TY - STD TI - Chereda B, Melo J V. Natural course and biology of CML. Ann. Hematol. Springer Berlin Heidelberg; 2015 [cited 2017 Sep 13];94:107–121. Available from: http://link.springer.com/10.1007/s00277-015-2325-z. UR - http://link.springer.com/10.1007/s00277-015-2325-z ID - ref1 ER - TY - STD TI - Apperley JF. Chronic myeloid leukaemia. Lancet (London, England). 2015 [cited 2017 Sep 13];385:1447–1459. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0140673613621200. UR - http://linkinghub.elsevier.com/retrieve/pii/S0140673613621200 ID - ref2 ER - TY - STD TI - Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. [cited 2017 Mar 15]; Available from: http://www.bloodjournal.org/content/bloodjournal/100/7/2292. UR - http://www.bloodjournal.org/content/bloodjournal/100/7/2292 ID - ref3 ER - TY - STD TI - Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009 [cited 2017 Feb 21];114:937–951. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19357394. UR - http://www.ncbi.nlm.nih.gov/pubmed/19357394 ID - ref4 ER - TY - JOUR AU - Arber, D. A. AU - Orazi, A. AU - Hasserjian, R. AU - Thiele, J. AU - Borowitz, M. J. AU - Le Beau, M. M. PY - 2016 DA - 2016// TI - The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia JO - Blood VL - 127 UR - https://doi.org/10.1182/blood-2016-03-643544 DO - 10.1182/blood-2016-03-643544 ID - Arber2016 ER - TY - JOUR AU - Gotlib, J. AU - Maxson, J. E. AU - George, T. I. AU - Tyner, J. W. PY - 2013 DA - 2013// TI - The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment JO - Blood VL - 122 UR - https://doi.org/10.1182/blood-2013-05-500959 DO - 10.1182/blood-2013-05-500959 ID - Gotlib2013 ER - TY - JOUR AU - Galton, D. A. G. PY - 1992 DA - 1992// TI - Haematological differences between chronic granulocytic Leukaemia, atypical chronic myeloid Leukaemia, and chronic Myelomonocytic Leukaemia JO - Leuk Lymphoma VL - 7 UR - https://doi.org/10.3109/10428199209049789 DO - 10.3109/10428199209049789 ID - Galton1992 ER - TY - STD TI - Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick H, et al. The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French-American-British Cooperative Leukaemia Group. Br. J. Haematol. 1994 [cited 2017 Feb 21];87:746–754. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7986717. UR - http://www.ncbi.nlm.nih.gov/pubmed/7986717 ID - ref8 ER - TY - STD TI - Oscier DG. Atypical chronic myeloid leukaemia, a distinct clinical entity related to the myelodysplastic syndrome? Br. J. Haematol. 1996 [cited 2017 Feb 21];92:582–586. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8616021. UR - http://www.ncbi.nlm.nih.gov/pubmed/8616021 ID - ref9 ER - TY - STD TI - Kurzrock R, Bueso-Ramos CE, Kantarjian H, Freireich E, Tucker SL, Siciliano M, et al. BCR Rearrangement–Negative Chronic Myelogenous Leukemia Revisited. J. Clin. Oncol. 2001 [cited 2017 Feb 28];19:2915–2926. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11387365. UR - http://www.ncbi.nlm.nih.gov/pubmed/11387365 ID - ref10 ER - TY - JOUR AU - Wang, S. A. AU - Hasserjian, R. P. AU - Fox, P. S. AU - Rogers, H. J. AU - Geyer, J. T. AU - Chabot-richards, D. PY - 2015 DA - 2015// TI - Atypical chronic myeloid leukemia is clinically distinct from unclassi fi able myelodysplastic / myeloproliferative neoplasms JO - Blood VL - 123 UR - https://doi.org/10.1182/blood-2014-02-553800 DO - 10.1182/blood-2014-02-553800 ID - Wang2015 ER - TY - JOUR AU - Gotlib, J. PY - 2017 DA - 2017// TI - How I treat atypical chronic myeloid leukemia JO - Blood VL - 129 UR - https://doi.org/10.1182/blood-2016-08-693630 DO - 10.1182/blood-2016-08-693630 ID - Gotlib2017 ER - TY - JOUR AU - Breccia, M. AU - Biondo, F. AU - Latagliata, R. AU - Carmosino, I. AU - Mandelli, F. AU - Identification, A. G. PY - 2006 DA - 2006// TI - Of risk factors in atypical chronic myeloid leukemia JO - Haematologica VL - 91 ID - Breccia2006 ER - TY - JOUR AU - Zoi, K. AU - Cross, N. C. P. PY - 2015 DA - 2015// TI - Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable JO - Int J Hematol VL - 101 UR - https://doi.org/10.1007/s12185-014-1670-3 DO - 10.1007/s12185-014-1670-3 ID - Zoi2015 ER - TY - STD TI - Morotti A, Rocca S, Carrà G, Saglio G, Brancaccio M. Modeling myeloproliferative neoplasms: from mutations to mouse models and back again. Blood rev. Elsevier Ltd; 2016;3:1–12. Available from: https://doi.org/10.1016/j.blre.2016.11.004. ID - ref15 ER - TY - STD TI - Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Cappellini A, Ognibene A, et al. The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. Biochim. Biophys. Acta. 2010 [cited 2017 Sep 18];1803:991–1002. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20399811. UR - http://www.ncbi.nlm.nih.gov/pubmed/20399811 ID - ref16 ER - TY - STD TI - Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J. Leukoc. Biol. 2009 [cited 2017 Sep 18];86:237–250. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19498045. UR - http://www.ncbi.nlm.nih.gov/pubmed/19498045 ID - ref17 ER - TY - STD TI - McLemore ML, Grewal S, Liu F, Archambault A, Poursine-Laurent J, Haug J, et al. STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity. 2001 [cited 2017 Sep 18];14:193–204. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11239451. UR - http://www.ncbi.nlm.nih.gov/pubmed/11239451 ID - ref18 ER - TY - STD TI - Gits J, Leeuwen D van, Carroll HP, Touw IP, Ward AC. Multiple pathways contribute to the hyperproliferative responses from truncated granulocyte colony-stimulating factor receptors. Leukemia. Publ. online 26 Oct. 2006; | doi: https://doi.org/10.1038/sj.leu.2404448. Nature Publishing Group; 2006 [cited 2017 Sep 18];20:2111. Available from: https://www.nature.com/leu/journal/v20/n12/full/2404448a.html. UR - https://www.nature.com/leu/journal/v20/n12/full/2404448a.html ID - ref19 ER - TY - STD TI - Li B, Gale RP, Xiao Z. Molecular genetics of chronic neutrophilic leukemia, chronic myelomonocytic leukemia and atypical chronic myeloid leukemia. J. Hematol. Oncol. BioMed Central; 2014 [cited 2017 Apr 26];7:93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25498990. UR - http://www.ncbi.nlm.nih.gov/pubmed/25498990 