioxidant-
related genes [63, 77]. However, AKT inhibits this process
by phosphorylating the FOXO at three conserved residues
and inversely translocates FOXO from nucleus to cyto-
plasm [78]. Besides, AKT also promotes the ubiquitination
of FOXO and leads to its degradation [79] (Fig. 3).

Mutual phosphorylation regulation of AMPK and AKT

AKT blunts AMPK activation. In a rat model of ischemia
perfusion, AKT phosphorylates AMPKal/a2 at Ser-485/
491 (equivalent to Ser-487/491 in human), while the
phosphorylation of Thr-172 is reduced [80]. In another rat
model of hypoxia, AKT activation also prevents the
phosphorylation of AMPKa at Thr-172 [81]. This
phenomenon is consistently found in human normal
tissues as well as in tumor such as breast and liver cancer
cell [82-85]. Ser-487 of AMPKau is located in the serine/
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threonine-rich loop (ST loop, residues 472—525 in human)
within the C-terminal domain of AMPKal, which inter-
acts with residues within the kinase domain. Ser-487
phosphorylation hinders the ability of upstream kinase
LKB1 or CaMMK to access Thr-172 [83]. Moreover, in
specific glioblastoma and breast cancer cells characterized
by hyperactivity of AKT due to loss of PTEN, AMPK is
resistant to activation by AMPK activator A769662,
though this effect is reversed by addition of MK2206 as an
AKT inhibitor [83, 86].

AMPK reversely inhibits AKT phosphorylation. AMPK
activated by AICAR or phenformin dephosphorylates
Ser-473 and Thr-308 of AKT, thereby inhibiting its activity.
This blockade of AKT by AMPK agonists consequently
lowers the inhibition of AKT’s downstream effector, glyco-
gen synthase kinase-3o/p (GSK3a/B) [87]. In addition,
AMPK affects AKT signaling by regulating insulin receptor
substrate 1 (IRS1), which is phosphorylated by the insulin
receptor and mediates PI3K activation. AMPK phosphory-
lates IRS1 at Ser-794 (in human, equivalent to Ser-789 in
rats) and inhibits AKT signaling [88—-90]. However, there
are studies indicating AMPK sensitizes AKT phosphoryl-
ation through IRS signaling [91]. It is reported that acti-
vated AMPK by AICAR stimulates AKT through the same
phosphorylation site of Ser-789 [86, 92, 93]. It seems that
IRS1 phosphorylation at Ser-794 in humans (Ser-789 in
rats) has dual roles in AMPK-mediated AKT signaling, and
its function needs to be further determined [93-95]. Taken
together, AMPK and AKT have mutual complicated antag-
onism, which may partially explain their roles in metabol-
ism and redox maintenance (Fig. 4).

In general, mTOR inhibition and FOXO activation is es-
sential in AMPK-mediated metabolic reprogramming and
ROS scavenging to maintain the redox hemostasis under
metabolic stress. On the other hand, AKT activation ren-
ders cells more sensitive to ROS-mediated cell death by
impairing redox homeostasis through opposite regulation
of mTOR and FOXO from AMPK. Additionally, AMPK
and AKT have mutual regulation on phosphorylation.
These antagonistic regulations are significant in maintain-
ing redox homeostasis under glucose deprivation.

The regulation of AMPK and AKT in response to glucose
supply

When glucose is abundant, AMPK activity remains limited
and AKT is relatively activated, promoting cancer cell
growth, division and metastasis. In addition, growth factor
autocrine or paracrine signaling under suitable milieu forms
positive feedback loops to activate AKT. Activated AKT
also promotes the production of ROS, which stimulates
oncogenic pathway, leading to uncontrolled proliferation.
However, higher ROS levels render cells closer to the
threshold of ROS lethality, which is regarded as the
Achilles’ heel of AKT [14].
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Growth factor activates TKR and promotes the activation of AKT via
IRS1/PI3K/PDK1 signaling. Activated AKT phosphorylates AMPKa on
Ser-485/491, preventing the active site Thr-172 to get access to LKB1
or CaMMK. AMPK phosphorylates IRST at Ser-794 and inhibits AKT
signaling. AMPK activated by AICAR or phenformin dephosphorylates
Ser-473 and Thr-308 of AKT, inhibiting AKT activity

Under glucose deficiency when AMPK predominates, it re-
sists against glucose deprivation-derived ROS accumulation
by increasing glycolysis and the PPP. Meanwhile, autophagy
and OXPHOS are enhanced to balance the input and output
of energy, relieving the ROS load. This is achieved by the
downstream effectors of AMPK, of which FOXO activation
and mTOC]1 inhibition play key roles (Fig. 5a).

