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Abstract 

Several mechanisms and cell types are involved in the regulation of the immune response. These include mostly 
regulatory T cells (Tregs), regulatory macrophages (Mregs), myeloid suppressor cells (MDSCs) and other regulatory cell 
types such as tolerogenic dendritic cells (tolDCs), regulatory B cells (Bregs), and mesenchymal stem cells (MSCs). These 
regulatory cells, known for their ability to suppress immune responses, can also suppress the anti-tumor immune 
response. The infiltration of many regulatory cells into tumor tissues is therefore associated with a poor prognosis. 
There is growing evidence that elimination of Tregs enhances anti-tumor immune responses. However, the systemic 
depletion of Treg cells can simultaneously cause deleterious autoimmunity. Furthermore, since regulatory cells are 
characterized by their high level of expression of immune checkpoints, it is also expected that immune checkpoint 
inhibitors perform part of their function by blocking these molecules and enhancing the immune response. This 
indicates that immunotherapy does not only act by activating specific effector T cells but can also directly or indirectly 
attenuate the suppressive activity of regulatory cells in tumor tissues. This review aims to draw together our current 
knowledge about the effect of immunotherapy on the various types of regulatory cells, and how these effects may be 
beneficial in the response to immunotherapy.

Keywords  Tumor, Immunotherapy, Regulatory cells, Checkpoint inhibitors, MDSCs, Tregs, TAMs

Introduction
Tumors can modify the microenvironment by releas-
ing extracellular molecules, inducing tumor angiogen-
esis and promoting peripheral immune tolerance, while 
the immune cells in the microenvironment can affect 
the growth and evolution of cancerous cells. Increas-
ing amounts of T CD3 + , cytotoxic CD8 + and memory 
CD45RO + T cells are associated with greater disease-
free survival and overall survival (OS) in most studies 

[1–3]. Histological analysis of tumors has highlighted 
the importance of immunological infiltrates, including 
macrophages, dendritic cells, polymorphonuclear cells, 
natural killer (NK) cells, B cells and T cells, and revealed 
a wide diversity of these among patients [4]. Although the 
extent of the immune infiltrate can be a good prognos-
tic indicator in some cancers, the anti-tumor response 
is clearly insufficient to prevent disease progression. 
In inflamed tumors, negative immune regulatory fac-
tors tend to be dominant due to the chronic nature of 
the immune infiltrate. For instance, in a study aimed at 
identifying biomarkers associated with clinical outcome 
in melanoma patients, the decrease in FOXP3 + /regu-
latory T cells (Tregs) was associated with better clinical 
responses in the group treated with ipilimumab [5].

Therefore, patients with tumors containing infil-
trates could be induced to respond to immunotherapy if 
immune cells within the microenvironment are reacti-
vated. On the other hand, the presence of regulatory cells 
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such as Tregs, MDSCs (myeloid-derived suppressor cells) 
and TAMs (tumor-associated macrophages) has gener-
ally been associated with a poor clinical prognosis. The 
actions on the vast majority of these components that 
have been reviewed here are not as advanced in head 
and neck cancer (HNC) as in other neoplasms such as 
melanoma.

Although therapy based on immune checkpoint block-
ade has achieved outstanding results in terms of OS [6], 
a high percentage of patients still show intrinsic resist-
ance [7]. Some features are required to achieve a success-
ful response to programmed cell death protein 1 (PD-1) 
blockade, such as a high frequency of tumor neoantigens, 
the amount of infiltrating effector T cells, a high level of 
expression of PD-L1, or an IFN-related gene signature 
[8]. Due to their potent suppressive activities against 
effector lymphocytes and their abundance in the tumor 
microenvironment, immunosuppressive cells act as a 
major barrier to cancer immunotherapy. A variety of 
therapeutic approaches directed towards immunosup-
pressive cells are actively being tested in preclinical and 
clinical studies [9–14].

Since regulatory cells are characterized by their high 
level of expression of immune checkpoints, it is also 
expected that immune checkpoint inhibitors perform 
part of their function by blocking these molecules and 
enhancing the immune responses. This suggests that 

immunotherapy does not only act by activating specific 
effector T cells but also can directly or indirectly attenu-
ate the suppressive activity of regulatory cells in tumor tis-
sues. The aim of this review is to draw together the current 
knowledge about the effect of immunotherapy on the vari-
ous types of regulatory cells, and how these effects may be 
beneficial in the response to immunotherapy (Fig. 1).

Tregs
The activities of Tregs are the most widely studied of 
the mechanisms regulating the immune response. They 
were discovered several decades ago [15] and are known 
to have a strategic role in the maintenance of immune 
homeostasis [16]. Their function has been closely linked 
to the development of diverse pathologies, including 
autoimmunity [17] and cancer [18]. As Tregs are known 
to express many immune checkpoint inhibitor (ICI) tar-
gets, the effect of these immunotherapies could alter 
Treg numbers and function. For this reason, a compre-
hensive understanding of their action in cancer set-
tings could help increase the efficacy and reduce the 
incidence of immune-related adverse effects after ICI 
treatment (Fig. 2).