ID - ref20 ER - TY - JOUR AU - Mali, R. S. AU - Kapur, R. PY - 2012 DA - 2012// TI - Targeting rho associated kinases in leukemia and myeloproliferative neoplasms JO - Oncotarget VL - 3 ID - Mali2012 ER - TY - STD TI - Harrison DA. The JAK/STAT Pathway. Cold Spring Harb Perspect Biol 2012[cited 2018 Jan 19];4:a011205 Available from: http://cshperspectives.cshlp.org/content/4/3/a011205. UR - http://cshperspectives.cshlp.org/content/4/3/a011205 ID - ref22 ER - TY - STD TI - Jones A V., Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005 [cited 2017 Apr 26];106:2162-2168. Available from: http://www.bloodjournal.org/content/106/6/2162.long?sso-checked=true. UR - http://www.bloodjournal.org/content/106/6/2162.long?sso-checked=true ID - ref23 ER - TY - STD TI - Levine RL, Loriaux M, Huntly BJP, Loh ML, Beran M, Stoffregen E, et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood. 2005 [cited 2017 Apr 26];106:3377-3379. Available from: http://www.bloodjournal.org/content/106/10/3377.long. UR - http://www.bloodjournal.org/content/106/10/3377.long ID - ref24 ER - TY - STD TI - Pardanani A, Tefferi A. Is there a role for JAK inhibitors in BCR-ABL1 -negative myeloproliferative neoplasms other than myelofibrosis? Leuk. Lymphoma. Taylor & Francis; 2014 [cited 2017 Apr 26];55:2706–2711. Available from: http://www.tandfonline.com/doi/full/10.3109/10428194.2014.985159. UR - http://www.tandfonline.com/doi/full/10.3109/10428194.2014.985159 ID - ref25 ER - TY - JOUR AU - Barosi, G. AU - Bergamaschi, G. AU - Marchetti, M. AU - Vannucchi, A. M. AU - Antonioli, E. AU - Massa, M. PY - 2012 DA - 2012// TI - JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis JO - Blood VL - 110 UR - https://doi.org/10.1182/blood-2007-07-099184 DO - 10.1182/blood-2007-07-099184 ID - Barosi2012 ER - TY - JOUR AU - Tefferi, A. AU - Lasho, T. L. AU - Huang, J. AU - Finke, C. AU - Mesa, R. A. AU - Li, C. Y. PY - 2008 DA - 2008// TI - Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival JO - Leukemia VL - 22 UR - https://doi.org/10.1038/sj.leu.2405097 DO - 10.1038/sj.leu.2405097 ID - Tefferi2008 ER - TY - JOUR AU - Quintás-cardama, A. AU - Vaddi, K. AU - Liu, P. AU - Manshouri, T. AU - Li, J. AU - Scherle, P. A. PY - 2014 DA - 2014// TI - INCB018424 : therapeutic implications for the treatment of myeloproliferative neoplasms preclinical characterization of the selective JAK1 / 2 inhibitor INCB018424 : therapeutic implications for the treatment of myeloproliferative neoplasms JO - Blood VL - 115 UR - https://doi.org/10.1182/blood-2009-04-214957 DO - 10.1182/blood-2009-04-214957 ID - Quintás-cardama2014 ER - TY - JOUR AU - Verstovsek, S. AU - Mesa, R. A. AU - Gotlib, J. AU - Levy, R. S. AU - Gupta, V. AU - DiPersio, J. F. PY - 2012 DA - 2012// TI - A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis JO - N. Engl. J. Med VL - 366 UR - https://doi.org/10.1056/NEJMoa1110557 DO - 10.1056/NEJMoa1110557 ID - Verstovsek2012 ER - TY - STD TI - Verstovsek S, Ph D. Safety and Efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 2010;363:1117–1127. ID - ref30 ER - TY - STD TI - Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. Efficacy, safety and survival with ruxolitinib in patients with myelofibrosis: results of a median 2-year follow-up of COMFORT-I. Haematologica. Haematologica; 2013 [cited 2017 Dec 27];98:1865–1871. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24038026. UR - http://www.ncbi.nlm.nih.gov/pubmed/24038026 ID - ref31 ER - TY - JOUR AU - Verstovsek, S. AU - Mesa, R. A. AU - Gotlib, J. AU - Levy, R. S. AU - Gupta, V. AU - Dipersio, J. F. PY - 2015 DA - 2015// TI - Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I JO - Haematologica VL - 100 UR - https://doi.org/10.3324/haematol.2014.115840 DO - 10.3324/haematol.2014.115840 ID - Verstovsek2015 ER - TY - STD TI - Harrison C, Kiladjian J-J, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK Inhibition with Ruxolitinib versus Best Available Therapy for Myelofibrosis. n engl j med. 2012 [cited 2017 Dec 27];3669:787-798. Available from: http://www.nejm.org/doi/pdf/10.1056/NEJMoa1110556. UR - http://www.nejm.org/doi/pdf/10.1056/NEJMoa1110556 ID - ref33 ER - TY - STD TI - Cervantes F, Kiladjian J, Niederwieser D, Sirulnik A, Stalbovskaya V. et al. Long-Term Safety, Efficacy, and Survival Findings From Comfort-II, a Phase 3 Study Comparing Ruxolitinib with Best Available Therapy (BAT) for the Treatment of Myelofibrosis (MF). Blood 2012 120:801; Available from: http://www.bloodjournal.org/content/120/21/801. UR - http://www.bloodjournal.org/content/120/21/801 ID - ref34 ER - TY - STD TI - Cervantes F, Vannucchi AM, Kiladjian J-J, Al-Ali HK, Sirulnik A, Stalbovskaya V, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood. 2013 [cited 2017 Dec 27];122:4047–4053. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24174625. UR - http://www.ncbi.nlm.nih.gov/pubmed/24174625 ID - ref35 ER - TY - JOUR AU - Verstovsek, S. AU - Mesa, R. A. AU - Gotlib, J. AU - Gupta, V. AU - DiPersio, J. F. AU - Catalano, J. V. PY - 2017 DA - 2017// TI - Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial JO - J Hematol Oncol Journal of Hematology & Oncology VL - 10 UR - https://doi.org/10.1186/s13045-016-0379-6 DO - 10.1186/s13045-016-0379-6 ID - Verstovsek2017 ER - TY - STD TI - Harrison CN, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Gisslinger H, Knoops L, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. Nat Publ Group. 2016;30:1701–7. Available from: https://doi.org/10.1038/leu.2016.148. ID - ref37 ER - TY - STD TI - Passamonti F, Griesshammer M, Palandri F, Egyed M, Benevolo G, Devos T, et al. Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet. Oncol. Elsevier; 2017 [cited 2018 Jan 3];18:88–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27916398. UR - http://www.ncbi.nlm.nih.gov/pubmed/27916398 ID - ref38 ER - TY - STD TI - Vannucchi AM. From leeches to personalized medicine: evolving concepts in the management of polycythemia vera. Haematologica. Haematologica; 2017 [cited 2018 Jan 19];102:18–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27884974. UR - http://www.ncbi.nlm.nih.gov/pubmed/27884974 ID - ref39 ER - TY - STD TI - Vannucchi AM, Kiladjian JJ, Griesshammer M, Masszi T, Durrant S, Passamonti F, et al. Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N. Engl. J. Med. Massachusetts Medical Society; 2015 [cited 2018 Jan 3];372:426–435. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1409002. UR - http://www.nejm.org/doi/10.1056/NEJMoa1409002 ID - ref40 ER - TY - STD TI - Deininger M, Radich J, Burn TC, Huber R, Paranagama D, Verstovsek S. The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood. American Society of Hematology; 2015 [cited 2018 Jan 2];126:1551–1554. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26228487. UR - http://www.ncbi.nlm.nih.gov/pubmed/26228487 ID - ref41 ER - TY - STD TI - Harrison CN, Mead AJ, Panchal A, Fox S, Yap C, Gbandi E, et al. Ruxolitinib vs best available therapy for ET intolerant or resistant to hydroxycarbamide. Blood. 2017 [cited 2018 Jan 23];130:1889–1897. Available from: http://www.bloodjournal.org/lookup/doi/10.1182/blood-2017-05-785790. UR - http://www.bloodjournal.org/lookup/doi/10.1182/blood-2017-05-785790 ID - ref42 ER - TY - STD TI - Finazzi G. Ruxolitinib in ET: not all MPN are equal. Blood. American Society of Hematology; 2017 [cited 2018 Jan 23];130:1873–1874. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29074591. UR - http://www.ncbi.nlm.nih.gov/pubmed/29074591 ID - ref43 ER - TY - STD TI - Verstovsek S, Passamonti F, Rambaldi A, Barosi G, Rumi E, Gattoni E, et al. Ruxolitinib for essential thrombocythemia refractory to or intolerant of hydroxyurea: long-term phase 2 study results. Blood. 2017 [cited 2018 Jan 23];130:1768–1771. Available from: http://www.bloodjournal.org/lookup/doi/10.1182/blood-2017-02-765032. UR - http://www.bloodjournal.org/lookup/doi/10.1182/blood-2017-02-765032 ID - ref44 ER - TY - STD TI - Cardoso BA, Belo H, Barata JT, Almeida AM. The Bone Marrow-Mediated Protection of Myeloproliferative Neoplastic Cells to Vorinostat and Ruxolitinib Relies on the Activation of JNK and PI3K Signalling Pathways. PLoS One. 2015 [cited 2018 Jan 2];10:e0143897. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143897. UR - http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143897 ID - ref45 ER - TY - STD TI - Bogani C, Bartalucci N, Martinelli S, Tozzi L, Guglielmelli P, Bosi A, et al. mTOR Inhibitors Alone and in Combination with JAK2 Inhibitors Effectively Inhibit Cells of Myeloproliferative Neoplasms on behalf of the Associazione Italiana per la Ricerca sul Cancro AGIMM Gruppo Italiano Malattie Mieloproliferative. 2013 [cited 2018 Jan 2]; Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054826. UR - http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054826 ID - ref46 ER - TY - STD TI - Bartalucci N, Tozzi L, Bogani C, Martinelli S, Rotunno G, Villeval J-L, et al. Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms. J Cell Mol Med. 2013 [cited 2018 Jan 2];17:1385–1396. Available from: http://doi.wiley.com/10.1111/jcmm.12162. UR - http://doi.wiley.com/10.1111/jcmm.12162 ID - ref47 ER - TY - STD TI - Bartalucci N, Guglielmelli P, Vannucchi AM. Rationale for Targeting the PI3K/Akt/mTOR Pathway in Myeloproliferative Neoplasms. Clin. Lymphoma Myeloma Leuk. 2013 [cited 2018 Jan 2];13:S307–S309. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24290217. UR - http://www.ncbi.nlm.nih.gov/pubmed/24290217 ID - ref48 ER - TY - STD TI - Pandey R, Kapur R. Targeting phosphatidylinositol-3-kinase pathway for the treatment of Philadelphia-negative myeloproliferative neoplasms. Mol. Cancer. 2015 [cited 2017 Sep 18];14:118. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26062813. UR - http://www.ncbi.nlm.nih.gov/pubmed/26062813 ID - ref49 ER - TY - STD TI - Khan I, Huang Z, Wen Q, Stankiewicz M, Gilles L, Goldenson B, et al. AKT is a therapeutic target in myeloproliferative neoplasms. Leukemia. 2013 [cited 2018 Jan 2];27:1882-1890. Available from: https://www.nature.com/articles/leu2013167. UR - https://www.nature.com/articles/leu2013167 ID - ref50 ER - TY - STD TI - Chen E, Mullally A. How does JAK2V617F contribute to the pathogenesis of myeloproliferative neoplasms? Hematology. 2014 [cited 2018 Jan 2];2014:268–276. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25696866. UR - http://www.ncbi.nlm.nih.gov/pubmed/25696866 ID - ref51 ER - TY - STD TI - Yan D, Hutchison RE, Mohi G. Critical requirement for Stat5 in a mouse model of polycythemia vera. Blood. 2012 [cited 2018 Jan 2];119:3539–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22144185. UR - http://www.ncbi.nlm.nih.gov/pubmed/22144185 ID - ref52 ER - TY - STD TI - Berger A, Sexl V, Valent P, Moriggl R. Inhibition of STAT5: A therapeutic option in BCR-ABL1-driven leukemia. Oncotarget. 2014 [cited 2018 Jan 22];5:9564–9576. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25333255. UR - http://www.ncbi.nlm.nih.gov/pubmed/25333255 ID - ref53 ER - TY - STD TI - Bartalucci N, Calabresi L, Balliu M, Martinelli S, Rossi M, et al. Inhibitors of the PI3K/mTOR pathway prevent STAT5 phosphorylation in JAK2V617F mutated cells through PP2A/CIP2A axis. Oncotarget. 2017;8(57). p. 96710–6724. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29228564. UR - https://www.ncbi.nlm.nih.gov/pubmed/29228564 ID - ref54 ER - TY - STD TI - Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. N. Engl. J. Med. Massachusetts Medical Society; 2013 [cited 2018 Jan 2];369:2379–2390. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1311347. UR - http://www.nejm.org/doi/10.1056/NEJMoa1311347 ID - ref55 ER - TY - STD TI - Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2. N. Engl. J. Med. 2013 [cited 2018 Jan 2];369:2391–2405. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24325359. UR - http://www.ncbi.nlm.nih.gov/pubmed/24325359 ID - ref56 ER - TY - STD TI - Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. Portland Press Limited; 2009 [cited 2018 Jan 19];417:651–666. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19133842. UR - http://www.ncbi.nlm.nih.gov/pubmed/19133842 ID - ref57 ER - TY - STD TI - Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. Sawyers C, editor. PLoS Med. 2006 [cited 2017 Sep 13];3:e270. Available from: http://dx.plos.org/10.1371/journal.pmed.0030270 UR - http://dx.plos.org/10.1371/journal.pmed.0030270 ID - ref58 ER - TY - STD TI - Metcalf D. The granulocyte-macrophage colony-stimulating factors. Science. 1985 [cited 2017 Apr 10];229:16–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2990035. UR - http://www.ncbi.nlm.nih.gov/pubmed/2990035 ID - ref59 ER - TY - STD TI - Beekman R, Touw IP. G-CSF and its receptor in myeloid malignancy. Blood. 2010 [cited 2017 Apr 10];115:5131–5136. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20237318. UR - http://www.ncbi.nlm.nih.gov/pubmed/20237318 ID - ref60 ER - TY - STD TI - Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity. 1996 [cited 2017 Apr 10];5:491–501. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8934575. UR - http://www.ncbi.nlm.nih.gov/pubmed/8934575 ID - ref61 ER - TY - STD TI - Maxson JE, Gotlib J, Pollyea D a, Fleischman AG, Agarwal A, Eide C a, et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N. Engl. J. Med. 2013;368:1781–1790. Available from: http://www.nejm.org/doi/full/10.1056/NEJMoa1214514. UR - http://www.nejm.org/doi/full/10.1056/NEJMoa1214514 ID - ref62 ER - TY - STD TI - Hermans MH, Ward AC, Antonissen C, Karis A, Löwenberg B, Touw IP. Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia. Blood. 1998 [cited 2017 Apr 10];92:32–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9639496. UR - http://www.ncbi.nlm.nih.gov/pubmed/9639496 ID - ref63 ER - TY - STD TI - Mitsui T, Watanabe S, Taniguchi Y, Hanada S, Ebihara Y, Sato T, et al. Impaired neutrophil maturation in truncated murine G-CSF receptor-transgenic mice. Blood. 2003 [cited 2017 Apr 10];101:2990–2105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12672695. UR - http://www.ncbi.nlm.nih.gov/pubmed/12672695 ID - ref64 ER - TY - STD TI - Tian S, Lamb P, Seidel H, Stein R, Rosen J. Rapid activation of the STAT3 transcription factor by granulocyte colony-stimulating factor. Blood. 1994 [cited 2017 Apr 26];84:1760-1764. Available from: http://www.bloodjournal.org/content/84/6/1760. UR - http://www.bloodjournal.org/content/84/6/1760 ID - ref65 ER - TY - STD TI - Nicholson SE, Oates AC, Harpur AG, Ziemiecki A, Wilks AF, Layton JE. Tyrosine kinase JAK1 is associated with the granulocyte-colony-stimulating factor receptor and both become tyrosine-phosphorylated after receptor activation. Proc. Natl. Acad. Sci. U. S. A. 1994 [cited 2017 Apr 26];91:2985–2988. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7512720. UR - http://www.ncbi.nlm.nih.gov/pubmed/7512720 ID - ref66 ER - TY - STD TI - Corey SJ, Burkhardt AL, Bolen JB, Geahlen RL, Tkatch LS, Tweardy DJ. Granulocyte colony-stimulating factor receptor signaling involves the formation of a three-component complex with Lyn and Syk protein-tyrosine kinases. Proc. Natl. Acad. Sci. U. S. A. 1994 [cited 2017 Apr 26];91:4683–4687. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8197119. UR - http://www.ncbi.nlm.nih.gov/pubmed/8197119 ID - ref67 ER - TY - STD TI - Corey SJ, Dombrosky-Ferlan PM, Zuo S, Krohn E, Donnenberg AD, Zorich P, et al. Requirement of Src kinase Lyn for induction of DNA synthesis by granulocyte colony-stimulating factor. J. Biol. Chem. 1998 [cited 2017 Apr 26];273:3230–3235. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9452436. UR - http://www.ncbi.nlm.nih.gov/pubmed/9452436 ID - ref68 ER - TY - STD TI - Pardanani a, Lasho TL, Laborde RR, Elliott M, Hanson C a, Knudson R a, et al. CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia. Nature Publishing Group; 2013;27:1870–1873. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23604229. UR - http://www.ncbi.nlm.nih.gov/pubmed/23604229 ID - ref69 ER - TY - JOUR AU - Meggendorfer, M. AU - Haferlach, T. AU - Alpermann, T. AU - Jeromin, S. AU - Haferlach, C. AU - Kern, W. PY - 2014 DA - 2014// TI - Specific molecular mutation patterns delineate chronic neutrophilic leukemia, atypical chronic myeloid leukemia, and chronic myelomonocytic leukemia JO - Haematologica VL - 99 UR - https://doi.org/10.3324/haematol.2014.113159 DO - 10.3324/haematol.2014.113159 ID - Meggendorfer2014 ER - TY - JOUR AU - Fleischman, A. G. AU - Maxson, J. E. AU - Luty, S. B. AU - Agarwal, A. AU - Royer, L. R. AU - Abel, M. L. PY - 2013 DA - 2013// TI - The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition JO - Blood VL - 122 UR - https://doi.org/10.1182/blood-2013-06-509976 DO - 10.1182/blood-2013-06-509976 ID - Fleischman2013 ER - TY - JOUR AU - Bartels, S. AU - Lehmann, U. AU - Büsche, G. AU - Schlue, J. AU - Hussein, K. AU - Debatin, D. PY - 2015 DA - 2015// TI - De novo CSF3R mutation associated with transformation of myeloproliferative neoplasm to atypical CML JO - Ann Hematol VL - 94 UR - https://doi.org/10.1007/s00277-015-2366-3 DO - 10.1007/s00277-015-2366-3 ID - Bartels2015 ER - TY - JOUR AU - Maxson, J. E. AU - Luty, S. B. AU - MacManiman, J. D. AU - Paik, J. C. AU - Gotlib, J. AU - Greenberg, P. PY - 2016 DA - 2016// TI - The colony-stimulating factor 3 receptor T640N mutation is oncogenic, sensitive toJAKInhibition, and mimics T618i JO - Clin Cancer Res VL - 22 UR - https://doi.org/10.1158/1078-0432.CCR-14-3100 DO - 10.1158/1078-0432.CCR-14-3100 ID - Maxson2016 ER - TY - STD TI - Dao K-HT, Solti MB, Maxson JE, Winton EF, Press RD, Druker BJ, et al. Significant clinical response to JAK1/2 inhibition in a patient with CSF3R-T618I-positive atypical chronic myeloid leukemia. Leuk. Res. reports. Elsevier; 2014 [cited 2017 Apr 27];3:67–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25180155. UR - http://www.ncbi.nlm.nih.gov/pubmed/25180155 ID - ref74 ER - TY - STD TI - Freedman JL, Desai A V., Bailey LC, Aplenc R, Burnworth B, Zehentner BK, et al. Atypical Chronic Myeloid Leukemia in Two Pediatric Patients. Pediatr. Blood Cancer. 2016 [cited 2017 Apr 27];63:156–159. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26274939. UR - http://www.ncbi.nlm.nih.gov/pubmed/26274939 ID - ref75 ER - TY - STD TI - Zhang F, Cheong JK. The renewed battle against RAS-mutant cancers. Cell. Mol. Life Sci. Springer International Publishing; 2016;73:1845–1858. ID - ref76 ER - TY - STD TI - Stephen AG, Esposito D, Bagni RG, McCormick F. Dragging ras back in the ring. Cancer Cell. Elsevier Inc.; 2014;25:272–281. Available from: https://doi.org/10.1016/j.ccr.2014.02.017. ID - ref77 ER - TY - STD TI - Bowen DT, Frew ME, Hills R, Gale RE, Wheatley K, Groves MJ, et al. RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood. 2005 [cited 2017 may 10];106:2113–2119. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15951308. UR - http://www.ncbi.nlm.nih.gov/pubmed/15951308 ID - ref78 ER - TY - STD TI - Auewarakul CU, Lauhakirti D, Tocharoentanaphol C. Frequency of RAS gene mutation and its cooperative genetic events in Southeast Asian adult acute myeloid leukemia. Eur. J. Haematol. 2006 [cited 2017 may 10];77:51–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16573741. UR - http://www.ncbi.nlm.nih.gov/pubmed/16573741 ID - ref79 ER - TY - STD TI - Kohlmann A, Grossmann V, Klein H-U, Schindela S, Weiss T, Kazak B, et al. Next-Generation Sequencing Technology Reveals a Characteristic Pattern of Molecular Mutations in 72.8% of Chronic Myelomonocytic Leukemia by Detecting Frequent Alterations in TET2, CBL, RAS, and RUNX1. J. Clin. Oncol. 2010 [cited 2017 may 11];28:3858–3865. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20644105. UR - http://www.ncbi.nlm.nih.gov/pubmed/20644105 ID - ref80 ER - TY - STD TI - Miyauchi J, Asada M, Sasaki M, Tsunematsu Y, Kojima S, Mizutani S. Mutations of the N-ras gene in juvenile chronic myelogenous leukemia. Blood. 1994 [cited 2017 May 10];83:2248-2254. Available from: http://www.bloodjournal.org/content/83/8/2248. UR - http://www.bloodjournal.org/content/83/8/2248 ID - ref81 ER - TY - STD TI - Lito P, Rosen N, Solit DB. Tumor adaptation and resistance to RAF inhibitors. Nat. Med. Nature Publishing Group; 2013 [cited 2018 Jan 10];19:1401–1409. Available from: http://www.nature.com/doifinder/10.1038/nm.3392. UR - http://www.nature.com/doifinder/10.1038/nm.3392 ID - ref82 ER - TY - STD TI - Karoulia Z, Gavathiotis E, Poulikakos PI. New perspectives for targeting RAF kinase in human cancer. Nat. Rev. Cancer. 2017 [cited 2018 Jan 19];17:676–691. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28984291. UR - http://www.ncbi.nlm.nih.gov/pubmed/28984291 ID - ref83 ER - TY - STD TI - Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N, et al. Kinase-Dead BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF. Cell. 2010 [cited 2018 Jan 11];140:209–221. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20141835. UR - http://www.ncbi.nlm.nih.gov/pubmed/20141835 ID - ref84 ER - TY - STD TI - Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. Nature Publishing Group; 2010 [cited 2018 Jan 11];464:431–435. Available from: http://www.nature.com/doifinder/10.1038/nature08833. UR - http://www.nature.com/doifinder/10.1038/nature08833 ID - ref85 ER - TY - STD TI - Holderfield M, Merritt H, Chan J, Wallroth M, Tandeske L, Zhai H, et al. RAF Inhibitors Activate the MAPK Pathway by Relieving Inhibitory Autophosphorylation. Cancer Cell. Cell Press; 2013 [cited 2018 Jan 10];23:594–602. Available from: https://www.sciencedirect.com/science/article/pii/S1535610813001347. UR - https://www.sciencedirect.com/science/article/pii/S1535610813001347 ID - ref86 ER - TY - STD TI - Van Meter MEM, Díaz-Flores E, Archard JA, Passegué E, Irish JM, Kotecha N, et al. K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. Blood. 2007 [cited 2017 May 10];109:3945-3952. Available from: http://www.bloodjournal.org/content/109/9/3945. UR - http://www.bloodjournal.org/content/109/9/3945 ID - ref87 ER - TY - JOUR AU - Lyubynska, N. AU - Gorman, M. F. AU - Lauchle, J. O. AU - Hong, W. X. AU - Akutagawa, J. K. AU - Shannon, K. PY - 2011 DA - 2011// TI - A MEK inhibitor abrogates myeloproliferative disease in Kras mutant mice JO - Sci Transl med VL - 3 UR - https://doi.org/10.1126/scitranslmed.3001069 DO - 10.1126/scitranslmed.3001069 ID - Lyubynska2011 ER - TY - JOUR AU - Burgess, M. R. AU - Hwang, E. AU - Firestone, A. J. AU - Huang, T. AU - Xu, J. AU - Zuber, J. PY - 2014 DA - 2014// TI - Preclinical ef fi cacy of MEK inhibition in Nras -mutant AML JO - Blood VL - 124 UR - https://doi.org/10.1182/blood-2014-05-574582 DO - 10.1182/blood-2014-05-574582 ID - Burgess2014 ER - TY - STD TI - Brown AP, Carlson TCG, Loi C-M, Graziano MJ. Pharmacodynamic and toxicokinetic evaluation of the novel MEK inhibitor, PD0325901, in the rat following oral and intravenous administration. Cancer Chemother. Pharmacol. 2007 [cited 2017 May 12];59:671–679. Available from: http://link.springer.com/10.1007/s00280-006-0323-5. UR - http://link.springer.com/10.1007/s00280-006-0323-5 ID - ref90 ER - TY - STD TI - Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved Survival with MEK Inhibition in BRAF-Mutated Melanoma. N. Engl. J. Med. 2012 [cited 2017 may 12];367:107–114. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22663011. UR - http://www.ncbi.nlm.nih.gov/pubmed/22663011 ID - ref91 ER - TY - JOUR AU - Borthakur, G. AU - Popplewell, L. AU - Boyiadzis, M. AU - Foran, J. AU - Platzbecker, U. AU - Vey, N. PY - 2016 DA - 2016// TI - Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies JO - Cancer VL - 122 UR - https://doi.org/10.1002/cncr.29986 DO - 10.1002/cncr.29986 ID - Borthakur2016 ER - TY - STD TI - Khanna V, Pierce ST, Dao K-HT, Tognon CE, Hunt DE, Junio B, et al. Durable Disease Control with MEK Inhibition in a Patient with NRAS-mutated Atypical Chronic Myeloid Leukemia. Curēus. 2015;7:e414. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26870618. UR - https://www.ncbi.nlm.nih.gov/pubmed/26870618 ID - ref93 ER - TY - STD TI - Britten CD. PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother. Pharmacol. 2013 [cited 2018 Jan 11];71:1395–1409. Available from: http://link.springer.com/10.1007/s00280-013-2121-1. UR - http://link.springer.com/10.1007/s00280-013-2121-1 ID - ref94 ER - TY - STD TI - Akutagawa J, Huang TQ, Epstein I, Chang T, Quirindongo-Crespo M, Cottonham CL, et al. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Leukemia. 