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Abstract 

Cancer development is closely associated with immunosuppressive tumor microenvironment (TME) that attenuates 
antitumor immune responses and promotes tumor cell immunologic escape. The sequential conversion of extracellu-
lar ATP into adenosine by two important cell-surface ectonucleosidases CD39 and CD73 play critical roles in reshaping 
an immunosuppressive TME. The accumulated extracellular adenosine mediates its regulatory functions by binding 
to one of four adenosine receptors (A1R, A2AR, A2BR and A3R). The A2AR elicits its profound immunosuppressive 
function via regulating cAMP signaling. The increasing evidence suggests that CD39, CD73 and A2AR could be used 
as novel therapeutic targets for manipulating the antitumor immunity. In recent years, monoclonal antibodies or 
small molecule inhibitors targeting the CD39/CD73/A2AR pathway have been investigated in clinical trials as single 
agents or in combination with anti-PD-1/PD-L1 therapies. In this review, we provide an updated summary about the 
pathophysiological function of the adenosinergic pathway in cancer development, metastasis and drug resistance. 
The targeting of one or more components of the adenosinergic pathway for cancer therapy and circumvention of 
immunotherapy resistance are also discussed. Emerging biomarkers that may be used to guide the selection of CD39/
CD73/A2AR-targeting treatment strategies for individual cancer patients is also deliberated.
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Introduction
Immune homeostasis refers to the tightly regulated bal-
ance of immune activation and suppression in our body. 
While it ensures efficient pathogen recognition and 

destruction during infection, it prevents excessive and 
inappropriate self-targeting immune reactions. The accu-
mulating evidences indicate that the majority of can-
cers are closely associated with failure of this immune 
homeostasis [1]. Under normal physiological conditions, 
immune checkpoints play crucial role to protect tissues 
from damage when the immune system is producing an 
inflammatory response to fight against pathogenic infec-
tion. In cancer cells, the immune checkpoint pathways 
are highly active and they allow the tumors to evade 
the antitumor immune response [2]. Immune check-
point molecules, including inhibitory and stimulatory 
immune checkpoint molecules, are defined as ligand-
receptor pairs that exert inhibitory or stimulatory effects 
on immune responses, which expresses on immune 
cells, antigen-presenting cells, tumor cells, or other 
types of cells, mediating the progress of the adaptive 
immune system, in particular, T cells and innate immune 
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system. The number of immune checkpoints is increas-
ingly discovered, like PD-1(programmed cell death 
protein 1), PD-L1(programmed cell death-Ligand 1), 
LAG3(LymphocyteActivation Gene-3), B7-H3(CD276, 
Recombinant Cluster Of Differentiation 276), TIM3(T 
cell immunoglobulin domain and mucin domain-3) [3]. 
To escape from neoantigen induced antitumor immunity, 
pathways regulating immune checkpoints are hijacked 
by tumor cells to induce TIL (Tumor Infiltrating Lym-
phocyte) exhaustion or suppression. Such as PD-1 and 
CTLA-4, expressed on activated T cells lead to inhibi-
tion of T-cell activation upon binding to their ligands on 
tumor cells/antigen-presenting cells [4]. The develop-
ment of immune checkpoint blockade therapy represents 
a major breakthrough in cancer therapy by unleashing 
the latent antitumor immune response [5].

In recent years, novel strategies targeting the tumor 
microenvironment (TME) have emerged as promis-
ing therapeutic approaches for cancer treatment [6]. 
However, while immune checkpoint blockade therapy 
could produce substantial anticancer effect and durable 
remission in a small proportion of cancer patients, most 
patients did not respond due to the presence of immu-
nosuppressive TME [7]. Extracellular adenosine (eADO) 
activates cell signaling pathways through one of the four 
known G-protein-coupled adenosine receptors A1, A2A, 
A2B, and A3. A2A receptors are G-protein-coupled stim-
ulatory pathways that are up-regulated in response to 
immune cell activation [8]. A2A receptor is a high-affinity 
receptor expressed on T cells and natural killer T (NKT) 
cells, monocytes, macrophages, DC (Dendritic cells) and 
natural killer (NK) cells. A2AR is up-regulated in mac-
rophages in response to NF-κB, STAT1 and PPARγ as 
well as adenosine signaling, and A2AR activation inhibits 
the secretion of neutrophil chemokines, thereby reducing 
the inflammatory response. In effector T cells, increased 
PKA activity secondary to A2aR signaling has a lots of 
inhibitory effects, including 1) Inhibiting multiple MAP 
kinases (ERK1 and JNK); 2) Inhibition of protein kinase 
C activity, which is important for effector cell activation; 
3) Activation of CREB-mediated inhibition of NF-κB and 
activated T nuclear factor (NF-AT) [9]. Finally, A2AR sig-
nal transduction on effectors and regulatory T cells trig-
gers increased expression of other immune checkpoint 
pathways, including PD-1, CTLA-4(cytotoxic T lympho-
cyte-associated antigen-4), and LAG-3(lymphocyte acti-
vation gene 3) [9]. Thus, the A2AR signal may represent a 
novel checkpoint pathway. What’s more, the production 
of adenosine in inflamed tissues combines the regres-
sion of inflammation in response to tissue damage with 
the deep suppression of the immune response by sign-
aling the A2A receptor. However, this combination of 
wound-healing and immunosuppression is maladaptive 

in malignancies and is the basic mechanism of cancer 
immune evasion [10]. To this end, adenosine signaling 
represents a key metabolic pathway that impairs immu-
nological surveillance [11].

Adenosine is an immunosuppressive metabolite pro-
duced at high concentration in TME that contributes to 
tumor-mediated immune evasion. Under normal con-
ditions, adenosine and ATP are present at low levels in 
extracellular fluids [12]. The anticancer therapies are 
known to trigger the release of high levels of ATP to the 
extracellular compartments, which serves as a Danger-
Associated Molecular Pattern (DAMP) to induce both 
innate and adaptive immune responses [13]. Extracel-
lular ATP is dephosphorylated by ectonucleotidases 
(CD39 and CD73) to produce adenosine [14]. In contrast 
to extracellular ATP, adenosine is known to inhibit the 
activity of the effector immune cells but activate other 
immunosuppressive regulatory cells [15] (Fig. 1). There-
fore, the extent of ATP release to the extracellular com-
partment and its degradation to adenosine should be 
limited to restrict the suppressive TME and to facilitate 
a durable antitumor immunity during cancer immuno-
therapy [16].

CD39/CD73/A2AR Signalling within the TME
CD39 and CD73 are highly expressed in various cell 
types within the TME (including tumor cells, stromal 
cells, endothelial cells, and the infiltrating immune cells) 
(Fig.  2) [17]. They are also known to be upregulated in 
response to the hypoxic tumoral environment. Moreover, 
both CD39 and CD73 are induced by Tregs (regulatory T 
cells) in response to adenosine signalling [18, 19], thereby 
setting up a feedback loop to maintain adenosine pro-
duction and immunosuppression within the TME. A1R, 
A2AR and A3R have high affinity for adenosine whereas 
A2BR has low affinity for adenosine. Upon binding of 
adenosine to the A2AR or A2BR, cellular adenylyl cyclase 
activity is increased to raise intracellular cAMP (Cyclic 
Adenosine monophosphate) level, subsequently inhib-
iting antitumor immune responses and also activating 
immune suppressor cells [20, 21].