Under glucose deprivation when AKT predominates, the
anti-apoptotic role of AKT is reversed since glucose is lack-
ing. AKT inhibits FOXO translocation to the nucleus and
decreases antioxidant production. Unlike AMPK, which is
ubiquitously activated under glucose deprivation, AKT seems
to be different among cancer cells. AKT is activated in glio-
blastoma and Hela cells, for example [13, 14], but inhibited
in ovarian cancer and leukemic T cells [12, 96]. In addition,
PTEN significantly influences AKT activity under glucose
deprivation. When PTEN is present in lung cancer cells,
AKT phosphorylation is increased after glucose deprivation.
When PTEN is mutated or knocked down, AKT phosphor-
ylation is inhibited instead [97]. This suggests that AKT
activation is context-dependent among cell lines and decided
by multiple factors. There are reports suggesting that AKT
activation can protect cells under glucose deprivation. It is
found that site-specific phosphorylation of AKT at site Thr-
308 decreased cell death [40]. This shows that under glucose
deprivation, AKT function is sophisticated and specific to
different cancer cells and backgrounds (Fig. 5b).
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The role of ROS regulation through AMPK and AKT in
tumor progression

Anoikis resistance

Glucose deficiency is one of the main factors leading to ROS
stress in tumors, either in the stage of tumor initiation or
progression [18]. At the initial stage of metastasis, cancer cells
must leave its original niche to enter the vascular or lymph-
atic circulation. This entails detaching from the extracellular
matrix (ECM) and becoming anchorage independent, which
leads to ATP deficiency owing to reduction of glucose trans-
port [22]. In normal human cells, this transition leads to a
strong induction of ROS, which leads to anoikis. Tumor cells,
on the other hand, may become anoikis resistant and suc-
cessfully leave their primary niche to become circulation
tumor cells (CTC) and facilitate metastatic colonization [98].

Under ECM-detached condition, AMPK promotes sur-
vival by autophagy induction and global inhibition of pro-
tein synthesis, mitigating the ATP reduction [99, 100].
AMPK also enhances the PPP and increases the NADPH
production. Addition of antioxidants like Trolox and NAC
can rescue ATP deficiency independent of glucose uptake,
further demonstrating the role of AMPK in anoikis resist-
ance [22]. In addition, AKT is activated upon ECM de-
tachment by TKR activation, and it inhibits cell death
mainly by promoting glucose uptake and upregulating
anti-apoptotic pathways such as BCL2 signaling. AMPK
and AKT are both activated in the resistance of anoikis,
but AMPK activation seems to be dominant. It is reported
that mTOR, the downstream of both AMPK and AKT,
was inhibited in aniokis resistant cells [99, 101, 102].
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Drug resistance

Many chemotherapy agents and radiotherapy kill cancer
cells through ROS-mediated cell death, and ROS resist-
ance is one way for cancer cells to develop drug resistance.
Tumor stem cells, which are considered the seed of re-
lapse, have superior resistance to anti-tumor agent [103].
Due to enhanced antioxidant systems, these cells tend to
have a lower ROS load than to their non-tumorigenic pro-
geny [18, 104, 105]. Increased autophagy is important for
chemotherapy resistance. AMPK, as the inhibitor of
mTOR, has been reported to induce autophagy-mediated
drug resistance [106—108]. Additionally, replenishing
NADPH through AMPK-mediated glucose uptake and
the PPP also contributes to drug resistance.

Targeting ROS as anti-cancer therapy

Even though cancer cells exhibit an enhanced antioxidant
system, they still maintain higher ROS levels than normal
cells [20, 109]. ROS load increases with the tumor pro-
gression [23]. Compared to normal cells, cancer cells are
closer to the threshold of ROS toxicity. Interrupting redox
homeostasis may be a potential target to inhibit tumor
metastasis and mitigate the drug resistance. This could be
achieved by inhibition of ROS detoxification or stimula-
tion of ROS production [18] (Fig. 5¢-f).

