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Abstract

Background: CADM1 encodes an immunoglobulin superfamily (IGSF) cell adhesion molecule. Inactivation of
CADM1, either by promoter hypermethylation or loss of heterozygosity, has been reported in a wide variety of
tumor types, thus it has been postulated as a tumor suppressor gene.

Findings: We show for the first time that Cadm1 homozygous null mice die significantly faster than wildtype
controls due to the spontaneous development of tumors at an earlier age and an increased tumor incidence of
predominantly lymphomas, but also some solid tumors. Tumorigenesis was accelerated after irradiation of Cadm1
mice, with the reduced latency in tumor formation suggesting there are genes that collaborate with loss of Cadm1
in tumorigenesis. To identify these co-operating genetic events, we performed a Sleeping Beauty transposon-
mediated insertional mutagenesis screen in Cadm1 mice, and identified several common insertion sites (CIS) found
specifically on a Cadm1-null background (and not wildtype background).

Conclusion: We confirm that Cadm1 is indeed a bona fide tumor suppressor gene and provide new insights into
genetic partners that co-operate in tumorigenesis when Cadm1-expression is lost.
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Findings
Cell adhesion molecule 1 (CADM1; also known as TSLC1,
IGSF4, Necl-2, RA175, SgIGSF, SynCAM1) is member of
the immunoglobulin superfamily of cell adhesion mole-
cules (IGSF-CAMs) and is composed of an extracellular
domain containing three immunoglobulin-like C2-type
domains, a transmembrane domain and a short cytoplas-
mic tail [1]. The extracellular domain of CADM1 mediates
the formation of homodimers or heterodimers with other
CAM members, including Necl-1, CRTAM and Nectin-3
to regulate cell adhesion. The cytoplasmic domain of
CADM1 interacts with the tumour-suppressor gene DAL-
1 and the group of membrane-associated guanylate kinase
(MAGuK) homologues, as well as being able to modulate
the activation of small Rho GTPases, thus acting as a vital
bridge between extracellular adhesion and intracellular
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signaling cascades. In addition, CADM1 can also modulate
cell cycle progression and apoptosis [2,3].
Less than a decade since the discovery of CADM1, loss

of its expression by promoter hypermethylation or loss of
heterozygosity (LOH) has been reported in a wide variety
of tumor types (Additional file 2: Figure S1) and frequently
correlates with advanced tumor stage (poor prognosis)
and metastasis [3]. Studies in nude mice have demon-
strated that re-expression of CADM1 suppresses in vivo
tumorigenicity of non-small cell lung cancer and nasopha-
ryngeal carcinoma cell lines [1,4,5]. In contrast, studies
using Cadm1 null (Cadm1−/−) mice have demonstrated
important roles for Cadm1 in spermatogenesis/male
fertility [6], behavior and motor performance [7], lens fiber
cell architecture [8], and epidermal adhesion and wound
repair [9]. However, there are no reports on the incidence
of cancer in these mice and thus whether Cadm1 is indeed
a bona fide tumor suppressor gene.
We show here that Cadm1−/− mice died significantly

faster than their wildtype littermates (Cadm1+/+; average
survival of 78 and 95 weeks of age for Cadm1−/− and
Cadm1+/+ mice, respectively) due to the spontaneous
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development of tumors at an earlier age (Log-rank
(Mantel-Cox) test: p = 0.05; Figure 1a). When subjected
to irradiation, Cadm1−/− mice developed significantly
more tumors than their wildtype littermates, and at an
earlier age (62 and 81 weeks for Cadm1−/− and Cadm1+/+

mice, respectively; Log-rank (Mantel-Cox) test: p =0.003;
Figure 1b). The predominant tumor type in both
cohorts was lymphoma and/or leukemia (typically
widely disseminated), although a number of solid tumors
Figure 1 Cadm1 null mice succumb to tumor formation faster than th
wildtype littermates (Cadm1+/+) were put on tumor watch from birth, and
b. Cadm1−/− and Cadm1+/+ mice were whole body irradiated (3.5 Gy) at 6–
development of spontaneous tumor development. c. The decreased surviv
types. d. Representative histological images of hematoxylin-eosin stained tu
splenic lymphoma, (ii) an angiosarcoma in the leg, (iii) a lung adenocarcino
were also observed, including angiosarcoma, adenocar-
cinoma (of the lung, jaw or stomach) and hepatocellular
carcinoma (Figure 1c-d). This is consistent with the
frequent silencing of CADM1 observed in human
cancer types, both of epithelial [2,3] and hematopoietic
origin [10,11].
To assess whether loss of Cadm1 resulted in increased