The CD39 protein (exonucleoside triphosphate diphos-
phate hydrolase 1; also known as NTPDase 1) has 510 
amino acids, which harbors eleven cysteine residues and 
seven potential N-linked glycosylation sites [22]. There 
are two transmembrane domains in the CD39 protein. 
The cytoplasmic domain is relatively short whereas the 
extracellular domain is large and consists of five highly 
conserved segments that mediate the nucleotidase activ-
ity of the enzyme [23]. CD39 is localized on cell surface 
and it catalyzes the hydrolysis of extracellular nucleo-
side tri- and diphosphates to produce the corresponding 
monophosphates. It is noteworthy that glycosylation of 
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CD39 plays a crucial role to ensure proper protein fold-
ing, cell membrane targeting and effective enzymatic 
activity [24]. The expression of CD39 is induced by a 
number of inflammatory cytokines, nutrient starva-
tion, oxidative stress, and hypoxia stress via the action 
of a few transcription factors, including Sp1, Stat3, and 

the zinc finger protein growth factor independence-1 
(GFI1) [25].

The CD73 protein (also known as ecto-5′-
nucleotidase) is a glycosyl-phosphatidylinositol-linked 
cell membrane-bound enzyme found in most tissues 
[26]. It hydrolyzes the CD39-generated nucleoside 

Fig. 1  The two ectonucleotidases CD39 and CD73 control the metabolic fate of ATP and adenosine in the extracellular environment. Extracellular 
ATP is converted into its metabolites ADP and AMP sequentially by CD39, which is then further metabolized to adenosine by CD73. Activated 
CD39/CD73/A2AR signaling within the TME will suppress the function of antitumor immune cells (T cells, B cells, NK cells, and DCs) but promote the 
activity of the regulatory immune cells (MDSCs and Tregs), thus giving rise to a immunosuppressive TME. Notes: TME: tumor microenvironment; NK: 
natural killer; DCs: dendritic cells; MDSC: myeloid-derived suppressor cells; Treg: regulatory T cells; Th17: T helper 17 cells

(See figure on next page.)
Fig. 2  Gene-expression landscape of the three major components (CD39, CD73 and A2AR) in the adenosine signaling pathway in various solid 
cancer types. The Cancer Genome Altas (TCGA) analysis RNA-sequencing (RNA-seq) data of ENTPD1(A), NT5E (B) and ADORA2A (C), encoding 
the proteins CD39, CD73, A2AR, respectively, in human cancers. Notes: LUAD: lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; 
PRAD: Prostate; HNSC: Head and Neck squamous cell; KIRC: Kidney renal clear cell carcinoma; UCEC: Uterinecorps Endometrial carcinoma; PCPG: 
Pheochromocytoma; LIHC: Liver hepatocellular carcinoma; COAD: Colon adenocarcinoma; READ: Rectum adenocarcinoma; PAAD: Pancreatic 
adenocarcinoma; BLCA: Bladder Urothelial Carcinoma; CESC: Cervical squamous cell carcinoma; CHOL: Cholangiocarcinoma; ESCA: Esophageal 
carcinoma; KICH: Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; STAD: Stomach adenocarcinoma; THYM: Thyroid 
carcinoma; THCA: Thyroid carcinoma; BRCA: Breast invasive carcinoma; GBM: Glioblastoma multiforme. N = normal tissue; T = tumor specimen
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Fig. 2  (See legend on previous page.)
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monophosphates to the corresponding nucleosides [27]. 
In particular, CD73 is strongly linked with the genera-
tion of adenosine within the TME that stimulates can-
cer progression by suppressing antitumor immunity and 
promoting angiogenesis [28].

Extracellular adenosine could be produced by pas-
sive diffusion or active transport of intracellular adeno-
sine [29]. On the other hand, it can also be generated by 
the enzymatic hydrolysis of extracellular ATP. In solid 
tumors, ATP is released into the extracellular space due 
to cell necrosis and other secretary mechanisms under 
the condition of hypoxia, inflammation, nutrient dep-
rivation and cytotoxic drug treatment [30–32]. ATP 
released into the extracellular space is converted to AMP 
by CD39, and then AMP is further hydrolyzed to aden-
osine by CD73 [33]. Importantly, both CD39 and CD73 
are highly expressed in the cell types within the TME 
(including tumor cells, immune cells, endothelial cells, 
and fibroblasts). Moreover, exosomes carrying CD39 and 
CD73 are constantly released from tumors to enrich the 
abundance of these ectonucleotidases within the TME. 
Recently, it has been found that cancer-derived exosomes 
carries CD39 and CD73 on the surface, and the exosomes 
from different types of cancer exhibit strong hydro-
lytic activity of ATP and 5 ‘amp- phosphate, which may 
be the mechanism that causes adenosine levels to rise 
in the tumor microenvironment [34–36]. Importantly, 
adenosine is known to suppress the activity of numerous 
immune cells including phagocytes, dendritic cells (DCs), 
NK cells (natural killer cells), T cells, B cells, Th17(T 
helper cell 17), macrophages, upon binding to the A2AR 
on their cell surface [17, 37]. On the other hand, adeno-
sine can also promote the activity of a few regulatory 
and suppressive immune cells such as MDSCs (Myeloid-
derived suppressor cells) and Tregs to dampen the anti-
tumor immunity [38]. In addition, A2AR has been shown 
to inhibit macrophage activation by its downstream sign-
aling. Adenosine-A2AR pathway could inhibit T-lympho-
cyte proliferation, activation, and cytokine production, 
leading to polarization of immunosuppressive T-regu-
latory cells [39]. As a result, blockade of A2AR offers a 
potential next-generation immune checkpoint mecha-
nism for cancer immunotherapy [31].

Recent research has shown that adenosine suppresses 
immune responses in both CD4+ and CD8+ T cells by 
regulating the downstream signalling of A2AR [40–43]. 
Activation of A2AR by adenosine is known to suppress 
the proliferation and differentiation of naïve T cells, thus 
inhibiting Th1 and Th2 differentiation [44]. Moreover, 
high level of adenosine in the TME also disrupts CD8+ 
T-cell activation, expansion, and cytokine secretion to 
inhibit cytotoxic T-cell activity and interferes with NK 
cells cytolysis activity [37, 45].

B cells are the core component of the adaptive humoral 
immune system and they work by producing antigen-
specific antibodies [46]. However, a growing body of 
research suggests that B cells could also regulate immune 
responses through mechanisms beyond antibody pro-
duction [47]. Human B lymphocytes have been reported 
to express CD39, CD73, A1R, A2R, and A3R and they can 
also produce adenosine. The CD39(+)/CD73(+) B cells 
are capable of producing adenosine, which play critical 
role in regulating the immune responses of CD4+ and 
CD8+ T cells [48–50]. Human regulatory B cells (Bregs) 
express high levels of CD39 and they also release IL-10 to 
suppress T cell–mediated immune responses [51].

In human body, cancer immune surveillance is largely 
mediated by natural killer (NK) cells. They are effector 
lymphocytes of the innate immune system that target 
and kill tumor cells. NK cells are known to be regulated 
by various metabolic signaling including the puriner-
gic pathway [52]. NK-cell maturation and antitumor 
immunity are regulated by adenosine signaling through 
A2AR. Extracellular adenosine interacts with adeno-
sine receptors (predominantly A2AR) expressed on NK 
cells to mediate suppressive signals [53]. It has been 
demonstrated that conditional deletion of A2AR could 
increase the proportion of terminally mature NK cells at 
homeostasis and also in the TME [54]. Importantly, the 
specific targeting of A2AR on NK cells has been shown 
to delay tumor initiation and inhibit tumor growth in 
animal studies [55]. It is noteworthy that the combina-
tion of A2AR antagonists and NK cell–based therapies 
was shown to promote NK cell-mediated antitumor 
immunity [56–58].

