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Abstract

Cancer remains a leading cause of death worldwide, placing a significant burden on healthcare systems as well as the
global economy. Rare cancers comprise a group of about 200 cancers that individually occur at extremely low fre-
quencies. In the United States (US), their frequency is approximately 15 cases per 100,000 people, and it is even lower
in Europe with approximately 6 cases per 100,000 people. However, combined their frequency of occurrence is much
higher than any singular cancer. Cancer treatment and management has tremendously improved in the last decade,
particularly with the administration of immune-based therapies. The four most prevalent immune-based therapies

are (1) the use of immune-checkpoint inhibitors, (2) macrophage therapy, (3) Chimeric Antigen Receptor (CAR) T cell
therapy, and (4) necantigen-based therapies. In our review, we discuss these various aproaches and their implementa-
tion in the treatment of a variety of rare cancers. Furthermore, we discuss their limitations and potential strategies to
overcome them to enhance the therapeutic efficacy of these approaches. Finally, our article presents the future direc-

tions and other additional immune therapies that may be incorporated into the treatment of rare cancers.

Keywords Rare, Cancers, Immune checkpoint inhibitors, PD1, CTLA-4, CART cells, Macrophages, Neoantigens,
Vaccines, PDL1, Tumor associated macrophages, Dendritic cells

Introduction

Cancer is the second leading cause of death globally,
including in the US. The American Cancer Society has
estimated that about 1.9 million new cases were diag-
nosed in the U.S. in 2022. The most prevalent cancers
amongst men are lung, prostate, and colorectal cancers,
while women are commonly afflicted with breast, lung,
and colorectal cancer (https://www.cancer.org/content/
dam/cancer-org/research/cancer-facts-and-statistics/
annual-cancer-facts-and-figures/2022/2022-cancer-
facts-and-figures.pdf). Conversely, certain cancers such
as Merkel cell cancer, types of hepatobiliary cancers,
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mesothelioma, and adrenal cancers (amongst others)
have low incidences and are categorized as rare cancers.
The US National Cancer Institute defines rare cancers
as those that have less than 15 cases per 100,000 people
each year, while the European Union includes cancers
that have less than 6 cases per 100,000 people per year
(https://www.cancer.gov/). About 200 different cancers
are grouped in this category, and together their incidence
is higher than any particular cancer [1]. However, the
clinical outcome of these cancers is usually grim. These
cancers are difficult to diagnose, and often the cancers are
identified only after they have progressed into advanced
stages. The lower incidences translate into limited sam-
ples (biopsy or surgical tissues, patient-derived cell lines)
for preclinical studies and few clinical trials to evaluate
new interventions or therapeutic strategies. These facts
highlight the importance of studying these cancers and
identifying the most effective therapeutic strategies to
improve patient outcomes.

The conventional treatments administered for both
common [2] and rare cancers (https://www.cancer.gov/)
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include surgery, chemotherapy, radiotherapy and often a
multidisciplinary combination of these treatments. The
traditional paradigm of these therapies is to target and
eliminate the cancer cells by interfering with tumor cell
growth and survival. Unfortunately, this limits the effi-
cacy of these treatments as cancers often escape with the
help of acquired mutations and cancer stem cells, lead-
ing to relapse. Additionally, these therapies usually gener-
ate a multitude of harmful side effects. These issues have
brought research and clinical focus to immunotherapies.
Similar to other health disorders, the immune system,
both innate and adaptive, are activated in response to
cancer. The immune system plays key roles in both sup-
pressing and promoting cancers by being involved in all
aspects of response to cancer: (a) elimination of can-
cer cells, (b) maintaining equilibrium between tumor
cells and immune cells, and (c) facilitating the growth of
tumor cells in an immunocompetent host microenviron-
ment [3]. The increased understanding of our immune
system and identification of neoantigens has brought
attention to identifying and developing strategies to
augment immune responses directed towards elimina-
tion of these cancer cells and re-activation of anti-tumor
responses with the help of memory cells in the event
of cancer relapse. In this review, we discuss the various
immune-based therapeutic approaches and their cur-
rent status in the treatment of rare cancers, their limita-
tions and potential strategies to overcome them, recent
advances in the identification of biomarkers, and future
directions in immunotherapy for rare cancers.

Immune-based therapeutic approaches and their
current status in the treatment of rare cancers
Immune-checkpoint inhibitors