In the clinical setting, the use of daclizumab (a human-
ized neutralizing monoclonal antibody against the 
α-chain of the interleukin-2 receptor) in patients with 
metastatic melanoma resulted in depletion of Tregs and 

Fig. 1  Strategies to reduce regulatory cells in cancer patients. Several strategies alone or combining the targeting of different biochemical 
pathways have been reported to modulate regulatory cells in cancer patients. Some approaches aim to reduce the frequency, function and 
extent of blocking mobilization, while others focus on enabling phagocytosis, polarization, or  potentiating differentiation. Blue crosses indicate 
potentiation/increase; forbidden sign indicates blockade/reduction
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Fig. 2  Effect of immunotherapy on Tregs. Several ICIs and other treatments can directly affect the number and function of regulatory T cells 
consequently, improving anti-tumoral function and preventing tumor growth. Some treatments act by reducing the number of Tregs (by antibody 
dependent cellular citotoxicity, ADCC) while others affect their suppressive activity or positively modulate the functions of CD8 T, NK cells and 
dendritic cells. The modulation towards pro-inflammatory cytokines and the increase in the CD4 + effector/Treg ratio are other mechanisms by 
which immunotherapy can potentiate the immune response within the tumor microenvironment. Created with Biorender.com
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effector T cells, so that augmented T cell responses in 
the tumor are not induced [19]. In contrast, in a study 
of breast cancer patients, administration of daclizumab 
followed by vaccination with multiple tumor-associated 
peptides reduced the frequency of Tregs and gave rise to 
a durable, stable disease with little progression [20–22]. 
Denileukin diftitox (a ligand–toxin fusion protein that 
consists of full-length IL-2, and which has been approved 
for the treatment of CD25 + cutaneous T-cell leukemia 
and lymphoma) was used for lung, ovarian and breast 
cancer, demonstrating that a single dose reduced the 
prevalence and absolute numbers of peripheral Tregs and 
increased effector T-cell activation in all patients [23, 24]. 
Considering all the previous results, it was inferred that 
therapeutic success may depend on the phase and state of 
the anti-tumor immune responses [25].

Several reports have suggested that the effect of ipili-
mumab (anti CTLA-4, human antibody IgG1 isotype) 
on Tregs is mediated only through antibody-dependent 
cell-mediated cytotoxicity, by which their suppressive 
functions are maintained [26–28]. On the other hand, 
tremelimumab (anti CTLA-4 antibody IgG2 isotype) has 
been shown to be able to replenish effector and memory 
CD4 + and CD8 + T-cell numbers by suppressing Treg 
activity without influencing the proportion of Tregs [29]. A 
recent study showed that ipilimumab and tremelimumab 
both increase infiltration of intratumoral CD4 + and 
CD8 + cells without depleting FOXP3 + cells in human 
tumors, suggesting that their efficacy could be enhanced 
by modifying the Fc portions of the monoclonal antibodies 
(mAbs) to enhance Fc-mediated depletion of intratumoral 
regulatory T cells [30]. Also, it has been described that a 
combined treatment with anti B7x may help to overcome 
the B7x-mediated resistance to anti-CTLA-4 [31].

However, the mechanism underlying the action of 
these antibodies is unknown. The discrepancies could be 
explained by the fact that the number of peripheral Tregs 
depends on the genetic background of the patients and the 
time since immunotherapy that the analysis is performed.

PD1 blockade can induce CD8 + T-cell proliferation and 
cytokine production, thereby negatively regulating Treg 
numbers by increasing the CD8 + Teff-to-Treg ratio [32]. 
The suppressive capacity of effector Tregs was enhanced 
in some advanced gastric cancer patients treated with 
PD1 blockade and was associated with rapid cancer pro-
gression [33]. This pattern has also been described by 
other authors [34]. Considering these findings together, 
the reports suggest that a combination of anti-CTLA4-
depleting Tregs with PD1 blockade could be used to 
enhance CD8 activation and Treg depletion. It would 
also be interesting to study the effects of the timing and 
duration of such a Treg-targeting antibody treatment, to 
determine whether it is critical for the differential control 

of Treg and effector T cells, in other words, whether the 
longer the treatment, the more likely effector T cells are 
to be depleted, thereby hindering the generation of effec-
tive tumor immunity [18, 35]. The anti-CCR4 antibody, 
mogamulizumab, has demonstrated an effective reduc-
tion in the frequency of effector Tregs that selectively aug-
ment the induction of tumor antigen-specific CD4 + and 
CD8 + T cells in vivo [36, 37].

Moreover, anti CCR8 monoclonal antibodies were 
shown to cure tumors in mice by selectively depleting 
tumor Tregs and increasing CD8 + effector T cells [38]. 
Van Damme et al. also demonstrated that anti-CCR8 
antibodies had antitumor effects and were seen to dis-
play synergistic antitumor effects combined with anti-
PD-1 mAbs [39]. More recent studies describe the use of 
microRNAs -15a/16–1 to regulate immunosuppression 
in hepatocellular carcinoma by reducing CCL22 binding 
to C–C chemokine receptor type 4 on Tregs [40].

