Skip to main content
Fig. 1 | Molecular Cancer

Fig. 1

From: t(15;21) translocations leading to the concurrent downregulation of RUNX1 and its transcription factor partner genes SIN3A and TCF12 in myeloid disorders

Fig. 1

t(15;21)(q24;q22) translocation in case 1. a Genomic breakpoints on chromosomes 15 and 21 in case 1: Top, schematic representation of wild-type chromosomes (black lines) and involved genes (exons are shown as rectangles and introns as lines connecting exons, with arrowheads indicating the direction of transcription). The dashed black lines indicate the breakpoints within all genes. Bottom, partial chromatograms indicate fusion sequences on der(15) (left) [GenBank: KT336107] and der(21) (right) [GenBank: KT336106]. The splicing event creating the runt-related transcription factor 1 (RUNX1)/UBL7-AS1 fusion transcript is indicated in green. b RUNX1 fusion transcripts: reverse transcription polymerase chain reaction (RT-PCR) products corresponding to SIN3A/RUNX1 [GenBank: KT336104] and RUNX1/UBL7-AS1 [GenBank: KT336105] fusion transcripts (lanes 1 and 3, respectively) in case 1 are shown in the middle of the panel. Lanes 2 and 4: negative normal bone marrow samples. Lane 5: 2-log DNA ladder (New England Biolabs, Milan, Italy). Partial chromatograms (top) and structure (bottom) of SIN3A/RUNX1 and RUNX1/UBL7-AS1 PCR products are on the left and on the right, respectively. c, d RUNX1 chimeric proteins: both panels show in silico translation (ORFfinder and BlastP) of both wild-type and chimeric RUNX1 and SIN3A proteins. Arrows indicate the truncation breakpoints of wild-type proteins. e Evaluation of RUNX1 and SIN3A expression levels in case 1: exon-specific reverse transcription quantitative PCR analysis of RUNX1 (left) and SIN3A (right) was performed in case 1 vs a control pooled sample of patients with acute myeloid leukemia. Asterisks indicate statistically significant results (P < .05)

Back to article page