Immune cells express receptors known as immune check-
points that are involved in the regulation of immune
homeostasis, specifically activation of T cells, certain
myeloid cells, and regulatory cytokines. Cancer patients
have deficient regulatory systems, wherein immune-
checkpoint pathways promoting immune-suppressive
functions are upregulated and immune-activating path-
ways are downregulated [4]. In the past decade, immune-
checkpoint inhibitors, predominantly monoclonal
antibodies, have positively impacted cancer management
and treatment, thereby gaining prominence. Immune-
checkpoint inhibitors have been reported to generate
sustainable responses and are administered in metastatic
and more recently in neoadjuvant and adjuvant settings
[5]. One immune checkpoint (IC) receptor, CTLA-4, has
shown extensive promise as therapeutic target. CTLA-4,
a structural homologue of CD28 is a membrane recep-
tor on cytotoxic T cells [6]. Activation of T cells occurs
in two steps, the first being the recognition of antigens
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presented by the MHC and the second being costimula-
tion generated upon binding of CD28 to CD80 or CD86
on the antigen presenting cells. CTLA-4 can bind to
CD80 and CD86 with higher affinity than CD28, thereby
impeding T cell activation [7]. CTLA-4 is expressed
constitutively on T regulatory (Treg) cells as well as on
activated effector T cells [8, 9]. Ipilimumab, an antibody
that targets CTLA-4, was the first immune-checkpoint
inhibitor to receive approval from the U.S. food and drug
administration (FDA) in 2011 for use in cancer treat-
ment. This was in melanoma based on the results of clini-
cal trial NCT00094653 [10]. While in melanoma patients,
Ipilimumab demonstrated significant benefit with com-
bined data analysis from 12 trials indicating improved
10-year survival, [11], it has had limited success in other
cancers [12].

Another immune-checkpoint target is Programmed
Cell Death protein 1 (PD1). PD1 is a key immune-check-
point receptor that is expressed by T cells and mediates
immunosuppression. Its ligand is programmed cell death
ligand 1 (PDL1), which is expressed by T cells, B cells,
and some non-hematopoietic cells. In a normal immune
system it regulates T cell function; however tumors uti-
lize this pathway to their benefit by upregulating PDL1
on their surface and binding to the PD1 on T cells [13].
This interaction causes apoptosis of T cells. Thus, target-
ing the PD/PDL1 pathway is helpful in targeting tumors.
The inhibition of this interaction facilitates normal T cell
surveillance and the endogenous anti-tumor response
can be increased [14]. Many PD1 inhibitors including
nivolumab, pembrolizumab, and cemiplimab, as well as
PDL1 inhibitors such as atezolizumab, avelumab, and
durvalumab have been approved in recent years [15].
They have shown to be effective and safe for treating
melanoma, renal cell carcinoma, and non-small cell lung
cancer (NSLC) [16].

Based on the success of immune-check point inhibi-
tors, there are several completed and ongoing clinical
trials demonstrating the efficacy of these inhibitors in
treating rare cancers. These are summarized in Table 1.
Overall, although the use of checkpoint inhibitors is not
yet mainstream for rare cancers, there have been sev-
eral trials reporting their efficacy. Recently, much atten-
tion has been turned to different rare malignancies,
including non-melanoma cutaneous cancers (including
the much less common Merkel cell cancer), hepatobil-
iary cancers, endocrine and adrenal cancers, and meso-
thelioma. Active clinical trials are also included in the
next paragraphs of this section. For all rare cancers as
defined by the National Cancer Institute, a large phase
2 study intending to enroll over 800 patients, is ongoing
(NCTO02834013 Nivolumab and Ipilimumab in Treat-
ing Patients with Rare Tumors). This study investigates
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nivolumab and ipilimumab in treating patients with rare
tumors. For the purposes of this review, however, we
focus on the rare solid cancers that have recent clinical
trial data within the last decade.

Kaufman et al [17] performed a phase 2 trial of ave-
lumab (anti-PD1 antibody) in patients with metastatic
Merkel cell cancer who had failed chemotherapy. An
overall response rate of 31.8% was reported, with minimal
risk of adverse events (6%). Nghiem et al [41] reported an
even higher response rate of 56% is a similar population
of advanced Merkel cell cancer patients. Interestingly,
responses were observed in both patients with Merkel-
cell polyomavirus (MCPyV) positive tumors and negative
tumors, suggesting a common immune pathway between
both subtypes of Merkel cell cancer. The potential role
of checkpoint blockade in the adjuvant setting is actively
being investigated in several clinical trials as well, includ-
ing NCT04291885 Immunotherapy Adjuvant Trial in
Patients with Stage I-III Merkel Cell Carcinoma (I-MAT),
NCT03271372 Adjuvant Avelumab in Merkel Cell Can-
cer (ADAM), NCT03798639 Nivolumab and Radiation
Therapy or Ipilimumab as Adjuvant Therapy in Treating
Patients with Merkel Cell Cancer, and NCT03712605
Testing Pembrolizumab versus Observation in Patients
with Merkel Cell Carcinoma After Surgery, STAMP
Study. Due to the aggressive nature of Merkel cancer
and the failure of distant disease control often leading
to patient mortality, these new trials offer new adjuvant
treatment for this rare but highly morbid cancer. Other
studies for non-melanoma skin cancers are also listed
in Table 1, including the more common squamous cell
cancer.