New therapeutic strategies are being developed to tar-
get the major co-inhibitory and co-stimulatory molecules 
of Tregs. Some TIGIT monoclonal antibodies (BMS-
986207) are under clinical trial in combination with 
nivolumab for the treatment of advanced solid tumors 
(NCT02913313) and as monotherapy or in combination 
with atezolizumab (anti PD-1 antibody) (MTIG7192A) 
[41–43]. Studies of patients with melanoma show that 
LAG-3 + Tregs selectively expand in PBMCs and TILs, 
bestowing potent suppressive activity on them in a cell-
to-cell, contact-dependent manner [42].

Other approaches, such as blockade of TIM-3 [44], 
V-domain Ig suppressor of T cell activation (VISTA) [45, 
46], treatment with glucocorticoid-induced TNFR-related 
(GITR) protein agonistic antibody [47, 48], anti-OX40 anti-
bodies [49–51], IDO-1 inhibitors [52, 53], TGF-β inhibi-
tors [54]VEGF-targeting therapy receptor 2 (VEGFR2) [55, 
56], PI3K inhibitor and HSP inhibitor (phosphoinositide 
3-kinase (PI3K) pathway, or heat shock protein (HSP) [57], 
have also yielded promising results. Some drugs in combi-
nation with immune checkpoint inhibitors are currently the 
subject of ongoing clinical trials for cancer therapy [58].

Others approaches such as vaccines, nanodrugs [59], 
the generation of chimeric antigen receptor (CAR-)T 
cells, [60] or directly targeting FOXP3 in Tregs with an 
antisense oligonucleotide are also under investigation 
with the aim of reprogramming Tregs [61].

MDSCs
MDSCs are recognized as one of the major cell compo-
nents in the tumor microenvironment, where they pro-
mote tumor growth by exerting their immunosuppressive 
functions. MDSCs have emerged as major regulators of 
immune responses in cancer and key targets for treating 
cancer [62] (Fig. 3).
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Suk Lee et al. reported that anti-thymocyte globulin (ATG)-
treated mice showed a reduction in MDSCs frequency and 
function, suggesting that ATG could be used to suppress 
MDSCs [63]. On the other hand, the role of mitogen-activated 
protein kinase (MAPK) activation is known to be crucial in the 

regulation of pathways involved in the expansion of MDSCs 
[64]. The beneficial effects mediated by AMPK activation 
could therefore be induced by the inhibition of MDSCs func-
tions, and the authors proposed that AMPK activators could 
be promising drug candidates for cancer therapy [64, 65].

Fig. 3  Effect of immunotherapy on MDSCs. The figure depicts different treatments that can modulate MDSC expansion and function. The drugs 
affect the frequency of MDSCs, reduce MDSC suppressive activity, improve CD8 T cell function, and modulate the release of cytokines from the 
tumor. A combination of these therapies may have a synergistic effect that promotes better outcomes. Created with Biorender.com
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In a murine model of neuroblastoma, the adoptive 
recipient leukocyte infusion (RLI) triggered a potent 
cytotoxic T cell response against the tumor. Conversely, 
the RLI also provoked a systemic expansion of MDSCs 
that weakened the CD8 anti-tumoral effect. When these 
MDSCs were depleted with 5-FU the inhibition of tumor 
growth and OS were improved significantly, suggesting 
that MDSCs targeting is a novel approach for increasing 
RLI effectiveness [66]. In another study, Eriksson et  al. 
reported reduced levels of Tregs and PMN-MDSCs in 
pancreatic cancer patients treated with gemcitabine [67]. 
Weiss et  al. demonstrated, in two murine models, the 
importance of targeting MDSCs and Tregs in anti-tumor 
immunotherapy. They described how this MDSCs and 
Treg reduction was Fas-dependent and, consistent with 
the conclusions of other authors, noted the importance 
of targeting these regulatory cells in order to ensure that 
the therapies produced successful anti-tumoral activ-
ity [68]. Dang et al. investigated the expression of TLR8 
on MDSCs and the effect of motolimod, a TLR8 ago-
nist, on MDSCs survival and function. They found that 
motolimod treatment reduced MDSCs levels in healthy 
donors and cancer patients, and concluded that TLR8 
agonists could be deployed in conjunction with can-
cer immunotherapeutic approaches in order to enhance 
the anti-tumor effects of the adaptive immune response 
[69]. Davis et  al. demonstrated functional inhibition of 
MDSCs with IPI-145, an inhibitor of PI3Kδ and PI3Kγ 
isoforms that enhances responses to PD-L1 blockade. 
These results offer a proof of concept for the low-dose 
use of isoform-specific PI3Kδ/γ inhibitors to suppress 
MDSCs and thereby enhance responses to the immune 
checkpoint blockade [70].