Dendritic cells (DCs) represent the major antigen-
presenting cells capable of initiating innate and adaptive 
immune responses to external pathogens and produc-
ing antitumor immunity. Apart from presenting anti-
gens, they can also secrete various cytokines to regulate 
the immune responses [59, 60]. In DCs, CD39 can affect 
immunological synapses and intracellular signaling. High 
concentration of ATP was shown to increase indoleam-
ine-2,3-dioxygenase and thrombospondin 1 levels, which 
subsequently leads to immunosuppression. The immuno-
suppressive effect of extracellular ATP and adenosine was 
related to the decreased secretion of proinflammatory 
cytokines by DCs [45].

It is commonly believed that regulatory T cells (Tregs) 
are the prime mediators of immune suppression and they 
are critical for maintaining peripheral tolerance. They 
play a key role in protecting against autoimmune diseases 
and reducing chronic inflammatory conditions, includ-
ing asthma and inflammatory bowel disease. Besides this 
important physiological function, Tregs are also known 
to limit antitumor immunity [61]. To this end, Treg 
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activity can be regulated by the CD39/CD73/A2AR path-
way. The activation of adenosine receptor A2AR by extra-
cellular adenosine on Treg cell surface has been shown to 
stimulate Treg cell proliferation to promote immunosup-
pression [62].

T helper 17 cells (Th17) are a subset of proinflamma-
tory T helper cells, characterized by their production of 
interleukin 17 (IL-17). It has been shown that in  vitro 
generated Th17 cells with the cytokines IL-6 and TGF 
expressed CD39 and CD73, thereby leading to adenosine 
release and suppression of CD4+ and CD8+ T effector 
cell functions [63]. On the other hand, the expression 
level of CD39 and CD73 is decreased in the proinflam-
matory M1 macrophages, but is increased in the anti-
inflammatory M2 macrophages. Therefore, adenosine 
can indeed promote anti-inflammatory cytokine produc-
tion but suppress pro-inflammatory cytokine production 
[64.]. Myeloid-derived suppressor cells (MDSCs) are a 
heterogeneous group of immature myeloid cells, which 
suppress T cell response. They are composed of the pro-
genitors of DCs, macrophages, and granulocytes. In the 
TME, it has been shown that TGF-β and HIF-1α can reg-
ulate CD39 and CD73 expression in MDSCs [65].

The mechanism by which the CD39/CD73/adenosine-
A2AR suppresses antitumor immunity within TME is 
depicted in Fig. 1. The immune system plays a vital role 
in suppressing the development and progression of 
tumor. Recent research reveals that high levels of immu-
nosuppressive adenosine within the TME contributes 
substantially to cancer immune evasion. Therefore, the 
production of high concentration of extracellular aden-
osine within the TME is mediated by the CD39/CD73/
adenosine pathway. The development of novel strategies 
for immunotherapy by inhibition of this adenosine/A2AR 
pathway will be discussed in the following sections.

The expression and function of CD39/CD73/A2AR 
in various Cancer types
Tumor progression and metastasis are regulated by the 
cross-talk between tumor cells and the TME [66]. CD39 
is expressed in infiltrating immune cells as well as on the 
cancer cells in a range of human cancers, including lung 
cancer, squamous cell carcinoma of the head and neck, 
clear cell carcinoma of the kidney, rectal adenocarci-
noma, thyroid cancer, breast cancer, and multiforme 
glioblastoma solid tumors, studies have shown that high 
expression of CD39 is strongly associated with adverse 
outcomes [67]. Like CD39, the expression of CD73 in the 
tumor microenvironment has been studied as a prog-
nostic biomarker for clinical outcomes of a variety of 
tumor types, including squamous cell carcinoma of the 
lung, pheochromocytoma, pancreatic cancer, urothelial 
carcinoma of the bladder, esophageal carcinoma, gastric 

adenocarcinoma, thyroid carcinoma, and pleomorphic 
glioblastoma, with metastasis and shorter time to recur-
rence [68]. In some solid tumors, including lung cancer, 
pheochromocytoma, hepatocellular carcinoma, bladder 
urothelial carcinoma, cervical squamous cell carcinoma, 
and gastric adenocarcinoma, adenosine pathway compo-
nents are particularly overexpressed, including A2A and 
A2B. It is expected that these cancers may respond well 
to drugs targeting the eADO pathway [69]. As showed 
in Fig. 2, the expression levels of CD39, CD73 and A2AR 
were higher in several tumor types than their adjacent 
normal tissues. Moreover, the activation of CD39/CD73/
adenosine-A2AR pathway is closely associated with an 
immunosuppressive TME and poor prognosis of cancer 
patients [5]. Therefore, CD39 and CD73 are indispen-
sable for the development, differentiation, migration, 
and invasion of cancer cells [70–72]. Importantly, high 
expression levels of CD39 and CD73 have been associ-
ated with immune evasion of cancer cells as they can pro-
mote the infiltration of MDSCs and Tregs in tumor tissue 
[73]. Moreover, the activation of adenosine/A2AR signal-
ling promoted Treg cell proliferation and the secretions 
of immune-suppressive factors (including TGFβ and 
IL-10) and upregulated the expression of immune-check-
point receptors (such as PD-1, CTLA4 and LAG3), which 
mediated immunosuppression TME in tumor tissue and 
immune escape of cancer cells [74–76].

Given the hypoxic and inflammatory nature of many 
solid tumors, multiple components of the adenosiner-
gic pathway are upregulated in malignant tissues com-
pared with the respective non-malignant tissues [77]. 
The CD39 /CD73/A2AR signaling pathway has been 
shown to be associated with poor cancer prognosis. In 
addition, CD39 and CD73 are also involved in the forma-
tion of new lymphatic vessels around tumors and pro-
gression of malignant tumors such as breast carcinoma, 
multiforme glioblastoma and chronic lymphocytic leu-
kemia [78–80]. Importantly, the blockade of adenosine/
A2AR pathway resulted in the enhancement of cancer 
chemotherapy and immunotherapy in numerous cancer 
types including lung adenocarcinoma, renal clear cell 
carcinoma, pheochromocytoma and paraganglioma [43, 
81–83]. Elevated levels of CD39 have also been found 
in tumors resected for hepatocellular carcinoma, gastric 
carcinoma, and head and neck squamous cell carcinoma, 
where higher expression is associated with the likelihood 
of recurrence after surgery and/or poor overall survival. 
In addition, FoxP3+ Tregs expressing CD39 were found 
to be better than FoxP3+ Tregs alone in predicting gas-
tric cancer survival and time to recurrence of HCC [84]. 
Interestingly, in rectal adenocarcinoma, a combination 
of CD39 and CD73 expression provided better prognos-
tic value, with CD73hiCD39lo and CD73loCD39hi tumors 
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showing worse and best outcomes, respectively [85]. 
CD73 may also predict better response to PD-1/PD-L1 
targeted therapy, as it is strongly associated with PD-L1 
expression in gastrointestinal neuroendocrine tumors 
[86]. As noted by Antonioli et al., the integration of CD73 
and CD39 in prognostic assessment may contribute to 
enhanced stratification that helps determine the ideal 
therapeutic strategy in terms of adenosine energy axis’s 
contribution to cancer progression [87]. And in a smaller 
cohort of head and neck squamous cell carcinoma, Vogt 
et  al. showed that while hypomethylation of NT5E was 
associated with worse outcomes, hypomethylation of 
ADORA2A was associated with longer overall survival 
[88]. Similarly, et al. found the opposite prognostic value 
of tumor CD73 and A2A protein expression in two coves 
of patients with non-small cell lung cancer or lung ade-
nocarcinoma, where CD73 and A2A predicted poorer 
and better outcomes, respectively, and further studies 
are needed to better understand the effect of adenosine 
receptor expression on cancer prognosis [89].