Hepatobiliary cancers are often very morbid can-
cers with limited treatment options, and as such, many
investigators have tested checkpoint blockade in these
patients in the hopes that durable responses can be
achieved. A recent meta-analysis analyzing this pathway
for hepatocellular carcinoma showed that a high expres-
sion of PDL1 was significantly associated with a poor
overall survival rate, which demonstrates the pathway’s
prominent role in tumor progression [42]. However, cur-
rent therapeutic studies are limited, and the results of
these studies have not been very promising, as shown
in Table 1. Overall, the numbers of patients in these
studies have been relatively low with limited follow-
up, low complete response rates, and modest benefits
over standard over care (e.g., chemotherapy or targeted
therapy). One of more recent studies by Kelley et al [22]
tested the combination of tremelimumab (anti-CTLA4)
with durvalumab (anti-PD1) compared to durvalumab
alone or sorafenib (as standard of care). Compared to
sorafenib, durvalumab alone or in combination with
tremelimumab resulted in an increase in median OS of
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about 2-3months (median OS 16.43 months, 95% CI
14.16 to 19.58) with tremelimumab and durvalumab and
16.56 months (95% CI, 14.06 to 19.12) with durvalumab
alone, compared to 13.77 months (95% CI, 12.25 to 16.13)
with sorafenib. It is thought that the immunologically
“cold” microenvironment of hepatobiliary tumors con-
tributes to relatively poor responses to immunotherapy
[43, 44]. Active clinical trials seek to combine immu-
notherapy with ablative techniques in order to produce
antigen targets for immunotherapy and may hold prom-
ise for future discovery. These include NCT03101475
Synergism of Immunomodulation and Tumor Abla-
tion (ILOC), NCT03937830 Combined Treatment of
Durvalumab, Bevacizumab, Tremelimumab and Tran-
sarterial Chemoembolization (TACE) in Subjects with
Hepatocellular Carcinoma or Biliary Tract Carcinoma,
NCT04605731 Durvalumab and Tremelimumab after
Radioembolization for the Treatment of Unresectable,
Locally Advanced Liver Cancer, NCT05301842 Evalu-
ate Durvalumab and Tremelimumab +/— Lenvatinib in
Combination with TACE in Patients with Locoregional
HCC (EMERALD-3), and NCT04522544 Durvalumab
(MEDI4736) and Tremelimumab in Combination With
Either Y-90 SIRT or TACE for Intermediate Stage HCC
With Pick-the-winner Design.

Another rare solid cancer for which there has been
recent progress with immunotherapy is adrenal tumors.
Like hepatobiliary cancers, adrenal cortical carcinoma
(ACC) is associated with a dismal prognosis, and there
are limited viable treatment options. Naing et al [19] and
Klein et al [31] reported modest efficacy of single agent
(pembrolizumab) or dual agent (nivolumab and ipili-
mumab), respectively, for patients with advanced ACC.
These trials had small cohorts of 15 or less patients.
Within the study by Naing et al, the investigators
reported similarly modest results for adrenal pheochro-
mocytomas or paragangliomas (as shown in Table 1).
As one of the rarest cancers, few active clinical trials are
investigating immunotherapy for ACC, and these include
NCT00457587 Preclinical Study Towards an Immuno-
therapy in Adrenocortical Carcinoma and NCT02673333
Single Agent Pembrolizumab in Subjects with Advanced
Adrenocortical Carcinoma.

Lastly, immunotherapy has recently been approved
as first-line therapy for pleural malignant mesotheli-
oma. Early trials in the mid to late 2010s showed mod-
est response rates to tremelimumab [33, 34]. However,
larger randomized clinical trials in published in the 2020s
showed superior benefit with other checkpoint inhibitors.
CheckMate 743 randomized patients to nivolumab plus
ipilimumab versus traditional chemotherapy with cispl-
atin and pemetrexed. All outcomes were improved with
immunotherapy compared to chemotherapy, with an
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increase in 3-year OS rates (23% versus 15%) and 3-year
PES (14% versus 1%) [38]. Similarly, PrE0505, which was a
phase 2, single-arm, multicenter study, enrolled patients
with previously untreated pleural mesothelioma reported
an 8-month OS benefit with durvalumab plus cisplatin
and pemetrexed compared to historical chemotherapy
only controls [37]. While the majority of studies with
mesothelioma have been performed for pleural-based
disease, its use is being investigated in the less common
peritoneal mesothelioma. Raghav et al [39] recently pub-
lished their small cohort of 20 patients with peritoneal
mesothelioma treated with atezolizumab in combination
with bevacizumab, achieving an OR of 40%, 1-year PFS
of 61%, and 1-year OS of 85%. Intuitively, the biology of
peritoneal mesothelioma may behave similarly to pleu-
ral mesothelioma, so these latest results are encouraging
for the rarer peritoneal-based disease. Ongoing clinical
trials in peritoneal mesothelioma may contribute to the
growing body of evidence that immunotherapy may be
effective for this site of disease as it is for pleural-based
disease. These trials include NCT05001880 Chemo-
therapy with or without Immunotherapy for Peritoneal
Mesothelioma and NCT05041062 A Study of Immuno-
therapy Drugs Nivolumab and Ipilimumab in Patients
with Resectable Malignant Peritoneal Mesothelioma.