Other approaches focus on promoting MDSCs dif-
ferentiation. A few years ago, Gabrilovich´s group dem-
onstrated how all-trans-retinoic acid (ATRA) induces 
MDSCs differentiation into macrophages and dendritic 
cells (DCs) [71]. In 2018, Tobin et  al. conducted a ran-
domized phase II clinical trial in which they treated 
advanced melanoma patients with ipilimumab mono-
therapy, or ipilimumab plus ATRA. They showed that 
treatment with ATRA reduced MDSCs function in mixed 
lymphocyte reactions. ATRA also reduced the expres-
sion of immunosuppressive genes by MDSCs. Finally, 
ATRA significantly decreased the frequency of circulat-
ing MDSCs relative to ipilimumab treatment alone in 
advanced-stage melanoma patients [9].

Results published by Xin Lu et  al. shed light on the 
field of metastatic castration-resistant prostate cancer 
(mCRPC) in relation to the use of immune checkpoint 
blockade for the purpose of blocking MDSCs. They devel-
oped a chimeric mouse model of mCRPC with which 
they demonstrated that combined therapies were capable 

of increasing IL-1ra and suppressing MDSCs-promoting 
cytokines. The authors combined PDL1 blockade and the 
kinase inhibitors cabozantinib and BEZ235, which induce 
a reduction in MDSCs function. This combined therapy 
proved to be more effective than single therapy [72].

These findings highlight the necessity of including 
MDSCs neutralization in novel strategies of combined 
cancer treatment.

The combination of immunoregulatory treatments 
with immune checkpoint blockade might represent a 
novel beneficial approach. The regulatory effects of dia-
rylheptanoid curcumin on STAT3 and JAK2 signaling 
involved the decrease of IL-6 production by MDSCs but 
with no adverse effects detected [73]. Conversely, when 
STAT3 inhibitors were applied in clinical settings for tar-
geting tumor-associated myeloid cells, the studies were 
disrupted by the side effects [74]. Additional approaches 
aimed at blocking STAT3 exploit the administration 
of siRNA and decoy oligonucleotides. For instance, 
AZD9150 is a STAT3 oligonucleotide inhibitor under 
investigation in combination with immune-checkpoint 
inhibitors in phase I/II clinical trials [10].

Various approaches that aim to target MDSCs have 
explored the blockade of MDSCs mobilization from the 
bone marrow. In this regard, bisphosphonates, drugs 
administered in cancer patients with bone metasta-
ses, have an MMP-9 inhibitory effect that is related 
to reduced MDSCs expansion in peripheral blood 
and bone marrow [75]. This reduction overcame the 
immune suppression and potentiated the anti-tumor 
response induced by immunization against the p185/
HER-2. In spite of these results, most clinical trials of 
MMP inhibitors in recent decades have failed because 
of side effects: MMP regulates multiple signaling targets 
and the inhibition of some MMPs could have pro-tum-
origenic effects that impair the benefits of target inhibi-
tion. These effects might be responsible for the failure 
of MMP inhibitors in clinical trials [76]. More recently, 
more specific MMP inhibitors with improved toxicity 
have been developed [77]. To date, several studies have 
indicated that modulating MMP activity can improve 
immunotherapy. As a consequence, several MMP inhib-
itors are the subject of clinic trials [62, 77].

More strategies aimed at decreasing the recruitment of 
MDSCs such as targeting tumor glutamine metabolism 
[78] and targeting chemokines [79] have been described.

Huber et  al. described microRNAs associated with 
MDSCs features and shorter progression-free survival 
(PFS) and OS in melanoma patients treated with immune 
checkpoint inhibitors. These miRs were responsible for 
the conversion of monocytes into MDSCs mediated by 
melanoma extracellular vesicles (EVs) [80]. The authors 
argued that the role of the identified MDSC-miRs may 
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reflect functional features that MDSCs display upon 
immune activation triggered by ICIs, because resistance 
to ICIs can be reverted by myeloid cell depletion. This 
highlights the need for drugs that are capable of blocking 
myeloid cells dysfunction. Hence, MDSC-related miRs 
are potential biomarkers for assessing systemic immu-
nosuppression and immunotherapy outcomes in cancer 
patients [80].

Limagne et al. reported the outcomes of a prospective 
immunomonitoring study of 25 metastatic colorectal can-
cer (mCRC) patients treated with a first-line combination 
regimen of 5-fluorouracil 5-FU, oxaliplatin and bevaci-
zumab (FOLFOX–bevacizumab), compared with healthy 
volunteers. FOLFOX–bevacizumab treatment produced 
a drop in gMDSCs in most patients and was associated 
with better survival. Moreover, those gMDSCs expressing 
higher levels of PD-L1, CD39 and CD73 showed potent 
immunosuppressive activity that could be reversed by 
blocking the CD39/CD73 and PD-1/PD-L1 axes [81].