CD39/CD73/A2AR as a novel therapeutic target 
for combination therapy
Cancer immunotherapy including the PD-1/PD-L1 and 
CTLA-4 blockade regimens has achieved remarkable 
anticancer efficacy and long-term survival. However, only 
a small subset of cancer patients could benefit from the 
treatment. The fact that a large proportion of cancer 
patients do not respond suggest the presence of addi-
tional immunosuppressive pathway driving the immune 
evasion by the non-responding tumors [90, 91]. So that 
the CD39/CD73/A2AR signaling pathway appears to be 
an attractive target. In solid tumors, abundant ATP is 
released from the dying cells due to necrosis. CD39 and 
CD73 are highly expressed in numerous cancer types and 
also by the infiltrating immune cells. A2AR is expressed 
in the infiltrating immune cells [92, 93]. Thus, an immu-
nosuppressive environment is reshaped in the TME by 
the accumulated adenosine to blunt the cancer immune 
surveillance. In fact, therapeutic targeting of the adeno-
sine signaling has been proposed to enhance the efficacy 
of other existing cancer immunotherapy [94].

Targeting the CD39/CD73/A2AR pathway
Small-molecule inhibitors and monoclonal antibodies 
targeting CD39, CD73 and A2AR have been developed 
for cancer therapy [95]. Generally speaking, monoclonal 
antibodies (mAb) are macromolecules and they may not 
penetrate well into solid tumors. In contrast, small mol-
ecules could cross physiologic barriers, such as plasma 
membrane and the blood–brain barrier, more easily. 
Thus, small-molecule inhibitors could achieve better 
exposure in the TME [96].

In various tumor models, a CD39-targeting mAb 
has been shown to inhibit the CD39 enzymatic activ-
ity on tumor surface and effectively suppress metastasis 
[97]. In a lung cancer model, another anti-CD39 mAb 
was shown to upregulate the expression of CD107a in 
infiltrating NK cells and promote IFN-γ release to kill 
cancer cells [98]. ES014 is an anti-CD39/TGF-β bispe-
cific mAb. It was reported to simultaneously inhibit the 
enzymatic activity of CD39 and neutralize autocrine/
paracrine TGF-β, which represent the two major immu-
nosuppressive mechanisms in the TME. Therefore, 
ES014 could restore anti-tumor immunity by increas-
ing the extracellular levels of the pro-inflammatory ATP, 
and inhibiting the accumulation of the immunosuppres-
sive adenosine and TGF-β within the TME. Blockade 
of CD73 by the antagonistic CD73 mAb (3F7) has been 
shown to significantly delay tumor growth and inhibit 
metastasis in a 4 T1 breast tumor–bearing mouse model 
[99]. Moreover, it has been reported that anti-CD73 
antibodies could enhance the anticancer effect of both 
anti-CTLA-4 and anti-PD-1 immunotherapy in multiple 
tumor-bearing mouse models. These studies also dem-
onstrated that CD73 can inhibit antitumor leukocytes 
and interfere with adenosine generation to suppress 
tumor metastasis [100]. In a clinical trial, an anti-CD73 
mAb (MEDI9447) with or without durvalumab (PD-L1 
mAb) was reported to downregulate CD73 expression 
on peripheral T cells in 66 pancreatic and colorectal 
cancer patients, which was associated with an increase 
in cytotoxic T-cell infiltration [101]. Recently, Pe et  al. 
found that IPH5201 (anti-CD39 mAb) and IPH5301 
(anti-CD73 mAb) could efficiently block the hydrolysis 
of immunogenic ATP into immunosuppressive adeno-
sine by specifically targeting human membrane-associ-
ated and soluble forms of CD39 and CD73, respectively. 
Importantly, IPH5201 and IPH5301 were shown to 
promote antitumor immunity by stimulating DCs and 
macrophages and by restoring the activation of T cells 
isolated from cancer patients [102].

On the other hand, a few small molecule CD39 or 
CD73 inhibitors are also underway in clinical trials. 
ES002023 is a CD39 inhibitor which restores antitu-
mor immunity by stabilizing the pro-inflammatory 
extracellular ATP (eATP) and interfering with syn-
thesis of the immunosuppressive adenosine within 
the TME (NCT05075564). AB680 is a highly potent, 
reversible and CD73-selective inhibitor. In preclini-
cal studies, AB680 exhibited favorable pharmacoki-
netic properties. It is currently being evaluated in 
phase I clinical trials [103]. PSB-1248937 is another 
highly potent CD73 inhibitor recently developed but 
it is not absorbed well by the oral route [104]. There 
has been extensive search for small molecule CD39/73 
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inhibitors from natural compounds. Ellagic acid was 
recently identified as a lead compound for CD39 and 
CD73 dual inhibitor because of its low cytotoxicity to 
normal cells [105]. A few allosteric CD73 inhibitors 
that target the dimer interface have been identified by 
virtual screening [106]. By exploiting the binding mode 
of the human protein CD73 with α,β-methylene-ADP, 
Du et  al. designed a series of novel effective small-
molecule CD73 inhibitors. Among these CD73 inhibit-
ing drug candidates, OP-5244 was shown to be highly 
potent and it can be taken orally with high bioavail-
ability [18].

The accumulating preclinical researches demon-
strated that the inhibition of A2AR activation can 
significantly increase antitumor immunity [107]. 
A2AR inhibitors have been shown to increase antitu-
mor effects by boosting the effector function of cyto-
toxic lymphocytes and blocking the recruitment and 
polarization of immunosuppressive immune cells in 
the TME [108]. A novel A2AR antagonist CPI-444 
has been shown to reduce the expression of multiple 
checkpoint pathways (including PD-1 and LARG-3) on 
CD8+ effector T cells and CD4+ regulatory T cells. 
Importantly, A2AR inhibition was found to exhibit the 
most pronounced effects during CD8+ effector T cell 
activation, thus remarkably reducing PD-1 and LAG-3 
expression at the draining lymph nodes of tumor bear-
ing mice [109]. Mechanistically, it has been demon-
strated that the enhancement of IFN-γ production by 
the adoptively transplanted T lymphocytes contributes 
to the therapeutic benefit of A2AR antagonism. It is 
also noteworthy that A2AR antagonism could enhance 
antitumor immunity regardless of the tumor’s anatomi-
cal location and it could provide long-lasting tumor-
specific memory [110].

As the adenosine-A2AR pathway is triggered by the 
binding of adenosine to A2AR to subsequently inhibit 
T-cell proliferation and function, a few small molecule 
inhibitors were designed to specifically interfere with 
the interaction between adenosine and A2AR. The 
blockage of the binding by ciforadenant and the A2AR 
inhibitor were reported to restore T-cell signaling, IL-2 
and IFN-γ production [57, 111, 112]. AZD4635, a high-
affinity oral A2AR antagonist, could reverse T-cell inhi-
bition induced by the treatment with the adenosine 
analog 5′-n-ethylcarboxylated adenosine in  vitro and 
in vivo [113]. It is currently on phase I clinical trials in 
patients with a variety of solid tumors [114]. The A2AR 
antagonist SCH58261 and PBF-509 were shown to block 
the MSC-mediated suppression of T-cell proliferation 
almost completely, thereby reactivating the antitumor 
immune response [115, 116]. We summarizes the vari-
ous mAbs and small molecule targeting agents of CD39/

CD73/A2AR that are currently in clinical trials for can-
cer therapy in Table 1.