Metabolic inhibition is one way to cause ROS accumula-
tion. 2-deoxyglucose (2-DG), the glucose analogue, com-
petes with the glucose transporter and inhibits HK2
activity and classically used to mimic metabolic stress. 2-
D@ not only activates AMPK, but also induces AKT phos-
phorylation [110, 111]. It is designed to have anti-tumor
activity both in vivo and in vitro, but the clinical trials fail
to reach better patient outcomes after a single use of 2-
DG [112]. However, 2-DG combined with chemotherapy
or radiotherapy has had better results, as it renders cancer
cells more sensitive to apoptosis by further elevation of
ROS [113, 114]. The inability of AKT to inhibit ROS-
mediated cell apoptosis also provides a strategy to treat
cancer. In tumor with hyperactivated AKT, further ROS
production sensitizes cells to ROS induced apoptosis. This
has been achieved by combined use of ROS inducer phe-
nylethyl isothiocyanate (PEITC) and mTOR inhibitor
rapamycin, which completely eradicate tumor growth in
cells with hyperactivated AKT both in vitro and in vivo
[14]. Since mTOR elicits a negative feedback loop to
suppress AKT, rapamycin could lead to further AKT
activation through mTORI inhibition [115]. In addition,
RV Pusapati et al. found that 2-DG-induced glycolytic
inhibition could be enhanced by active mTOR signaling
via increased glutamine uptake and pentose phosphate
flux [111], which suggested metabolic inhibition alone was
not sufficient for cancer treatment. Promisingly, the com-
bination of glycolytic inhibition and ROS inducer may
exert a more synergistic effect for cancer therapy.
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Depletion of antioxidant is another way to induce ROS
toxicity. GSH is the most abundant antioxidant in cells
and its recyclability is dependent on NADPH produc-
tion. Targeting GSH dramatically breaks down the redox
balance, as demonstrated by the dramatic inhibition of
the thioredoxin (TXN) pathway by the combination use
of buthioine sulfoximine (BSO) and auranofin (AUR)
[28]. PEITC, an inhibitor of glutathione peroxidase
(GPX), also depletes GSH and shows anti-tumor effects
in multiple cancers. Further, sulphasalazine (SSA)
decreases GSH levels by inhibiting the cysteine trans-
port, reducing the growth and viability in cancer cells
[116, 117]. A newly synthetized enzyme cysteinase could
effectively lead to ROS elevation and cell death by
depleting extracellular L-cysteine, which is essential for
cellular GSH synthesis [118]. However, there are contro-
versies about antioxidant depletion to treat cancer.
Previous studies stress that antioxidant can decrease car-
cinogenesis and tumor development [119], but recent
studies show that antioxidant can relieve the anoikis-
mediated oxidative stress and promote cell survival and
metastasis [120-122]. Some antidiabetic drugs like
saxagliptin, sitagliptin and antineuropathic «a-lipoic
acid (ALA) also have antioxidant properties, and are
reported to promote metastasis by increasing antioxi-
dant capacity [123].

Conclusions

During cancer progression, cancer cells are frequently
confronted with metabolic stress, which is accompanied
with redox disequilibrium. The rewiring of glucose me-
tabolism and antioxidant maintenance intersect at the
response to the stress. In this process, AMPK and AKT
play significant roles. AMPK mediates metabolic change
to resist the ROS accumulation, while AKT renders cells
more susceptible to ROS mediated cell death. This
review summarizes the cross-talk between these two
kinases, mainly through antagonistic regulation on
their downstream effectors, mTOR and FOXO. We
suggest that under metabolic stress, the role of
AMPK and AKT might be varied and context-specific
to influence the cell fate.

The tight relationship between the AMPK and AKT
acting on ROS homeostasis is closely related to the
tumor progression and treatment. The resilience of ROS
toxicity is one of the main mechanisms of tumor metas-
tasis and drug resistance. Studying the dynamic change
of ROS in tumor progression deepens the understanding
of aniokis and metastatic colonization. Further, modula-
tion of oxidative stress by targeting ROS detoxification
or stimulation provides new strategies to treat cancers.
Compared to traditional chemotherapy or radiotherapy,
combined utilization of ROS inducer (or antioxidant
inhibitors) with traditional therapies may exert
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synergistic effect through enhanced ROS-mediated cell
death. Meanwhile, this strategy may cause less harm to
normal cells, which have more potential capacities to re-
sist ROS than cancer cells. Therein, targeting ROS may
be a promising way for anticancer therapy, and their
regulatory mechanisms need more detailed research.
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