The inhibition of prostaglandin E2 receptor 4 (EP4) in 
MDSCs may offer a strategy for enhancing the efficacy 
of immunotherapy in colorectal cancer [82]. Li T et al. 
showed that pharmaceutical inhibition of c-Rel in mice 
markedly inhibited cancer growth and suggest c-Rel as 
a myeloid checkpoint that may be targeted for treating 
cancer [83]. Similarly, S100A9-derived peptides conju-
gated to antibody Fc [84] and targeting the TNF-related 
apoptosis-induced ligand (TRAIL) receptor could be a 
potent and selective method for MDSCs depletion [85]. 
Several drugs against CSF1R have shown promising anti-
tumor efficacies by inhibiting the survival of M-MDSCs 
and tumor associated macrophages (TAMs) and are 
being tested in in cancer patients [86].

In summary, several candidate drugs have been pro-
posed for reducing MDSCs frequency and function; 
other approaches aim to modulate MDSCs differentia-
tion or mobilization. A combination of immunoregula-
tory drugs with ICBs might be more effective in targeting 
MDSCs as anti-tumor immunotherapy.

TAMs
Macrophages play an important role in regulating the 
innate immune system. On the one hand, they promote 
inflammation and eliminate pathogens. On the other, 
depending on their specific responses and cytokines, 
macrophages can induce immune stimulation and immu-
nosuppression as well as promote or inhibit inflam-
mation [87, 88]. Macrophages display a high degree of 
plasticity in response to different microenvironments 
[89]. Classic macrophages (M1) are known for their 
role in promoting immune responses. Conversely, M2 
macrophages are associated with a reduction of tissue 
inflammation [90]. M2 macrophages can be classified 

into several populations based on their specific func-
tions: M2a induced by Type2 cytokines, are responsible 
for mediating tissue repair; M2b induced by immune 
complexes, TLRs and IL-1R are known for their role in 
immunoregulation; M2c macrophages induced by anti-
inflammatory cytokines affect phagocytosis and M2d 
induced by IL-6 like cytokines participate in angiogenesis 
[91].

It is accepted that TAMs influence the tumorigenic 
process because they promote immunosuppression in the 
tumor microenvironment. In this regard, several stud-
ies have demonstrated that regulation of TAM responses 
may enhance immunotherapy [92]. Therefore, a wide 
range of strategies to deplete TAMs have been investi-
gated in experimental settings and are now considered a 
promising therapeutic approach in the clinic [92] (Fig. 4).

Bisphosphonates have been successful in reducing 
TAM infiltration in vivo as they promote transformation 
of M2-like macrophages into M1-like macrophages. A 
large number of bisphosphonate derivatives are used to 
inhibit TAMs and treat tumors [93]. Likewise, an RNA 
aptamer that blocks the murine or human IL-4receptor-α 
(IL4Rα or CD124) can promote TAM elimination, an 
effect that is associated with an increased number of 
tumor-infiltrating T cells and a reduction in tumor 
growth [94]. Allavena et al. have shown that trabectedin 
activates caspase-8 and induces apoptosis in the presence 
of death receptor 5 (DR5), which is present in TAMs with 
death receptors [95].

In addition, specific antibodies can be used to reduce 
TAMs. Zhang et  al. [96] synthesized IRD-αCD206, a 
TAM probe, that conjugated anti-CD206 antibodies with 
near-infrared phthalocyanine dye and successfully inhib-
ited growth in a sorafenib-resistant tumor model. CD11b 
is an important molecule expressed in myeloid cells that 
works as an oncogene that can be targeted in colorectal 
cancer (CRC) [97]. Also, a recombinant immunotoxin 
consisting of FR-β monoclonal antibodies (mAbs), which 
are expressed in TAMs, suppressed tumor growth in a 
glioma model by depleting TAMs [98].

Other mechanisms targeting TAMs have been devel-
oped to inhibit monocyte recruitment. In this regard, the 
inhibition of CSF-1/CSF-1 receptor (CSF-1R) signaling 
has been effective because this axis is essential for mac-
rophage survival. Also, targeting CSF-1/CSF-1R alters 
macrophage polarization and blocks glioma progres-
sion [99]. RG7155, a monoclonal antibody that inhibits 
CSF-1R, has been shown to inhibit CSF-1R and thereby 
decrease F4/80 + TAMs in  vitro and in  vivo [100]. Pre-
clinical studies have demonstrated that another CSF-1R 
inhibitor, BLZ945, inhibits tumor growth in different 
mouse models [101] and its potential use in treating solid 
tumors is being studied in clinical trials [12].
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The anti-tumor agent dequalinium-14 can reduce mac-
rophage motility, inhibit macrophage infiltration of irra-
diated tumors, and reduce the extent of metastasis in 

locally irradiated mice. Interferon-γ (IFN-γ) may induce 
recruitment of monocytes/macrophages into the tumor 
microenvironment but inhibits their differentiation into 