Combination of CD39/CD73/A2AR inhibitors with other 
therapies
The combination of CD39/CD73/A2AR mAbs or small 
molecule inhibitors with conventional chemotherapy or 
other immunotherapies have been investigated in clini-
cal trials on patients with advanced cancer [117, 118]. 
Additive and even synergistic anticancer effects were 
achieved in the combination of two distinct antitumor 
mechanisms. We summarizes the clinical investigations 
on combination of CD39/CD73/A2AR targeting mAbs 
or small molecule inhibitors with other cancer treatment 
modalities in Table  2. Remarkable inhibition of tumor 
initiation, growth, and metastasis were observed.

Combination of inhibitors targeting two members 
of the CD39/CD73/A2AR pathway
The adenosine-A2AR pathway consists of different com-
ponents to convert ATP into the immunosuppressive 
adenosine. The disruption of individual member of the 
pathway and their combinations could give rise to differ-
ent biological effects [119]. Targeted inhibition of A2AR 
and CD73 was shown to produce synergistic inhibition 
on tumor growth. The combination of sodium polyoxo-
tungstate (small molecule CD73 inhibitor) and AZD4635 
(A2AR antagonist) was found to block the adenosine 
pathway, thereby activating immune cells, increas-
ing INF-γ production, and reducing the abundance of 
Treg cells [114]. On the other hand, the combination of 
IPH5201 (anti-CD39 mAb) and IPH5301 (anti-CD73 
mAb) was reported to inhibit the production of adeno-
sine, and subsequently reducing T cell inhibition in a 
co-culture system of myeloma and stromal cells in vitro 
[102]. In combination Oleclumab (MEDI9447,anti-CD73 
antibody) with AZD4635(A2AR inhibitor), numbers 
of participants show Dose-limiting Toxicities (DLTs) 
and numbers of participants show Treatment Emergent 
Adverse Events (TEAEs) and Treatment Emergent Seri-
ous Adverse Events (TESAEs)(NCT03381274).

Combinations of CD39/CD73/A2AR inhibitor with other 
immunotherapies
The combination of CPI-444 (small molecule A2AR antag-
onist) and atezolizumab (anti-PD-L1 mAb) was reported 
to induce more durable anticancer response and more 
cytotoxic T-cell infiltration in TME than atezolizumab 
alone [112, 120]. In a recent clinical study, there were sub-
stantially more NSCLC patients achieving stable disease 
when treated with the combination of NIRI178 (A2AR 
antagonist) and spartalizumab (anti-PD-1 mAb) (14 out of 
25) than treatment with apartalizumab alone (7 out of 25) 
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[121]. Importantly, NIR178 with and without spartalizumab 
was well tolerated in all patients with advanced NSCLC 
[121]. Similarly, in another clinical trials on patients with 
advanced metastatic castration-resistant prostate can-
cer, the combination of AZD4635 (A2AR antagonist) and 
durvalumab (anti-PD-L1 mAb) was shown to produce 
more tumor responses (6 out of 37 patients) than treat-
ment with durvalumab alone (2 out of 39 patients) [122]. 
These clinical data suggests that the inhibitor of CD39/
CD73/A2AR pathway can enhance the efficacy of immune 
checking point inhibitor (ICI) in advanced solid tumorsIn 

combination PT199 with an anti-PD-1 monoclonal anti-
body, no loss of inhibition or “hook effect” is observed at 
a higher concentrations. Hence, PT199 is expected to 
increase antitumor immune activation, especially in com-
bination with PD-1 pathway inhibition, and thus offer a 
new treatment option for cancer patients (NCT05431270).

Combinations of CD39/CD73/A2AR inhibitors with other 
Cancer therapies
The combination of photodynamic therapy and conven-
tional chemotherapy is a promising strategy for destroying 

Table 1  Investigation of monoclonal antibodies or small molecule inhibitors targeting the CD39/CD73/A2AR pathway in clinical trials. 
(https://​clini​caltr​ials.​gov/)

Agent/drug Company Mechanism Phase NCT number

JS019 Suzhou Kebo Ruijun Biotechnology Co, Ltd Anti-CD39 monoclonal antibody Phase I NCT05508373

ES014 Elpiscience Biopharma, Ltd. Anti-CD39/TGF-β bispecific antibody Phase I NCT05381935

PUR001 Purinomia Biotech, Inc. Anti-CD39 monoclonal antibody Phase I NCT05234853

IPH5201 MedImmune LLC CD39 antagonist Phase I NCT04261075

SRF617 Surface Oncology CD39 antagonist Phase I NCT04336098

ES002023 Elpiscience Biopharma, Ltd. CD39 antagonist Phase I NCT05075564

TTX-030 Trishula Therapeutics, Inc. CD39 antagonist Phase I NCT03884556

PT199 Phanes Therapeutics Anti-CD73 monoclonal antibody Phase I NCT05431270

IPH5301 Institut Paoli-Calmettes Anti-CD73 antibody Phase I NCT05143970

TJ004309 I-Mab Biopharma US Limited Anti-CD73 antibody Phase II NCT05001347

JAB-BX102 Jacobio Pharmaceuticals Co., Ltd. Anti-CD73 monoclonal antibody Phase I NCT05174585

CPI-006 Corvus Pharmaceuticals, Inc. Anti-CD73 antibody Phase I NCT03454451

AK119 Akeso Anti-CD73 antibody Phase I NCT05173792

Sym024 Symphogen A/S Anti-CD73 antibody Phase I NCT04672434

IBI325 Innovent Biologics (Suzhou) Co. Ltd. Anti-CD73 antibody Phase I NCT05119998

Dalutrafusp (GS-1423) Gilead Sciences Anti-CD73-TGFβ-Trap bifunctional Antibody Terminated NCT03954704

HLX23 Shanghai Henlius Biotech CD73 antagonist Phase I NCT04797468

AB680 Arcus Biosciences, Inc CD73 antagonist Phase I NCT04104672

LY3475070 Eli Lilly and Company CD73 antagonist Phase I NCT04148937

MEDI9447 (oleclumab) AstraZeneca CD73 antagonist Phase I NCT03736473

NZV930 Novartis Pharmaceuticals CD73 antagonist Phase I NCT03549000

INCA 0186 Incyte Corporation CD73 antagonist Phase I NCT04989387

BMS-986179 Bristol-Myers Squibb CD73 antagonist Phase I NCT02754141

ORIC-533 ORIC Pharmaceuticals CD73 antagonist Phase I NCT05227144

TT-10 Tarus Therapeutics, Inc. A2AR antagonist Phase II NCT04969315

Ciforadenant (CPI-444) M.D. Anderson Cancer Center A2AR antagonist Phase Ib/II NCT05501054

PBF-509 Palobiofarma SL A2AR antagonist Phase I NCT02403193

Taminadenant (NIR178) Novartis Pharmaceuticals A2AR antagonist Phase II NCT03207867

Inupadenant (EOS100850) iTeos Therapeutics A2AR antagonist Phase I NCT05117177

PBF-999 Palobiofarma SL A2AR antagonist Phase I NCT03786484

CS3005 CStone Pharmaceuticals A2AR antagonist Phase I NCT04233060

INCB106385 Incyte Corporation A2AR antagonist Phase I NCT04580485

EXS21546 Exscientia Limited A2AR antagonist Phase I NCT04727138

Etrumadenant (AB928) Arcus Biosciences, Inc A2AR and A2BR antagonist Phase II NCT04262856