2016 [cited 2018 Jan 11];30:1335–1343. Available from: http://www.nature.com/articles/leu201614. UR - http://www.nature.com/articles/leu201614 ID - ref95 ER - TY - STD TI - Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. Nature Publishing Group; 2003 [cited 2017 May 17];4:446–456. Available from: http://www.nature.com/doifinder/10.1038/nrm1128. UR - http://www.nature.com/doifinder/10.1038/nrm1128 ID - ref96 ER - TY - STD TI - Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat. Cell Biol. 2001 [cited 2017 may 17];3:339–345. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11283606. UR - http://www.ncbi.nlm.nih.gov/pubmed/11283606 ID - ref97 ER - TY - STD TI - Sebbagh M, Renvoizé C, Hamelin J, Riché N, Bertoglio J, Bréard J. Caspase-3-mediated cleavage of ROCK I induces MLC phosphorylation and apoptotic membrane blebbing. Nat. Cell Biol. 2001 [cited 2017 may 17];3:346–352. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11283607. UR - http://www.ncbi.nlm.nih.gov/pubmed/11283607 ID - ref98 ER - TY - STD TI - Sebbagh M, Hamelin J, Bertoglio J, Solary E, Bréard J. Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J. Exp. Med. 2005 [cited 2017 may 17];201:465–471. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15699075. UR - http://www.ncbi.nlm.nih.gov/pubmed/15699075 ID - ref99 ER - TY - JOUR AU - Fusella, F. AU - Ferretti, R. AU - Recupero, D. AU - Rocca, S. AU - Di Savino, A. AU - Tornillo, G. PY - 2014 DA - 2014// TI - Morgana acts as a proto-oncogene through inhibition of a ROCK-PTEN pathway JO - J Pathol VL - 234 ID - Fusella2014 ER - TY - STD TI - Mali RS, Ramdas B, Ma P, Shi J, Munugalavadla V, Sims E, et al. Rho kinase regulates the survival and transformation of cells bearing oncogenic forms of KIT, FLT3, and BCR-ABL. Cancer Cell. Elsevier Inc.; 2011;20:357–369. Available from: https://doi.org/10.1016/j.ccr.2011.07.016. ID - ref101 ER - TY - STD TI - Wermke M, Camgoz A, Paszkowski-Rogacz M, Thieme S, von Bonin M, Dahl A, et al. RNAi profiling of primary human AML cells identifies ROCK1 as a therapeutic target and nominates fasudil as an antileukemic drug. Blood. 2015 [cited 2017 May 17];125:3760–3768. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2014-07-590646. UR - http://www.bloodjournal.org/cgi/doi/10.1182/blood-2014-07-590646 ID - ref102 ER - TY - STD TI - Zhang C, Wang H-J, Bao Q-C, Wang L, Guo T-K, Chen W-L, et al. NRF2 promotes breast cancer cell proliferation and metastasis by increasing RhoA/ROCK pathway signal transduction. Oncotarget. 2016 [cited 2017 may 17];7:73593–73606. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27713154. UR - http://www.ncbi.nlm.nih.gov/pubmed/27713154 ID - ref103 ER - TY - STD TI - Li N, Tang A, Huang S, Li Z, Li X, Shen S, et al. MiR-126 suppresses colon cancer cell proliferation and invasion via inhibiting RhoA/ROCK signaling pathway. Mol. Cell. Biochem. 2013 [cited 2017 May 17];380:107–119. Available from: http://link.springer.com/10.1007/s11010-013-1664-0. UR - http://link.springer.com/10.1007/s11010-013-1664-0 ID - ref104 ER - TY - STD TI - Leve F, Peres-Moreira RJ, Binato R, Abdelhay E, Morgado-Díaz JA. LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways. Anant S, editor. PLoS One. 2015 [cited 2017 May 17];10:e0139094. Available from: http://dx.plos.org/10.1371/journal.pone.0139094. UR - http://dx.plos.org/10.1371/journal.pone.0139094 ID - ref105 ER - TY - STD TI - Burthem J, Rees-Unwin K, Mottram R, Adams J, Lucas GS, Spooncer E, et al. The ρ-kinase inhibitors Y-27632 and fasudil act synergistically with imatinib to inhibit the expansion of ex vivo CD34+ CML progenitor cells. Leukemia. 2007 [cited 2017 may 17];21:1708–1714. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17554385. UR - http://www.ncbi.nlm.nih.gov/pubmed/17554385 ID - ref106 ER - TY - STD TI - Mali RS, Kapur S, Kapur R. Role of Rho kinases in abnormal and normal hematopoiesis. Curr. Opin. Hematol. 2014 [cited 2017 may 17];21:271–275. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24867289. UR - http://www.ncbi.nlm.nih.gov/pubmed/24867289 ID - ref107 ER - TY - JOUR AU - Wermke, M. AU - Camgoz, A. AU - Paszkowski-Rogacz, M. AU - Thieme, S. AU - Von Bonin, M. AU - Dahl, A. PY - 2015 DA - 2015// TI - RNAi profiling of primary human AML cells identifies ROCK1 as a therapeutic target and nominates fasudil as an antileukemic drug JO - Blood VL - 125 UR - https://doi.org/10.1182/blood-2014-07-590646 DO - 10.1182/blood-2014-07-590646 ID - Wermke2015 ER - TY - STD TI - Brancaccio M, Menini N, Bongioanni D, Ferretti R, De Acetis M, Silengo L, et al. Chp-1 and melusin, two CHORD containing proteins in vertebrates. FEBS Lett. 2003 [cited 2017 Sep 13];551:47–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12965203. UR - http://www.ncbi.nlm.nih.gov/pubmed/12965203 ID - ref109 ER - TY - STD TI - Ferretti R, Palumbo V, Di Savino A, Velasco S, Sbroggiò M, Sportoletti P, et al. Morgana/chp-1, a ROCK inhibitor involved in centrosome duplication and tumorigenesis. Dev. Cell. Elsevier Ltd; 2010;18:486–495. Available from: https://doi.org/10.1016/j.devcel.2009.12.020 ID - ref110 ER - TY - STD TI - Brancaccio M, Rocca S, Seclì L, Busso E, Fusella F. The double face of Morgana in tumorigenesis. Oncotarget. 2015 [cited 2017 Sep 13];6:42603–42612. Available from: http://www.oncotarget.com/fulltext/6058. UR - http://www.oncotarget.com/fulltext/6058 ID - ref111 ER - TY - STD TI - Di Savino A, Panuzzo C, Rocca S, Familiari U, Piazza R, Crivellaro S, et al. Morgana acts as an oncosuppressor in chronic myeloid leukemia. Blood. 2015 [cited 2017 Feb 21];125:2245–2253. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2014-05-575001. UR - http://www.bloodjournal.org/cgi/doi/10.1182/blood-2014-05-575001 ID - ref112 ER - TY - STD TI - Fusella F, Seclì L, Busso E, Krepelova A, Moiso E, Rocca S, et al. The IKK/NF-κB signaling pathway requires Morgana to drive breast cancer metastasis. Nat. Commun. 2017 [cited 2018 Jan 19];8:1636. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29158506. UR - http://www.ncbi.nlm.nih.gov/pubmed/29158506 ID - ref113 ER - TY - STD TI - Meyer SC, Levine RL. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin. Cancer Res. 2014 [cited 2017 Sep 18];20:2051–2059. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24583800. UR - http://www.ncbi.nlm.nih.gov/pubmed/24583800 ID - ref114 ER - TY - STD TI - Meggendorfer M, Bacher U, Alpermann T, Haferlach C, Kern W, Gambacorti-Passerini C, et al. SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML, monosomy 7, isochromosome i(17)(q10), ASXL1 and CBL mutations. Leukemia. 2013 [cited 2017 Feb 22];27:1852–1860. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23628959. UR - http://www.ncbi.nlm.nih.gov/pubmed/23628959 ID - ref115 ER - TY - JOUR AU - Gambacorti-Passerini, C. B. AU - Donadoni, C. AU - Parmiani, A. AU - Pirola, A. AU - Redaelli, S. AU - Signore, G. PY - 2015 DA - 2015// TI - Recurrent ETNK1 mutations in atypical chronic myeloid leukemia JO - Blood VL - 125 UR - https://doi.org/10.1182/blood-2014-06-579466 DO - 10.1182/blood-2014-06-579466 ID - Gambacorti-Passerini2015 ER - TY - STD TI - Piazza R, Valletta S, Winkelmann N, Redaelli S, Spinelli R, Pirola A, et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat. Genet. Nature Research; 2012 [cited 2017 Feb 22];45:18–24. Available from: http://www.nature.com/doifinder/10.1038/ng.2495. UR - http://www.nature.com/doifinder/10.1038/ng.2495 ID - ref117 ER - TY - STD TI - Spinelli R, Pirola A, Redaelli S, Sharma N, Raman H, Valletta S, et al. Identification of novel point mutations in splicing sites integrating whole-exome and RNA-seq data in myeloproliferative diseases. Mol. Genet. genomic Med. Wiley-Blackwell; 2013 [cited 2017 mar 6];1:246–259. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24498620. UR - http://www.ncbi.nlm.nih.gov/pubmed/24498620 ID - ref118 ER - TY - STD TI - Makishima H, Yoshida K, Nguyen N, Przychodzen B, Sanada M, Okuno Y, et al. Somatic SETBP1 mutations in myeloid malignancies. Nat. Genet. Nature Research; 2013 [cited 2017 Mar 6];45:942–946. Available from: http://www.nature.com/doifinder/10.1038/ng.2696. UR - http://www.nature.com/doifinder/10.1038/ng.2696 ID - ref119 ER - TY - JOUR AU - Fend, F. AU - Horn, T. AU - Koch, I. AU - Vela, T. AU - Orazi, A. PY - 2008 DA - 2008// TI - Atypical chronic myeloid leukemia as defined in the WHO classification is a JAK2 V617F negative neoplasm JO - Leuk Res VL - 32 UR - https://doi.org/10.1016/j.leukres.2008.04.024 DO - 10.1016/j.leukres.2008.04.024 ID - Fend2008 ER - TY - JOUR AU - Steensma, D. P. AU - Dewald, G. W. AU - Lasho, T. L. AU - Powell, H. L. AU - McClure, R. F. AU - Levine, R. L. PY - 2005 DA - 2005// TI - The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both ‘atypical’ myeloproliferative disorders and myelodysplastic syndromes JO - Blood VL - 106 UR - https://doi.org/10.1182/blood-2005-03-1183 DO - 10.1182/blood-2005-03-1183 ID - Steensma2005 ER - TY - STD TI - Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009 [cited 2017 Jun 13];114:144–147. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19420352. UR - http://www.ncbi.nlm.nih.gov/pubmed/19420352 ID - ref122 ER - TY - STD TI - Patnaik MM, Barraco D, Lasho TL, Finke CM, Reichard K, Hoversten KP, et al. Targeted next generation sequencing and identification of risk factors in World Health Organization defined atypical chronic myeloid leukemia. Am. J. Hematol. 2017 [cited 2017 Jun 13];92:542–548. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28314085. UR - http://www.ncbi.nlm.nih.gov/pubmed/28314085 ID - ref123 ER - TY - STD TI - Acuna-Hidalgo R, Deriziotis P, Steehouwer M, Gilissen C, Graham SA, van Dam S, et al. Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies. Barsh GS, editor. PLoS Genet. 2017 [cited 2017 Sep 13];13:e1006683. Available from: http://dx.plos.org/10.1371/journal.pgen.1006683. UR - http://dx.plos.org/10.1371/journal.pgen.1006683 ID - ref124 ER - TY - STD TI - Switzer CH, Cheng RYS, Vitek TM, Christensen DJ, Wink DA, Vitek MP. Targeting SET/I(2)PP2A oncoprotein functions as a multi-pathway strategy for cancer therapy. Oncogene. 2011 [cited 2017 Jun 14];30:2504–2513. Available from: http://www.nature.com/doifinder/10.1038/onc.2010.622. UR - http://www.nature.com/doifinder/10.1038/onc.2010.622 ID - ref125 ER - TY - STD TI - Cristóbal I, Blanco FJ, Garcia-Orti L, Marcotegui N, Vicente C, Rifon J, et al. SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia. Blood. 2010 [cited 2017 May 18];115:615-625. Available from: http://www.bloodjournal.org/content/115/3/615. UR - http://www.bloodjournal.org/content/115/3/615 ID - ref126 ER - TY - STD TI - Cristóbal I, Garcia-Orti L, Cirauqui C, Alonso MM, Calasanz MJ, Odero MD. PP2A impaired activity is a common event in acute myeloid leukemia and its activation by forskolin has a potent anti-leukemic effect. Leukemia. Nature Publishing Group; 2011 [cited 2017 Mar 6];25:606–614. Available from: http://www.nature.com/doifinder/10.1038/leu.2010.294. UR - http://www.nature.com/doifinder/10.1038/leu.2010.294 ID - ref127 ER - TY - STD TI - Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 2003 [cited 2017 Jun 14];34:148–150. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12717436. UR - http://www.ncbi.nlm.nih.gov/pubmed/12717436 ID - ref128 ER - TY - STD TI - Yin T, Shen R, Feng GS, Yang YC. Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases. J. Biol. Chem. American Society for Biochemistry and Molecular Biology; 1997 [cited 2018 Jan 15];272:1032–1037. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8995399. UR - http://www.ncbi.nlm.nih.gov/pubmed/8995399 ID - ref129 ER - TY - STD TI - Chen C-Y, Lin L-I, Tang J-L, Tsay W, Chang H-H, Yeh Y-C, et al. Acquisition of JAK2, PTPN11 and RAS mutations during disease progression in primary myelodysplastic syndrome. Leukemia. Nature Publishing Group; 2006 [cited 2018 Jan 15];20:1155–1158. Available from: http://www.nature.com/articles/2404190. UR - http://www.nature.com/articles/2404190 ID - ref130 ER - TY - STD TI - Lasho TL, Finke CM, Zblewski D, Patnaik M, Ketterling RP, Chen D, et al. Novel recurrent mutations in ethanolamine kinase 1 (ETNK1) gene in systemic mastocytosis with eosinophilia and chronic myelomonocytic leukemia. Blood Cancer J. Nat Publ Group; 2015;5:e275. Available from: http://www.nature.com/doifinder/10.1038/bcj.2014.94. UR - http://www.nature.com/doifinder/10.1038/bcj.2014.94 ID - ref131 ER - TY - STD TI - Kosmider O. Mutations of ETNK1 in aCML and CMML. Blood. 