Fig. 4  Effect of immunotherapy on TAMs. The figure displays treatments that aim to prevent the expansion of TAMs, consequently enhancing the 
anti-tumoral effect. The drugs work by promoting apoptosis (which reduces TAM frequencies)and TAM differentiation to M1 macrophages, and by 
blocking TAM mobilization, infiltration and metastasis. On the other hand, there is an increase in pro-inflammatory cytokine release and a reduction 
in the phagocytic activity of macrophages. Also, the use of these treatments combined with chemotherapy or other ICIs may be synergistic, 
bursting the immune response against the tumor. Created with Biorender.com
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TAMs in  vivo; this effect may reduce the concentration 
of VEGF and angiogenesis in a tumor [102]. Anti-CCL2 
antibodies have been shown to inhibit tumor growth 
in several animal models, such as glioma, colon cancer, 
prostate cancer, and melanoma. Tumor growth inhibition 
is observed with the use of Anti-CCL2 antibodies alone 
or in combination with chemotherapeutic drugs [13, 14]. 
In humans, a phase 1b clinical study showed that the 
combination of chemotherapy with the anti-CCL2 anti-
body, carlumab, for treatment of solid tumors was well 
tolerated but could sequester CCL2 for only a short time 
[13]. Inhibition of CCR2 can also block the CCL2/CCR2 
axis to reduce the TAM population. PF-136309, a CCR2 
inhibitor, proved to be safe and tolerable when used in 
combination with chemotherapy, yielding an objective 
tumor response in clinical trials [14].

A different approach involves regulating TAM polari-
zation. For example, dimethyl sulfoxide can revert TAM 
polarization from M2 to M1 in a mouse 4T1 breast 
cancer model [103]. Overmeire et  al. demonstrated 
that M-CSFR signaling shapes the M2-like phenotype 
in TAMs, and its blockade favored the shift towards 
M1-like TAMs [104]. IFN-γ and celecoxib increased the 
percentage of M1 macrophages and decreased that of M2 
macrophages in lung tumors, suggesting that IFN-γ and 
celecoxib have the potential to be further optimized as a 
new anti-cancer therapy [105].

As mentioned above, the release of pro-inflamma-
tory cytokines such as IFN-γ, TNF-α, and IL-12 induce 
transformation of TAMs into M1-like macrophages. 
Therefore, promoting the release of inflammatory fac-
tors, specifically through antibodies and small molecu-
lar agents, can promote the tumor immune response. A 
large number of studies have shown that the use of CD40 
mAb can upregulate the level of proinflammatory factors 
and enhance the body’s response to tumor cells by regu-
lating the adaptive and inherent immune systems [106, 
107]. In addition, the combination of anti-CD40 and anti-
CSF-1R not only promotes the maturation and differen-
tiation of inflammatory macrophages and DCs but also 
drives the effective initiation of effector T cells during 
cancer immunotherapy [108]. In addition to CD40 anti-
bodies, other small molecules can enhance the secretion 
of pro-inflammatory cytokines. Thymosin-α activates 
and converts TAMs into pro-inflammatory cell subsets 
that produce IL-1, TNF-α, reactive oxygen species (ROS), 
and nitric oxide (NO). Furthermore, several clinical trials 
have confirmed that thymosin-α can prolong the survival 
time of patients with metastatic melanoma and advanced 
non-small-cell lung cancer (NSCLC) [109].

TLRs stimulation can lead to the expression and secre-
tion of a variety of pro-inflammatory cytokines such as 
TNF-α, IL-12, and IL-1 [110]. Several studies proved that 

TLR agonists induce pro-inflammatory cytokines and 
reprogram macrophages [111, 112]. In addition to TLR 
agonists inducing cytokine release, stimulator of IFN 
gene (STING) agonists have also been shown to repro-
gram macrophages [113–115].

In tumor models of colon and pancreatic cancers, 
TAMs produce IL-6 by activating the STAT3 signaling 
pathway to promote the proliferation of colon tumor cells 
[116, 117]. Therefore, STAT3 inhibitors affect polariza-
tion of TAMs in tumor therapy. Several studies have 
shown that application of STAT3 inhibitors to several 
tumor models has therapeutic effects [118–120]. Some 
studies report the importance of the cellular metabolism 
in TAMs as an approach to abrogating the immunosup-
pressive effects of TAMs [121, 122].

The phagocytic activity of macrophages can be inhib-
ited by blocking the interaction signals with cell sur-
face proteins. Weissman et  al. described three different 
pathways that inhibit phagocytosis: the signal regula-
tory protein alpha (SIRPα)/CD47 pathway, the major 
histocompatibility complex class I/leukocyte immuno-
globulin (Ig)-like receptor subfamily B member 1 (MHC-
1/LILRB1) pathway, and the CD24/sialic acid-binding 
Ig-like lectin 10 (Siglec-10) pathway [123–125].

Currently, since blocking those pathways enables 
phagocytosis, “don’t eat me” signals are considered to be 
phagocytic checkpoints in macrophages, which serve as 
specific immune checkpoints for innate immunity. Some 
drugs targeting the SIRPα/CD47 signaling pathway have 
been widely studied in anti-tumor treatment, and most 
have been subjected to clinical trials [126, 127]. However, 
drugs targeting the MHC-1/LILRB1 and Siglec-10 path-
ways are still being investigated.