AZD4635 AstraZeneca A2AR antagonist Phase I NCT04478513

https://clinicaltrials.gov/
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Table 2  Combinations of CD39/CD73/A2AR inhibitors and other cancer therapies under investigation in clinical trials (https://​clini​caltr​
ials.​gov/)

Combing CD39/CD73/A2AR with other therapies is an attractive therapeutic strategy for cancer treatment. Targeting CD39/CD73/A2AR with blocking antibodies or 
small-molecule inhibitors in combination with other therapies such as immune checkpoint blockade and chemotherapy is a rational strategy to enhance therapeutic 
benefit

Combination Company Mechanism phase NCT number

Combination SRF617 with pembrolizumab 
gemcitabine albuminbound paclitaxel

Surface Oncology
Merck Sharp & Dohme LLC

CD39 antagonist with chemotherapy Phase I NCT04336098

Combination TTX-030 with immunotherapy 
and/or chemotherapy

Trishula Therapeutics, Inc.
AbbVie

Anti-CD39 antibody with immunotherapy Phase I NCT04306900

Combination SRF617 with AB928 (Etru-
madenent) and AB122 (zimberelimab)

Surface Oncology
Arcus Biosciences, Inc

Anti-CD39 antibody with A2AR and A2BR 
antagonist

Phase I NCT05177770

Combination IPH5301 with chemotherapy 
and trastuzumab

Institut Paoli-Calmettes
Innate Pharma

Anti-CD73 antibody with chemotherapy Phase I NCT05143970

Combination AK119 with AK104 Akeso Anti-CD73 antibody with chemotherapy Phase I NCT04572152

Combination IBI325 with sintilimab Innovent Biologics (Suzhou) Co. Ltd. Anti-CD73 antibody with chemotherapy Phase I NCT05119998

Combination oleclumab with gemcitabine, 
nab-paclitaxel, durvalumab

M.D. Anderson Cancer Center Anti-CD73 antibody with chemotherapy PhaseII NCT04940286

Combination dalutrafusp (GS-1423) with 
mFOLFOX6 regimen

Gilead Sciences Anti-CD73-TGFβ-Trap antibody with 
chemotherapy

Phase I NCT03954704

Combination LY3475070 with pembroli-
zumab

Eli Lilly and Company
Merck Sharp & Dohme LLC

CD73 antagonist with immunotherapy Phase I NCT04148937

Combination BMS-986179 with nivolumab 
(BMS-936558)

Bristol-Myers Squibb CD73 antagonist with immunotherapy Phase II NCT02754141

Combination INCA00186 with INCB106385 
and/or retifanlimab

Incyte Corporation CD73 antagonist with immunotherapy Phase I NCT04989387

Combination TJ004309 with atezolizumab I-Mab Biopharma US Limited
I-Mab Biopharma Co. Ltd.

Anti-CD73 antibody with immunotherapy Phase II NCT05001347

Combination JAB-BX102 with pembroli-
zumab

Jacobio Pharmaceuticals Co., Ltd. Anti-CD73 antibody with immunotherapy Phase II NCT05174585

Combination PT199 with an anti-PD-1 
monoclonal antibody

Phanes Therapeutics Anti-CD73 antibody with immunotherapy Phase I NCT05431270

Combination NZV930 with PDR001 Novartis Pharmaceuticals
Novartis

Anti-CD73 antibody with immunotherapy Phase I NCT03549000

Combination Sym024 with Sym021 Symphogen A/S Anti-CD73 antibody with immunotherapy Phase I NCT04672434

Combination oleclumab (MEDI9447) with 
AZD4635

MedImmune LLC Anti-CD73 antibody with A2AR antagonist Phase Ib/II NCT03381274

Combination CPI-006 with ciforadenant or 
pembrolizumab

Corvus Pharmaceuticals, Inc Anti-CD73 antibody with A2AR antagonist Phase I NCT03454451

Combination inupadenant (EOS100850) 
with Chemotherapy

iTeos Belgium SA
iTeos Therapeutics

A2AR antagonist with chemotherapy Phase II NCT05403385

Combination INCB106385 with immuno-
therapy

Incyte Corporation A2AR antagonist with immunotherapy Phase I NCT04580485

Combination NZV930 with PDR001 and /
or NIR178

Novartis Pharmaceuticals
Novartis

A2AR antagonist with immunotherapy Phase I NCT03549000

Combination lpilimumab, nivolumab with 
ciforadenant (CPI-444)

M.D. Anderson Cancer Center A2AR antagonist with immunotherapy phase I/II NCT05501054

Combination NIR178 with PDR001 Novartis Pharmaceuticals
Novartis

A2AR antagonist with immunotherapy Phase II NCT03207867

Combination taminadenant with PDR001 Palobiofarma SL
Novartis
H. Lee Moffitt Cancer Center and 
Research Institute

A2AR antagonist with immunotherapy Phase I NCT02403193

Combination DFF332, spartalizumab with 
taminadenant

Novartis Pharmaceuticals
Novartis

A2AR antagonist with immunotherapy Phase I NCT04895748

Combination AZD4635 with durvalumab or 
oleclumab (MEDI9447)

AstraZeneca A2AR antagonist with anti-CD73 antibody Phase II NCT04089553

https://clinicaltrials.gov
https://clinicaltrials.gov
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cancers that are either under the skin or in the lining of 
organs reachable by a light source. However, photody-
namic therapy is not effective to treating metastatic dis-
eases when tumor cells have already spread [123]. Jin et al. 
proposed that the combination of anti-CD73 mAb with 
chemo-photodynamic therapy can synergistically enhance 
the antimetastatic effects by boosting T cell–mediated 
antitumor immunity [123]. This approach has been inves-
tigated in animal model of metastatic triple-negative 
breast cancer. While the combination of photodynamic 
therapy and chemotherapy gave rise to strong antitumor 
effect and produced immunogenic cell death, the addition 
of anti-CD73 mAb could assure sufficient immune check-
point blockade in the tumors by blocking the adenosine 
pathway [123]. More importantly, this combination strat-
egy was also shown to prevent abscopal tumor metastasis 
by inducing systemic cytotoxic T cell response via CD73 
blockade [123]. However, in a clinical study investigating 
the combination of IPH5301 (anti-CD73 mAb) with chem-
otherapy or trastuzumab, dose limiting toxicity of IPH5301 
was observed in the combination group. Moreover, similar 
antitumor response was achieved in the IPH5301-pacli-
taxel-trastuzumab combination group and the IPH5301 
monotherapy group. And the clinical trail of combination 
dalutrafusp (GS-1423) with mFOLFOX6 regimen was ter-
minated . The decision to discontinue the study was made 
based on the totality of the clinical, pharmacokinetic, and 
pharmacodynamic findings (NCT03954704).

It has been proposed that inhibition of adenosine-
A2AR pathway could promote the abundance and infil-
tration of cytotoxic T cells into tumors [124]. Given that 
the cytokine IL-7 signaling could facilitate the accumu-
lation of tumor-associated CD8+ T cells by hindering 
adenosine-mediated immunosuppression, the combina-
tion of IL-7 modulator and adenosine-A2AR inhibitors 
have been evaluated for treatment of solid tumors [125]. 
Newton et al. reported the specific knockdown of A2AR 
by a lipid nanoparticle-based system to promote the 
chemotaxis of head and neck cancer memory T cells into 
the solid tumor [126]. On the other hand, the combina-
tion of A2AR antagonists with NK-cell therapy has also 
been shown to enhance antitumor immunity. DC-based 
cancer vaccines represent another promising approach 
for cancer immunotherapy. While efficacy from DC vac-
cines relies heavily on antitumor T-cell responses [127], 
cancer cells could utilize the adenosine-A2AR pathway to 
escape from the antitumor immunity of DC vaccines. So 
Arabet et al. investigated the potential therapeutic appli-
cation of combining DC vaccine with inhibitor of the 
CD39/CD73/A2AR pathway [128]. Apart from promot-
ing angiogenesis and anti-inflammatory activities, CD39 
also plays an important role in regulating thrombogen-
esis to provide adequate blood supply to tumor cells. It 

was known that tumor cells, endothelial cells, and tumor-
infiltrating immune cells express CD39, which suppresses 
anti-tumor immune responses and promotes tumor 
growth [129]. Collectively, combination of inhibitor of 
CD39/CD73/A2AR pathway and cancer immunotherapy 
is emerged as a novel strategy for treating solid tumors.

