Skip to main content
Fig. 3 | Molecular Cancer

Fig. 3

From: Discovery of a novel third-generation EGFR inhibitor and identification of a potential combination strategy to overcome resistance

Fig. 3

ASK120067 exerts in vivo antitumor activity against EGFR-mutant tumor xenograft models, and proof-of-concept clinical studies validate ASK120067 as an EGFR T790M inhibitor. a Antitumor activity of ASK120067 in the NCI-H1975 lung cancer xenograft model following 21 days of daily treatment with ASK120067 at doses of 1, 5, and 10 mg/kg/qd, with osimertinib (10 mg/kg/qd) as a positive control. b The phosphorylation of EGFR and AKT in tumor tissues of the NCI-H1975 xenograft model were evaluated by IHC staining after 21 days of treatment with ASK120067 or vehicle control and are presented by quantitative analysis. c Antitumor efficacy of ASK120067 in a PC-9 lung cancer xenograft model. d Antitumor activity of ASK120067 in the A431 epidermoid carcinoma xenograft model. e Antitumor efficacy of ASK120067 in PDX models harboring the EGFR L858R/T790M mutation. f The expression of phosphorylated EGFR and Ki-67 in PDX xenograft tumor tissues was evaluated by IHC staining and is presented by quantitative analysis. Data are presented as the mean ± SEM, and the significance of differences was determined by Student’s t test (∗p < 0.05, ∗∗p < 0.01). g Computed tomography scans of the chest from a patient before and after treatment with 40 mg ASK120067 in a phase I trial: images from a 74-year-old Chinese female diagnosed with stage IV EGFR-mutant (exon 19del) NSCLC in August 2016. The patient was previously treated with the first-line therapy icotinib for 16 months and achieved a partial response before eventually developing disease progression. See the main text for details

Back to article page