In summary, the clinical application and utility of
immunotherapy for rare cancers has been mixed in
recent years, with significant improvement in outcomes
for certain cancers (Merkel cell carcinoma and pleural/
peritoneal mesothelioma), but less encouraging for oth-
ers (hepatobiliary cancers and endocrine/adrenal malig-
nancies). The biology and microenvironment as well as
tumor vessel heterogeneity among the distinct types of
tumors may account for differences in response among
solid tumors [45]. Ongoing and future studies that com-
bine immunotherapy with other treatment modalities
(including the clinical trials listed throughout this sec-
tion) may become a valid option for treatment-refrac-
tory patients with rare cancers. The CRAFT trial is one
example of how individualized targeted therapy com-
bined with immunotherapy (anti-PDL1) may augment
responses by addressing both actionable genetic targets
and the tumor immune microenvironment [46]. Innova-
tive clinical trials such as these may achieve higher and
more durable responses for patients with rare cancers,
and the results of these trials are eagerly awaited.

Macrophage therapy

In recent years, a new form of immunotherapy target-
ing and modulating macrophages has been investigated.
Macrophages (Fig. 1) are specialized to their host tissues
and perform a variety of functions, including ingest-
ing and degrading dead cells and debris, eliminating
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pathogens, and regulating inflammatory responses [47].
Traditionally, there are two categories of macrophages,
the classically activated macrophages (M1) and the alter-
natively activated macrophages (M2). M1 macrophages
promote inflammatory responses by secreting cytokines
such as TNFq, IL1-B, and IL12 to enhance the recruit-
ment of Thl T cells to the site of inflammation [48].
Additionally, they upregulate genes and other co-stimu-
latory molecules that enhance T cell response(s), which
serve a critical anti-tumor role [49]. On the other hand,
M2 macrophages have a role in normal immune function
and homeostasis, such as stimulating Th2 cells, eliminat-
ing parasites, wound healing, immune regulation, and tis-
sue regeneration as well as the maintenance of the tumor
microenvironment (TME) [50].

Like other immune cells, macrophages are found in
cancer tissues as well. These are known as tumor-associ-
ated macrophages (TAMs). The TAM pool is generated
through both monocyte recruitment and through the
local/tissue resident macrophage proliferation [51]. The
phenotype of TAMs is similar to that of M2 macrophages.
They promote tumor progression through increased gene
instability, angiogenesis, fibrosis, immunosuppression,
lymphocyte exclusion, invasion, and metastasis. Further-
more, they suppress the anti-tumor immunity by inhib-
iting normal T cell function, including both cytotoxic
T cells and Treg cells [52]. TAMs are known to support
angiogenesis in two ways — first by promoting angiogen-
esis initiation in avascular areas and second by helping in
the vascular flow through the remodeling of the vascula-
ture [53]. TAMs have been reported to support metasta-
sis by facilitating tumor cell invasion and migration [54].
Thus, macrophages-based immunotherapy has become
an increasingly viable option.

Genetically engineered macrophages (GEM) are one
platform of macrophages-based immunotherapy. Mac-
rophages can be engineered to modulate the tumor
microenvironment to a more anti-tumor one. They
can be engineered to secrete proteins like soluble TGF
beta-receptor II or interleukin 21 to decrease immune
suppression or activate immune cells, respectively. Con-
versely, they can be engineered to prevent macrophage
mediated immune suppression by knocking out the genes
involved in the deregulation of cytotoxic cells like PDL1
and interleukin 10 with the help of CRISPR technology
[55]. Preclinical data in glioblastoma (GBM) showed
promising results with no increased risk to morbidity in
animals or increased tumor growth [55]. The encourag-
ing data from these studies warrant further investigation
to extend this approach into clinical settings.

Another approach to modulate TAMs is to impair
their functioning through antibodies that target proteins
expressed on TAMs. Data from a phase I clinical study
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Fig. 1 The role of macrophages in tumor growth and progression. Macrophages are involved in several processes associated with tumor growth
and progression, including inflammation, immune regulation, angiogenesis, invasion, and metastasis in the solid tumor microenvironment. Each
subtype of macrophage is characterized by the expression of specific cytokines, chemokines, and toll-like receptors

in 63 diffuse type tenosynovial giant cell tumor patients
treated with emactuzumab showed favorable responses.
Biopsy tissues were available for 36 patients, and these
demonstrated a significant decrease in CSF1R+ and
CD68/CD163+ macrophages. Independently the overall
objective response rate (ORR) was high at 71%. Addition-
ally, the responses were durable with an ORR of 70 and
64% after one and 2 years post enrollment into the study,
respectively [56].

A third approach to macrophage modulation, chimeric
antigen receptor (CAR)-T cell-mediated TAM modula-
tion was recently described in an ovarian cancer pre-clin-
ical model. The authors used CAR-T cells to selectively
delete folate receptor B expressing (FRBT) TAMs in syn-
geneic tumor mouse model. This resulted in the enrich-
ment of pro-inflammatory monocytes, increase in
tumor-specific CD8' T cells, slowed tumor progression
and increased survival [57]. This is an exciting, innovative
approach to modulate macrophages using CAR-T cells.