Biomarkers of the CD39/CD73/A2AR pathway 
in Cancer
Recent studies have shown that CD73 is overexpressed 
in solid tumors such as ovarian, gastric, breast, colorectal 
cancer [130]. In clinical studies, tumoral CD73 expres-
sion was negatively correlated with immune cells infil-
tration of tumors, worse disease-free survival rate, and 
poorer overall survival in cancer patients [131]. In pro-
spective clinical trial investigating adenosine pathway 
inhibitors, inhibition of the CD39/CD73/A2AR pathway 
was shown to increase immune cell activation, expand T 
cell repertoire in peripheral blood, and also increase T 
cell infiltration in tumor biopsy samples [132]. There have 
been extensive studies investigating pharmacodynamics 
biomarkers that could predict the clinical responses of 
adenosine inhibitors. We summarizes the more promis-
ing biomarkers used to predict the efficacy of adenosine 
pathway inhibitors in various cancer types in Table 3.

Since adenosine is metabolized rapidly and its half-
life in plasma is only about 10s, it is difficult to directly 
measure the level of adenosine in patient samples. 
Therefore, adenosine cannot be used as a biomarker by 
directly measuring its level in tumor specimens [70]. 
On the other hand, adenosine-related gene expression 
profiles were found to correlate well with adenosine 
levels in tumors. Thus, the profile of adenosine-related 
gene expression may be used as potential biomarkers 
to predict treatment response from adenosine-A2AR 
inhibitors. A recent study revealed that the expression 
of a group of genes related to myeloid cell biology and 
inflammation was positively correlated with adenosine 
levels [96]. A set of 8 genes (including CXCL1, CXCL2, 
CXCL3, CXCL5, CXCL6, CXCL8, PTGS2 and IL-1β) was 
subsequently coined as the “Adenosine Gene Signature” 
(AdenoSig) to identify patients likely to respond to treat-
ment with the A2AR antagonist (Ciforadenant) [96, 133]. 
Meanwhile, Sidders et al. proposed another genomic sig-
nature termed the “Adenosine Signaling Score” consist-
ing of 14 genes (PPARG, CYBB, COL3A1, FOXP3, LAG3, 
APP, CD81, GPI, PTGS2, CASP1, FOS, MAPK1, MAPK3, 
CREB1), which exhibited good correlation with A2AR 
signaling in human cancers and could be used to predict 
immunotherapeutic response [134]. The Adenosine Sign-
aling Score is directly proportional to the concentration 
of adenosine and it was significantly reduced in A2AR-
knockout models. Interestingly, while the AdenoSig and 
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Adenosine Signaling Score only share a single gene in 
common, they are highly correlated to each other in sev-
eral solid tumors [133].

On the other hand, decreased adenosine deaminase 
(ADA) levels in brochoalveolar lavage (BAL) has been 
used as a diagnostic biomarker for lung cancer. As it is 
often difficult to obtain sufficient lung tissue from cancer 
patients for proper diagnosis, ADA levels in BAL could 
be used as an auxiliary parameter for making malignancy 
and histopathological diagnoses in conjunction with radi-
ological and clinical findings [139]. It is noteworthy that 
immunosuppressive functions of CD14high CD163high 
CD39high macrophages, as well as the secretion of IL-10, 
were diminished by ADA, thus allowing the measure-
ment of ADA to reflect the status of immunosuppression 
in the TME [136, 140].

In addition, it has been reported that CD73 expression 
is upregulated in response to specific oncogenic muta-
tions, including TP53, EGFR and RAS [73]. The expres-
sion of CD73 was also correlated well with genes altered 
by hypoxic and tissue-repair responses, including TGFβ 
and epithelial-to-mesenchymal transition genes [73]. In 
various solid tumors, including breast, colorectal, ovar-
ian and pancreatic cancers, cancer-associated fibro-
blasts (CAFs) constitute the prominent cell population 

with high expression of CD39 and CD73, which facili-
tate a feedforward circuit to enforce the CD73 immune 
checkpoint and maintain an immunosuppressive TME 
[141]. Furthermore, activation of the EMT was shown 
to increase CD73 expression and thus eADO recep-
tor signalling, which further enhances the EMT pheno-
type [72]. Recently, Smyth et al. reported that adenosine 
signaling could impair the immune effect of peripheral 
T cells and tumor-infiltrating lymphocytes (TILs) via a 
A2AR/PKA/mTORC1 signalling pathway [92]. In this 
study, phosphoflow staining of CREB and S6 proteins 
was used to assess the influence of adenosine/adenosine 
receptor on the activation of the PKA and mTOR path-
ways, respectively Therefore, p-CREB and p-S6 may be 
used as useful pharmacodynamic and efficacy biomark-
ers to predict therapeutic response of adenosine-target-
ing immunotherapies [92]. In summary, various genetic 
signatures and signalling molecules could be used to 
select individual cancer patients who may benefit from 
adenosine-targeting therapy.

Conclusions
The immunosuppressive TME is the major hindrance to 
successful cancer immunotherapy, which must be over-
come in order to achieve robust and durable antitumor 

Table 3  Biomarkers related to the CD39/CD73/A2AR pathway in cancer

Biomarkers that were identified adenosine in CD39/CD73/A2AR pathway remain to be defined. EGFR Epidermal Growth Factor Receptor, p-CREB Phospho- CAMP-
response element-binding, CXCR2 C-X-C motif chemokine receptor 2, TGFβ Transforming growth factor-β, LYVE1 Lymphatic Vessel Endothelial receptor-1, PDPN 
Podoplanin, VEGFC Vascular endothelial growth factor C

Name Biomarkers Reference

Adenosine gene signature(8 genes) CXCL1,2,3,5,6,8,PTGS2 and IL-1β recognized as adenosine signature,was positively correlated 
with adenosine levels.

[96], [133]

Adenosine Signaling Signature(14 genes) In human cancer, the gene expression of PPARG, CYBB, COL3A1, FOXP3, LAG3, APP, CD81, GPI, 
PTGS2, CASP1, FOS, MAPK1, MAPK3, CREB1 correlated with A2AR signaling.

[134]

Inflammatory cytokines or molecules The expression level of CD39 and CD73 are upregulated by various inflammatory cytokines 
or molecules, including type I interferons, IL-2, IL-1β, IL-6,IL-27, tumour necrosis factor (TNF), 
prostaglandin E2 or aryl hydrocarbon receptor agonists.

[51]

Tenascin C and EGFR CD73 directly bind and activate transcin C and EGFR to promote tumor cell 
growth,adhesiveness and invasiveness.

[135]

Hypoxia-inducible factor (HIF1) CD39, CD73 and adenosine receptor, including A2A and A2B, are regulated by HIF, which also 
can inhibit the activity of adenylate kinase and ENTs, inducing the accumulation of adenosine 
and immunosupressive response in TME.