In a report published in 2021, the authors identified 
Fc domain-enhanced anti-TREM2 monoclonal antibody 
therapy promotes anti-tumor responses by modulation 
of TAM populations [128]. In non-small cell lung can-
cer (NSCLC) patients ILT4 inhibition prevented immu-
nosuppression and tumor promotion by bloquing the 
recruitment of M2-like TAMs [129]. Monoamine oxidase 
A (MAO-A) inhibition treatment induces TAM repro-
gramming and suppresses tumor growth in preclinical 
mouse syngeneic and human xenograft tumor models 
[130]. Another recent report published by Hezaveh K 
et al. [131] demonstrated that pharmacologic inhibi-
tion of aryl hydrocarbon receptor (AhR) in myeloid cells 
reduced pancreatic ductal adenocarcinoma growth and 
improved efficacy of immune checkpoint blockade, and 
increased intra-tumoral frequencies of IFNγ+CD8+  T 
cells. The application of nanoparticles to target the tumor 
microenvironment is also being explored in combination 
with other therapies [132].
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In conclusion, several strategies for depleting TAMs 
in the tumor microenvironment are being explored and 
are producing promising results. The use of these strat-
egies combined with chemotherapy or immunotherapy 
could potentiate the anti-tumoral effect by promoting the 
immune response to the tumor.

Other regulatory cells
The effect of immunotherapy in other cells with immu-
noregulatory properties, such as regulatory DC, B cells 
or MSCs, is still under investigation. Although there are 
very few reports about the role of Bregs in human can-
cer, some preclinical studies have targeted them in a vari-
ety of cancer models [133]. Mitogen/extracellular signal 
regulated kinase (MEK) is an intermediary component of 
the MAPK pathway, and its inhibition affects tumors in 
which MAPK is activated, alone or in combination with 
other therapies. Mechanistically, MEK inhibition may 
down regulate the expression of surface molecules asso-
ciated with suppressive functions [134–136].

Das and colleagues investigated Bruton’s tyrosine 
kinase (BTK) as a potential modulator of Breg differen-
tiation and the immunosuppressive function [137] and 
found that tirabrutinib, a BTK inhibitor, suppressed Breg 
differentiation as well as IL-10 and IL-35 production 
in vitro.

These studies have confirmed that the inhibition of 
Breg may help block cancer progression. Further research 
is needed to develop a Breg-targeting therapeutic regi-
men for cancer.

Though immunotherapy strategies, such as DC-based 
cancer vaccination, have been developed that are based 
on the ability of DCs to coordinate innate and adap-
tive immune responses [19], the role of TolDC, which is 
related to the effect of immunotherapy in cancer, remains 
poorly studied.

In the context of the tumor microenvironment, tumor 
cells can promote DCs with regulatory features [138]. 
Several approaches have been pursued that aim to acti-
vate DCs to suppress cancer progression, among them 
immunotherapy, which can affect DCs, promoting their 
differentiation functions.

The anti-tumoral immune response induced by DCs 
can be amplified using monoclonal antibodies against 
coinhibitory receptors (such as the PD1–PDL1 axis) 
or antibodies that potentiate the activation of costim-
ulatory receptors (such as CD137) on T cells. Experi-
mental melanomas with stabilized β-catenin signaling 
are associated with reduced cDC1 tumor infiltration 
and nonresponsiveness to immune checkpoint block-
ade (ICB) therapy. Indeed, vaccination with natu-
rally occurring cDC1s loaded with immunogenic cell 

death-derived, whole-tumor antigen can synergize with 
anti-PD1 treatment [138].

Tumor antigen-loaded cDC1s were transferred into 
three cancer models in combination with anti-PD1 treat-
ment, which had a strong synergistic effect [139]. Moreo-
ver, tumors grafted onto BATF3-deficient mice, which 
lack cDC1s, did not respond to anti-PD1, anti-PDL1, or 
anti-CD137 treatments, and SEC22B-mediated cross-
presentation of TAAs by DCsis necessary for effective 
PD1 blockade therapy [140].

Synergy of TLR-mediated activation of DCs and ICB 
can be further improved by FLT3L-mediated expansion 
of DC populations [141].

Further evidence that cross-priming is the critical func-
tion mediated by cDC1 in this context has come from 
WDFY4-deficient mice, which fail to reject immunogenic 
tumors due to a defect in a vesicular transport pathway 
needed for cross-presentation [142].

Wdfy4 −/− mice failed to prime virus-specific CD8+ T 
cells in vivo or induce tumor rejection, revealing a critical 
role for cross-presentation in anti-viral and anti-tumor 
immunity [142].

Enhancing DC functionality may improve and/or 
broaden responsiveness to ICB regimens. cGAS and 
STING are both necessary for intrinsic anti-tumor 
immunity and efficient responses to anti-PDL1, which is 
at least partially mediated by DCs [143].

Targeting type I interferons to activate cDC1s also 
improves anti-PDL1 treatment, suggesting that tumor 
DCs may require activation to support ICB-induced 
effector T cell activity.