Macrophages have the ability to penetrate and sur-
vive within the tumor tissues. Based on this, Univer-
sity of Pennsylvania researchers recently described
a new macrophage-based therapy. This is an indi-
vidualized approach where monocytes are isolated
from the patient’s blood, modified with the desired

antigen-specific chimeric receptor, and then given back
to patients [58]. The FDA recently granted Fast Track
designation to a CAR-M, CT-0508, a human epidermal
growth factor receptor 2 (HER2) targeted chimeric anti-
gen receptor macrophage for the treatment of patients
with solid tumors (https://carismatx.com/carisma-thera
peutics-announces-u-s-food-and-drug-administration-
grants-fast-track-designation-to-ct-0508-for-the-treat
ment-of-patients-with-solid-tumors/). This approach, if
successful, would be extremely beneficial to other can-
cers, particularly those in which tumor microenviron-
ment limits the efficacy.

Chimeric antigen receptor (CAR) T cell therapy

CAR-T cell therapy is a more contemporary form of
immunotherapy. T cells are genetically modified to
express chimeric receptors encoding an antigen-specific
single-chain variable fragment and various stimulatory
molecules. Upon administration, these modified T cells
traffic to and recognize cancer cells in an HLA-independ-
ent manner. T cells expressing CARs have been propelled
to the forefront of experimental cell therapies due to their
clinical success for hematological malignancies target-
ing CD22, CD30, and CD-19-expressing B-cell acute
lymphocytic leukemia [59-63]. Earlier this year (2022),
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the US FDA approved CAR-T cell therapies for cer-
tain rare cancers, including follicular lymphoma, B-cell
non-Hodgkin lymphoma, B-cell acute lymphoblastic
leukemia, and Mantle Cell lymphoma [64]. While these
developments show tremendous promise in this form of
therapy, it is important to note that CAR-T cell therapies
for solid tumors have shown limited anti-tumor activity
in early phase clinical testing despite targeting a variety of
target antigens and tumor types [65-70]. A study in ovar-
ian cancer model demonstrated an RNA vaccine-based
approach of increasing the efficiency of CAR-T cells in
solid tumors and utilized protein claudin 6 (CLDNG®6) as
the CAR target. CLDNG is a tight junction that is regu-
lated developmentally. This study showed that delivery
of CAR antigens using nanoparticulate RNA vaccine
into the lymphoid compartments stimulated the adop-
tively transferred CAR-T cells. This system promoted the
selective expansion of CAR-T cells and tumor regression
was achieved at subtherapeutic doses of the CAR-T cell
[71]. A phase I/1Ia, FIH, open-label, multicenter, clinical
trial (NCT04503278) is evaluating the safety and efficacy
of CLDN6 CAR-T with or without CLDN6 RNA-LPX
in patients with CLDNG6-positive relapsed or refractory
advanced solid tumor. In Table 2, we have summarized
on-going clinical trials evaluating the efficacy of CAR-T
cell therapy in rare cancers.

CAR-T cells require trafficking to the tumor cell sur-
face so that they may bind to the target molecule (main
targets include immune checkpoints, chemokine-recep-
tor network, tumor vasculature, and immune suppres-
sive cells and cytokines, as shown in Fig. 2B-F). However,
the tumor microenvironment impedes this transit. Solid
tumors produce chemokines like CXCL1, CXCL12, and
CXCL5 within the tumor microenvironment, preventing
the T cells from reaching the tumor cells. For example,
a study in pancreatic cancer (PC) model, reported that
carcinoma-associated fibroblasts (CAF) that expressed
fibroblast activation protein (FAP) produced CXCL12.
The study showed that the T cell population was less
abundant in the regions where FAP+ cells were pre-
sent, suggesting a link between CXCL 12 expression
and T cells [72]. Another study in prostate cancer model
showed that CXCL5 secreted by the tumor recruited
CXCR2-expressing myeloid-derived suppressor cells
(MDSCs) to the tumor microenvironment. This resulted
in the secretion of cytokines and enzymes that sup-
pressed the proliferation and the activation of the local
T cells [73]. The findings from these relatively common
tumor models (PC and prostate) are important as they
could be extended to identify potential biomarkers as
well further challenges and opportunities in translating
CAR-T therapy into the clinic for rare cancers.
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Collectively, the data thus far indicate that CAR-T
therapy is effective for treating certain rare cancers and
its efficacy for some more is currently being evaluated
through clinical trials. The identification of biomarkers to
predict the sensitivity of the tumor to this therapy, and
other molecules whose concurrent therapeutic targeting
can enhance the clinical outcome of CAR-T cell therapy
would quicken the development of this therapy for a
broader range of tumors.