[73]

p-CREB and p-S6 p-CREB and p-S6 may represent useful pharmacodynamic and efficacy biomarkers of immuno-
therapies targeting Adenosine.

[92]

TGFβ In immnue cells, such as T cells, NK cells,myeloid cells,tumour cells,fibroblasts and endothelial 
cells, the expression level of CD39 and CD73 are upregulated by TGFβ.

[73]

ADA (Adenosine deaminas) ADA serves as a diagnostic biomarker in lung malignancies. May be valuable to predict which 
patients may respond better to treatments of blocking adenosine production or signaling.

[136]

LYVE1,PDPN,VEGFC LYVE1, PDPN and VEGFC positively correlated with the gene expression of ADOA2AR, NT5E and 
ENTPD1,respectively coding A2AR, CD73, CD39, thereby influencing the adenosine production 
in several human cancers.

[137]

Intercellulae adhesion molecule 1(ICM-1) Adenosine suppressed the upregulation of ICAM-1 mediated by IL-18 on human monocytes 
and it eliminated the production of IL-12, IFN-γ and TNF-α mediated by the enhancement of 
IL-18.

[138]
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response. It has been shown that the purinergic signaling 
axis contributes to tumor-mediated immunosuppression. 
The CD39/CD73/adenosine/A2AR signaling is emerg-
ing as a promising therapeutic target because adenosine 
produced by the purine nucleoside in TME can strongly 
inhibit the immune system. The intratumoral production 
of adenosine is dependent on the sequential catabolism 
of ATP by two ectonucleotidases, CD39 (from ATP to 
AMP) and CD73 (from AMP to adenosine). It is increas-
ingly evidence that CD39/CD73/A2AR pathways play a 
crucial role in regulating immune responses, both in nor-
mal physiology and in pathological states. Importantly, 
the inhibition of CD73 eliminates a major pathway for 
adenosine production within the TME and can reverse 
the immunosuppressive effect mediated by adenosine. 
Targeting CD39/CD73/A2AR with blocking antibodies 
or small-molecule inhibitors has exhibited strong anti-
tumor efficacy. In addition, the simultaneous inhibition 
of CD73 and A2AR was shown to give rise to synergistic 
effect. Recent findings in the field advocates the develop-
ment of specific inhibitors targeting CD39/CD73/A2AR 
to potentiate cancer immunotherapies.

Although both in vitro experiments and animal model 
studies have confirmed the great potential of target-
ing CD39/CD73/A2AR pathways for cancer treatment, 
translating these results into clinical practice will require 
a deeper understanding of how adenosine regulates the 
cancer microenvironment. However, one of the deficit in 
our knowledge is that adenosine promotes cancer growth 
through its effects on cancer stroma, the direct effects 
of adenosine on cancer cells are variable. It is also cru-
cial to master a variety of detailed research methods in 
order to analyze tumor inhibition of adenosine pathways 
mediated by cancer stroma, such as conditional deletion 
of adenosine receptors or metabolic enzymes in immune 
cells or endothelial cells, silencing adenosine receptors or 
metabolic enzymes in xenograft or allograft prior to inoc-
ulation and using a three-dimensional cell culture model 
that contains cancer cells that constitute their microenvi-
ronment. Another factor, the potential use of adenosine 
drugs in cancer - the intrinsic impact of the adenosine 
system depends on several factors, including the type of 
cancer, adenosine receptor subtypes expressed by cancer 
cells and studies of proliferation, apoptosis or metastasis, 
such as the fact that a particular tumor may express mul-
tiple adenosine receptors, adenosine therapy should take 
into account these competing proliferative and antipro-
liferative (or pro-apoptotic and anti-apoptotic) roles of 
various receptors.

In addition to preclinical studies, clinical studies using 
adenosine drugs should also rely on a better understand-
ing of specific tumors in humans. Biomarker-based 
tumor monitoring can guide such adenosine therapy, 

and these biomarkers may involve various adenosine 
receptors, metabolic enzymes, and uptake systems, for 
example, A2B receptor-dependent breast cancer with 
high expression of A2B receptor can be treated with 
A2B receptor antagonists. We anticipate that these 
approaches combined with the analysis of potential poly-
morphisms in the human adenosine system, will help us 
to realize the potential of adenosine therapy in the man-
agement of cancer patients. With lots of preclinical and 
clinical studies, the application of inhibitors of the CD39-
CD73-A2AR pathway will be broadened and improved. 
Furthemore,the efficacy of the combination regimen with 
other immune checkpoint inhibitors has been estab-
lished and evaluated in preclinical studies. In addition, 
recent preclinical studies have shown that the benefits 
of combining CAR T cell therapy with A2AR blocking 
are quite constructive, investigating such clinical trials 
and protocols are imminent. Since adenosine produc-
tion depends on hypoxic conditions and cell renewal, 
blocking this pathway in combination with therapies that 
promote hypoxia and cell death within TME should be 
valuable. These include radiation therapy, which creates 
hypoxic conditions, and chemotherapy drugs, especially 
those that increase ATP release (known as “immunogenic 
chemotherapy”). The diversity of CD39/CD73/A2AR 
signaling pathway mediated immune mechanisms may 
indicate its wide application in clinical field.

Abbreviations
CD39	� Exonucleoside triphosphate diphosphate hydrolase 1
CD73	� Ecto-5′-nucleotidase
A1R, A2AR, A2BR and A3R	         Adenosine A1, A2A, A2B, A3 receptors
TME	� Tumor microenvironment
DAMP	� Danger-Associated Molecular Pattern
NK	� Natural killer
DCs	� Dendritic cells
MDSC	� Myeloid-derived suppressor cells
Treg	� Regulatory T cells
Th17	� T helper 17 cells
Th1, Th2	� T helper 1, 2 cell
Th Sp1	� Transcription factor Sp1
Stat3	� Signal transducer and activator of transcription 3
GFI1	� Growth factor independence-1
IL-17	� Interleukin 17
EGFR	� Epidermal Growth Factor Receptor
p-CREB	� Phospho- CAMP-response element-binding
CXCR2	� C-X-C motif chemokine receptor 2
TGFβ	� Transforming growth factor-β
LYVE1	� Lymphatic Vessel Endothelial receptor-1
PDPN	� Podoplanin
VEGFC	� Vascular endothelial growth factor C
eATP	� Extracellular ATP
HIF-1α	� Hypoxia inducible factor 1 alpha subunit
CTLA4	� Cytotoxic T-lymphocyte associated protein 4
LAG3	� Lymphocyte activation gene 3 protein
IFN-γ	� Interferon γ
PTGS2	� Prostaglandin-endoperoxide synthase 2
PPARG​	� Peroxisome proliferative activated receptor, gamma
CYBB	� Cytochrome b-245 beta chain
COL3A1	� Collagen alpha-1(III) chain
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FOXP3	� forkhead box P3
APP	� Amyloid Precursor Protein
GPI	� Glucose-6-phosphate isomeras
CASP1	� Caspase 1, apoptosis-related cysteine peptidase
MAPK	� Mitogen-activated protein kinase
ADA	� Adenosine deaminase
IL-10	� Interleukin 10
CAFs	� Cancer-associated fibroblasts
EMT	� Epithelial-MesenchymalTransition
PD-1	� Programmed cell death protein 1
PD-L1	� Programmed cell death-Ligand 1
B7-H3	� CD276, Recombinant Cluster Of Differentiation 276
TIM3	� T cell immunoglobulin domain and mucin domain-3
TIL	� Tumor Infiltrating Lymphocyte
eADO	� Extracellular adenosine.
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