Increasing DC chemokine production, may also 
increase responsiveness to ICB [144]. In turn, ICB pro-
motes DC accumulation within the TME. Combining 
pembrolizumab (anti-PD1) treatment with TLR9 ago-
nists is associated with an elevated tumor-infiltrating DC 
signature and an initial clinical benefit [145].

Mesenchymal stem cells (MSCs) are multipotent stro-
mal cells that can differentiate into various cell types. A 
large number of studies have shown the beneficial effects 
of MSC-based therapies in treating various pathologies 
[146]. However, the therapeutic potential of MSCs in 
cancer is still controversial. Some studies indicate that 
they may contribute to cancer pathogenesis: MSCs can 
migrate to chronic inflammatory sites such as cancer, 
where they contribute to metastasis by secreting TGF, 
which promotes EMT [147]. MSCs inhibit the prolif-
eration of T and B cells [148], suppress the activation 
of natural killer cells [149], and prevent generation and 
maturation of monocyte-derived dendritic cells [150]. 
Furthermore, MSCs can promote the generation of reg-
ulatory T cells [151], which exert immunosuppressive 
effects. However, the unmodified MSCs have been shown 
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to have anti-tumor effects in vitro and in several mouse 
models of cancer [152].

The unique ability of MSCs to home to tumors and to 
directly transport anti-cancer agents to neoplastic niches 
renders them potential therapeutic vehicles for lung 
cancer. Genetic engineering is one of the most common 
strategies used to produce MSCs delivering tumor-sup-
pressing agents into cancer cells. Several studies provide 
compelling evidence that MSCs can be genetically engi-
neered to deliver anti-tumor drugs (PTX, DOX) and 
immunomodulatory factors (IL-12, IL-24, IFN-ϒ, IFN-β, 
TRAIL, PEDF, apotin, CDA/UPRT and CX3CL1) to tar-
get cells, thereby conferring anti-tumor/anti-metastatic 
actions [153].

Aside from their anti-cancer effects, MSCs are of 
special relevance for personalized cell-based therapies 
because they can be easily obtained by minimally inva-
sive procedures and rapidly scaled up [154]. To date, 25 
clinical trials that aim to use MSCs under various cancer 
conditions have been registered on ClinicalTrials.gov. 
Fourteen of these trials are using MSCs as a therapeutic 
agent to treat cancer directly. The use of MSCs as Trojan 
horses to deliver therapeutic factors represents an impor-
tant step forward in the application of MSC-based thera-
pies to provide more efficient cancer treatment [155].

The effect of immunotherapy in other cells with immu-
noregulatory properties, such as CD8 and NK regula-
tory cells remains to be determined. In this regard, in 
spite of the lack of studies regarding these regulatory 
cells in human cancer, it is likely that strategies devel-
oped to target other regulatory cells will also affect these 
subpopulations. 

Conclusions
The extent of the immune infiltrate can be a good prog-
nostic indicator in some cancers, but the anti-tumor 
immune response is, in most cases, insufficient to pre-
vent disease progression. Several mechanisms and cell 
types are involved in negatively regulating the immune 
response, and the infiltration of large numbers of regu-
latory cells into tumor tissues is associated with poor 
prognosis.

In inflamed tumors, negative immune regulatory fac-
tors tend to dominate due to the chronic nature of the 
immune infiltrate. In cold tumors, it has been postulated 
that resistance to treatment may be due to low antigenic-
ity, which causes less lymphocytic infiltration and is 
associated with an increase in the frequency of immuno-
suppressive cells and other factors.

Therapeutic success may depend on the phase and state 
of anti-tumor immune responses as the timing of the 
treatments seems to be critical to the differential control 

of these regulatory cells. When an immunosuppressive 
tumor microenvironment is already established, it will be 
more difficult to overcome and the immunotherapy will 
be less effective.

Although there are some current indications of the use of 
ICIs as first-line treatments, one of the main difficulties in 
clinical trials is that they were carried out in patients with 
advanced-stage tumors that were refractory to chemo-
therapy. Therefore, in tumors with low immunotherapeutic 
efficacy, it is plausible to consider that their failure to reach 
clinical end-points was due to the trial design.

Another challenge is that, in order to have validated 
drugs, it is necessary to study the possible anti-target 
effects of these molecules. The improvement in the 
design of clinical trials and the deep knowledge of the 
target and off-target effects of the treatments could lead 
to improved toxicity profiles and more selective drugs 
with less severe side-effects.

The discovery of new molecular targets could also help 
predict the tumors that are most immunogenic and most 
likely to respond to treatment, thereby making it possible 
to detect responders to immunotherapy.

In tumors characterized by a highly immunosuppres-
sive environment, the development of new treatment 
options should certainly explore the efficacy of different 
drug combinations.

Numerous ongoing studies and clinical trials are 
exploring chemo-immunotherapeutic combinations 
that aim not only to eradicate the tumor mass but also 
to neutralize tumor-induced immunosuppression, 
thereby facilitating the effect of concurrent immuno-
therapy. Results obtained from these studies will shed 
light on the field and enable established approaches to 
be modified in order to better treat cancer patients in 
the next few years.
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