Neoantigen-based therapies

Neoantigens are tumor-cell specific proteins resulting
from mutations in the protein-coding regions of DNA
through acquired mutations, alternative splicing and
gene rearrangement [74]. Additionally, in most human
tumors without a viral aetiology, tumor neoantigens
could emanate from an assortment of non-synonymous
genetic alterations, including single-nucleotide variants,
insertions and deletions, gene fusions, frameshift muta-
tions, and structural variants [75, 76]. Furthermore, can-
cer-specific mutations often generate neoepitopes which
are present on the surface of cancer cells by MHCs.
Notably, these may also function as neoantigens [77].
Tumor-specific antigen (neoantigen) are usually located
on the outer surface of tumor cell and are particularly
identified by neoantigen-specific T cell receptors with
the help of histocompatibility complexes (MHCs) mol-
ecules [75, 76, 78—80]. Some neoantigens enhance thera-
peutic efficacy and could potentially serve as biomarkers
to predict patient response to cancer immunotherapy
[78, 81]. Recent literature indicate that neoantigens play a
pivotal role in tumor-specific T cell-mediated anti-tumor
immunity [79, 80, 82]. Some investigations indicate that
neoantigen-targeting approaches can generate strong
and durable anti-tumor immune reactions in individual
tumor microenvironments. The main neoantigen-based
tumor therapies include long synthetic peptide (SLP)
vaccines, DNA/mRNA vaccines, dendritic cell-based
vaccines, neoantigen-specific T cell receptor-based ther-
apies, and bispecific antibodies associated with public
neoantigens. Recent studies have demonstrated the effec-
tiveness and feasibility of neoantigen-targeted cancer
vaccines on murine tumor models including oesophagal
squamous cell carcinoma [83], glioma [84], and sar-
coma [85]. Some of the neoantigen based therapeutic
approaches are discussed below.

Neoantigen-based adoptive cell therapy (ACT)

This therapy aims at stimulating the patients’ immune
response(s) by transferring neoantigen-targeting lym-
phocytes into the patients. Some studies have reported
that the tumor-infiltrating lymphocytes (TILs) in
the patients recognize neoepitopes expressed by the
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patient’s own tumor, underscoring the biological rel-
evance of this therapy. For example, a study reported
that adoptive transfer of CD4+ T helper 1 (Thl) cells
that recognized a mutation expressed by the tumor
cells could mediate the regression of metastatic chol-
angiocarcinoma [86]. Tran and colleagues [87] reported
that in a cohort of 10 patients with metastatic gastro-
intestinal (GI) cancer, 9 had CD4" and/or CD8" TILs
that recognized one to three neoepitopes generated by
somatic mutations in the patients’ tumors. Addition-
ally, they reported that these epitopes were unique to
the individual patients. However, one of the patients
expressed a human leukocyte antigen T cell receptor
from CD8" TILs that targeted the KRASS'?P [87]. Sim-
ilarly, Cafri and colleagues [88] reported the presence
of CD4", and CD8" memory T cells that targeted onco-
genic KRAS in the peripheral blood of 3/6 metastatic
colon cancer patients. Oncogenic KRAS mutations are
common in several cancers including GI. Theoretically,
expanding or generating these CD8' TILs that target
the mutant KRAS and using them for therapy would
lead to the development of personalized therapies for
a broad spectrum of patients who have tumors with
oncogenic KRAS.

ne checkpoints, chemokine-receptor network, tumor vasculature, and

Recent studies have identified neoantigen-specific
CD8*" and CD4" lymphocytes in patients with relatively
low tumor mutation burden cancers such as ovarian
(naive; no prior immunotherapy) [89] and gastrointes-
tinal cancers [88, 90]. The identification of neoepitopes
directly in the patient samples brings us closer to clinical
application by eliminating the developmental processes
such as neoantigen prediction and experimental valida-
tion; and increases the chances of therapeutic success.
Collectively, these findings indicate that neoantigen-spe-
cific lymphocytes could be developed as a personalized
therapy for cancer.

Neoantigen-based vaccines

This is another approach targeting neoantigens in the
tumors. Three types of neoantigen-targeting vaccines
such as nucleic acid (RNA, DNA) - based, synthetic
and dendritic cell (DC) based (Fig. 3) are being evaluted
for potential use in clinical settings. A phase 1 clinical
study, NCT03313778, examined the neoantigen-based
lipid-encapsulated vaccine mRNA-4157 in patient with
solid tumors including bladder urothelial carcinoma and
human papillomavirus-negative head and neck squamous
cell carcinoma along with a few common cancer types.
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Out of 79 individuals treated with mRNA-4157, 16 were
treated as a single treatment and 63 were administered
mRNA-4157 with the immune checkpoint inhibitor pem-
brolizumab. mRNA-4157 was safe and well tolerated.
Furthermore, these RNA/DNA based vaccines can be
administered through encapsulation by delivery vehicles
such as lipid nanoparticles (LNPs) or even orally [91].
These studies suggest that RNA/DNA based vaccines
hold tremendous potential for therapeutic use.