2015 [cited 2017 Jun 27];125:422-423. Available from: http://www.bloodjournal.org/content/125/3/422. UR - http://www.bloodjournal.org/content/125/3/422 ID - ref132 ER - TY - STD TI - Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine Metabolism in Health and Disease. Int Rev Cell Mol Biol. 2016;321:29–88. Available from: https://www.sciencedirect.com/science/article/pii/S1937644815000970. UR - https://www.sciencedirect.com/science/article/pii/S1937644815000970 ID - ref133 ER - TY - JOUR AU - Sood, R. AU - Kamikubo, Y. AU - Liu, P. PY - 2017 DA - 2017// TI - Role of RUNX1 in hematological malignancies JO - Blood VL - 129 UR - https://doi.org/10.1182/blood-2016-10-687830 DO - 10.1182/blood-2016-10-687830 ID - Sood2017 ER - TY - STD TI - Bellissimo DC, Speck NA. RUNX1 Mutations in Inherited and Sporadic Leukemia. Front. cell Dev. Biol. 2017 [cited 2018 Jan 22];5:111. Available from: http://journal.frontiersin.org/article/10.3389/fcell.2017.00111/full. UR - http://journal.frontiersin.org/article/10.3389/fcell.2017.00111/full ID - ref135 ER - TY - STD TI - Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009 [cited 2017 Jun 13];324:930–935. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1170116. UR - http://www.sciencemag.org/cgi/doi/10.1126/science.1170116 ID - ref136 ER - TY - STD TI - He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA. Science (80-. ). 2011 [cited 2017 Jun 13];333:1303–1307. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21817016. UR - http://www.ncbi.nlm.nih.gov/pubmed/21817016 ID - ref137 ER - TY - JOUR AU - Rasmussen, K. D. AU - Helin, K. PY - 2016 DA - 2016// TI - Role of TET enzymes in DNA methylation, development, and cancer JO - Genes Dev VL - 30 UR - https://doi.org/10.1101/gad.276568.115 DO - 10.1101/gad.276568.115 ID - Rasmussen2016 ER - TY - STD TI - Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A, et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 2009 [cited 2017 Jun 13];360:2289–2301. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa0810069. UR - http://www.nejm.org/doi/abs/10.1056/NEJMoa0810069 ID - ref139 ER - TY - STD TI - Jankowska AM, Szpurka H, Tiu R V., Makishima H, Afable M, Huh J, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood. 2009 [cited 2017 Jun 13];113:6403–6410. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2009-02-205690. UR - http://www.bloodjournal.org/cgi/doi/10.1182/blood-2009-02-205690 ID - ref140 ER - TY - STD TI - Kosmider O, Gelsi-Boyer V, Ciudad M, Racoeur C, Jooste V, Vey N, et al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia. Haematologica. 2009 [cited 2017 Jun 13];94:1676–1681. Available from: http://www.haematologica.org/cgi/doi/10.3324/haematol.2009.011205. UR - http://www.haematologica.org/cgi/doi/10.3324/haematol.2009.011205 ID - ref141 ER - TY - STD TI - Kosmider O, Gelsi-Boyer V, Cheok M, Grabar S, Della-Valle V, Picard F, et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood. 2009 [cited 2017 Jun 13];114:3285–3291. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2009-04-215814. UR - http://www.bloodjournal.org/cgi/doi/10.1182/blood-2009-04-215814 ID - ref142 ER - TY - STD TI - Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell. 2010 [cited 2017 Jun 13];18:553–567. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21130701. UR - http://www.ncbi.nlm.nih.gov/pubmed/21130701 ID - ref143 ER - TY - STD TI - Jiang H, Wu Z, Ren LI, Tao D, Tong H. Decitabine for the treatment of atypical chronic myeloid leukemia: A report of two cases. Oncol. Lett. Spandidos Publications; 2016 [cited 2018 Jan 19];11:689–692. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26870268. UR - http://www.ncbi.nlm.nih.gov/pubmed/26870268 ID - ref144 ER - TY - STD TI - Mao L, You L, Yang M, Li Y, Ye X, et a. The First Case of Decitabine Successfully in Treatment of Atypical Chronic Myeloid Leukemia with CEBPA Double Mutation. Chemotherapy. 2013 [cited 2018 Jan 19]; 2:114. ID - ref145 ER - TY - STD TI - Hausmann H, Bhatt VR, Yuan J, Maness LJ, Ganti AK. Activity of single-agent decitabine in atypical chronic myeloid leukemia. J. Oncol. Pharm. Pract. 2016 [cited 2018 Jan 19];22:790–794. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26378157. UR - http://www.ncbi.nlm.nih.gov/pubmed/26378157 ID - ref146 ER - TY - STD TI - Tong X, Li J, Zhou Z, Zheng D, Liu J, Su C. Efficacy and side-effects of decitabine in treatment of atypical chronic myeloid leukemia. Leuk. Lymphoma. 2015 [cited 2018 Jan 19];56:1911–Su 3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25426665. UR - http://www.ncbi.nlm.nih.gov/pubmed/25426665 ID - ref147 ER - TY - STD TI - Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, et al. ASXL1 Mutations Promote Myeloid Transformation through Loss of PRC2-Mediated Gene Repression. Cancer Cell. 2012 [cited 2017 Jun 13];22:180–193. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22897849. UR - http://www.ncbi.nlm.nih.gov/pubmed/22897849 ID - ref148 ER - TY - STD TI - Kunimoto H, Nakajima H. Epigenetic dysregulation of hematopoietic stem cells and preleukemic state. Int. J. Hematol. 2017 [cited 2017 Jun 27];106:34–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28555413. UR - http://www.ncbi.nlm.nih.gov/pubmed/28555413 ID - ref149 ER - TY - STD TI - Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman P V., Mar BG, et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N. Engl. J. Med. Massachusetts Medical Society; 2014 [cited 2018 Jan 15];371:2488–2498. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1408617. UR - http://www.nejm.org/doi/10.1056/NEJMoa1408617 ID - ref150 ER - TY - STD TI - Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 2014 [cited 2018 Jan 22];371:2477–2487. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1409405. UR - http://www.nejm.org/doi/10.1056/NEJMoa1409405 ID - ref151 ER -