Neoantigen based peptide vaccines are yet another
form of immune therapy. An effective vaccine would
induce a significant T cell response that would effeciently
target the tumor cells. Additionally, the CD8+ memory
T cells need to be activated for a sustainable respone, in
case the cancer relaspses. Emerging data have encourag-
ing data. A a phase 2 study assessed the clinical efficacy
of synthetic long-peptide vaccine against the HPV-16
oncoproteins E6 and E7 in women with HPV-16—posi-
tive, grade 3 vulvar intraepithelial neoplasia. The patients
were vaccinated three to four times. It was reported that
the vaccine generated T cell responses in all patients;
those who had a complete response in 3months had
a considerably stronger interferon-y-related CD4+ T
cell proliferative and a broader CD8+ interferon-y T
cell response than patients who did not have a complete
response. Three months post the last vaccination, 60%
patients had a favorable clinical response consisting of
complete regression was seen in five women and in four
of them HPV was undetectable. Twelve months post the
vaccination, clinical response was reported in 79% of the
patients with complete responses in 9 out of 19 patients.
Additionally, at the 24-month folow up, the complete
response rate was still maintained [92].

Limitations of these immune therapies

and potential strategies to overcome them
Immunotherapeutic approaches have undoubtedly sig-
nificantly improved cancer management and patient
outcomes. However, these approaches have some limi-
tations, on pre-clinical, clinical, economic, and social
fronts.

A major roadblock in identifying, developing, and
evaluating therapies particularly for rare cancers is that
only limited samples are available (https://www.cancer.
gov/). The incidence of these cancers is low, thereby the
tissue samples to assess biomarkers; patient-derived cell
lines and xenograft models to research to study under-
lying mechanisms as well as the ability to conduct clini-
cal trials is very restricted. An article recently proposed
building patient-derived rare cancer models by establish-
ing positive collaborations between multiple clinical and
research organizations [1]. The success of such a model
would theoretically tremendously benefit and accelerate
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the identification of biomarkers and drugs for the rare
cancers. Of note, immunotherapies have heterogeneous
therapeutic outcomes with the responses generated being
considerably varied between different individuals. Hence,
the data generated with the help of such models might be
helpful only for a portion of the patients. Identification of
reliable biomarkers would likely strengthen these predic-
tions and possibly help identify or streamline the popu-
lation that would either benefit or be non-responders to
these therapies.

In the clinical settings, the challenges are similar to
conventional cancer therapies. Several patients acquire
resistance to IC inhibitors, due to which the disease
eventually progresses. Compounding this issue is the
fact that the acquisition of resistance is varied amongst
different tumor types and thereby has not yet been char-
acterized. In addition to the samples available for exami-
nation, there are limitations to tools available for analyses,
respectively. Moreover, a uniform guideline needs to be
adopted for defining acquired resistance to immunother-
apy [93]. Further insight into the underlying mechanisms
of acquired resistance is necessary to improve the thera-
peutic efficacy of current checkpoint inhibitors as well
as for developing next generation of improvised inhibi-
tors. One potential strategy to overcome this resistance
or improving their therapeutic efficiency would be com-
bining immune checkpoint inhibitors with either con-
ventional therapies or concurrently administering two or
more checkpoint inhibitors. T cell exhaustion is another
limitation in the clinic. Clinical data indicated that PD1
and T cell Ig and ITIM domain (TIGIT) inhibitors regu-
lated the expansion and function of tumor antigen-spe-
cific CD8' T cell in melanoma patients [94], indicating
that combining multiple checkpoint inhibitors could be
a viable approach to prevent T cell exhaustion. Emerging
studies show that this strategy could benefit certain rare
cancers such as ovarian [95] and colorectal cancer [96].

Metabolic pathways are another attribute that can
limit the efficacy of several immune-based approaches.
The majority of these approaches including checkpoint
inhibition, adoptive T cell therapies and oncolytic virus
mediate anti-tumor responses through effector T cell
responses. Many of the tumor microenvironment condi-
tions such as low pH, reduced nutrient availability, pres-
ence of suppressive metabolites and hypoxia can impair
the functioning of T cells. A recent review article beau-
tifully summarized how the metabolic barriers impede
various immunotherapeutic strategies [97].

Sterner and colleagues [98] presented a comprehen-
sive review article on the challenges faced by CAR-T cell
therapy and approaches to overcome them. In brief, one
concern about the therapy is that antigens often escape.
This possibly could be overcome by building dual or
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tandem CAR, thereby targeting multiple antigens. This
strategy has shown promising results in certain cancers
such as multiple myeloma [99] and B cell malignancies
[100]. Another issue is restricted CAR-T cell traffick-
ing and limited tumor infiltration. These issues could be
overcome by regional delivery of the CAR-T cells. This
has been successful in certain preclinical models such
as mesothelin cancer [101]. CAR-T cell trafficking was
demonstrated to be enhanced by through the overexpres-
sion of CXCR1/CXCR2 [102, 103]. Approaches being
evaluated with the aim of improving its effectiveness in
an immune-suppressed environment including combing
it with PD1 inhibition [104, 105], and modulating them
to secrete immunostimulatory signals like IL-12 [106]
and I1-15 [107] and reducing the effects of immunosup-
pressive cytokines like IL-4 [108]. The other major con-
cern surrounding this approach is the associated toxicity.
CAR with modified binding affinities of scFv component
[109], reduced cytokine secreting potential: CD19; B cell
lymphoma [110] and genetically modified CAR: CRISPR/
CAS9 mediated granulocyte macrophage colony-stimu-
lating factor (GM-CSF) knockout CAR are being evalu-
ated and have shown promising results in preclinical and
early phase clinical trials. Further studies and clinical tri-
als are needed to optimize and bring these approaches to
clinical use for both, common and rare cancers.

Another deterrent to immune-based therapies are the
high-costs associated with them. Unfortunately, not all
patients who could benefit from them are able to afford
them and not all costs are covered by health insurances.
Similarly, receiving such advanced therapies requires
consistent access to an experienced healthcare team
and establishments that may be unavailable or limited in
many countries with low and middle and income. Thus,
based on the facts that only select individuals will ben-
efit from these therapies and the expense and logistics
associated with them, many patients either voluntarily
or due to the economic burden restrict to only conven-
tional therapies. It will be important to develop alternate
approaches like biosimilars and vaccines that would be
more cost-effective and globally be more accessible.

Together, these studies and reports indicate that while
there are limitations to the current immune-based treat-
ment regimes, the shortcomings have been identified and
research efforts are being directed at overcoming them
and improving patient outcomes.

Conclusions and future directions

As more is discovered regarding the multiple mecha-
nisms of action and resistance behind the various
immune-based therapeutic strategies, immune thera-
pies may become more personalized. Mechanistic details
being described for these strategies are likely to help
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develop both improved therapeutic agents and strategies
that would overcome the shortcomings of the current
approaches. Combination therapies with immune ther-
apy will likely continue to grow in the future.

For rare cancers, one form of combination therapy
will continue to be administration of two variations of
the same treatment, for instance two immune-check-
point inhibitors. Some completed and some ongoing
clinical trials have reported increased efficacy in treat-
ing tumors with this approach. For example as discussed
in section 2.1, the combination therapy of nivolumab
and ipilimumab showed significant efficacy in patients
with recurrent malignant pleural mesothelioma in phase
III trial, supporting its administration as the first-line
of therapy [38]. Similarly, the combination therapy of
nivolumab and ipilimumab has been reported to have
higher efficacy than single agent nivolumab in treat-
ing sarcoma patients [40] and some biliary tract cancer
patients [30]. In hepatocellular carcinoma, the combina-
tion of atezolizumab and bevacizumab generated better
patient outcomes than sorafenib alone [26]. Additionally,
such combinations may potentially be helpful in re-sen-
sitizing refractory tumors. Conversely, preliminary data
from some trials suggest that certain combinations could
be toxic to the patients. The results from IMMUNOBIL
PRODIGE 57 trial indicated that concurrent adminis-
tration of paclitaxel with anti-PDL1 and anti-CTLA4
resulted in a high rate of anaphylaxis compared to the
combination of taxane without anti-CTLA4 in patients
with biliary tract tumors [28]. Such information is also
of high value as it helps design combinations that would
maximize the patient benefits and re-evaluate combina-
tions that would be toxic.

Another combination approach is to add one form of
immunotherapy to either conventional therapies or to
combine multiple forms of immunotherapies together.
The results from a phase II trial administering dur-
valumab during and after first-line chemotherapy with
cisplatin and pemetrexed in patients with advanced
malignant pleural mesothelioma showed promising
results, supporting further trials [35]. An example of
combining multiple forms of immune based approaches
is the CD19-TriCAR-T therapy. This approach concur-
rently targets CD19 Positive Non-Hodgkin Lymphoma
cells, inhibits PD-L1 signaling, and stimulates the acti-
vation and expansion of T/NK cells. CD19-TriCAR-T
therapy is being evaluated in phase I (NCT03720496) and
IT (NCT03497533) trials [111, 112]. The success of such
therapeutic strategies would potentially hold tremendous
benefits. In addition to them being more effective than
single agents, it theoretically would be less time consum-
ing and more cost effective, which are also important in
the management of many rare cancers.
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CAR-T cells Chimeric Antigen Receptor (CAR) T cell

IC Immune checkpoint

(Treg) cells T regulatory

PD1 Programmed Cell Death protein 1

PDL1 Programmed cell death ligand 1
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HER2 Human epidermal growth factor receptor 2
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TAMs Tumor-associated macrophages

GEM Genetically engineered macrophages

IFN-y Mouse interferon-gamma
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DC Dendritic cell

PFS Progression-free survival

LNPs Lipid nanoparticles

ICB Immune checkpoint blockade ()

GM-CSF  Granulocyte macrophage colony-stimulating factor
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Cas9 CRISPR-associated (Cas) endonuclease
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