genomic instability, we used the highly sensitive flow-
cytometric micronucleus assay, which provides a
eir wildtype littermates. a. Cadm1 null mice (Cadm1−/−) and their
monitored for the development of spontaneous tumor development.
8 weeks of age then placed on tumor watch, and monitored for the
al of Cadm1 null mice was due to tumor formation, of a variety of
mors from Cadm1 null mice in the irradiated cohort, including (i) a
ma, and (iv) a hepatocellular carcinoma. All magnifications are x400.
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quantitative measure of in vivo chromosome damage
[12]. Micronuclei can arise from acentric chromosome
fragments or whole chromosomes that have not been
incorporated in the main nuclei at cell division. However,
as shown in Figure 2, Cadm1 null mice did not show
higher levels of micronuclei than wildtype littermates,
suggesting that the absence of Cadm1 does not result in
gross genomic instability. To gain mechanistic insights
into how loss of Cadm1 results in increased tumorigen-
esis, we performed an insertional mutagenesis screen
using the Sleeping Beauty (SB) transposon in Cadm1
mice to identify genes that co-operate with loss of
Cadm1 in tumor formation. Cadm1−/− mice with SB
transposition occurring (i.e., on a T2/Onc+/Tg, Rosa26+/SB11

background; Cadm1−/− SB mice) developed tumors
significantly faster than their wildtype SB littermates
(average lifespan of 28 and 36 weeks for Cadm1−/− and
Cadm1+/+ mice, respectively; Log-rank (Mantel-Cox) test:
p = 0.008; Figure 3a). As previously reported for the
T2/Onc transposon [13], SB mice typically developed
lymphoma and/or leukemia (due to the use of the murine
stem cell virus promoter which is preferentially expressed
in cells of the hematopoietic compartment), although a
small proportion of mice did develop additional tumors,
typically hepatocellular carcinoma (Figure 3b). Immuno-
histochemical analysis of a selection of the SB-induced
lymphomas and/or leukemias (Figure 3c) showed the
predominant disease subtype was a CD3-positive T-cell
lymphoma (51/108, 47%), followed by myeloperoxidase-
Figure 2 Micronucleus assays on Cadm1 mice. Peripheral blood
was collected from Cadm1 null and wildtype mice at 6 to 7 weeks of
age and stained with anti-CD71-FITC antibody and propidium iodide
before being analyzed by flow cytometry. A minimum of 50,000
events were analyzed for each sample (n = 4–5 per genotype) and
the data are represented as percentage of normochromatic
erythrocytes possessing micronuclei.
positive high-grade leukemia (27/108, 25%), poorly
differentiated lymphoma not staining positively for either
T-cell (CD3) or B-cell (CD45R) antigens (19/108, 18%)
and CD45R-positive B-cell lymphoma (11/108, 10%).
Given lymphoma and/or leukemia (hereafter collectively

referred to as ‘lymphoma’) was the most common tumor
type, only these tumors from the SB cohort were used for
analysis of somatically mutated genes (to ensure sufficient
insertion sites to allow statistical power to identify
‘common insertion sites’ (CIS); genomic regions with a
higher density of insertion sites than expected by chance).
Genomic DNA extracted from lymphomatous tissues of
the SB mice (spleen, thymus, liver or lymph node) was
used in a splinkerette PCR reaction to produce barcoded
PCR products that were subsequently pooled and directly
sequenced on the 454 GS-FLX platform [14]. This
generated 876,117 sequence reads, of which 46.93%
unambiguously aligned to the mouse genome. Using a
previously developed computational pipeline to trim, map,
and annotate each sequence read [14], we were able to
identify 47,220 unique (non-redundant) integrations or
insertion sites. We used the Gaussian kernel convolution
(GKC) algorithm to determine statistically significant CIS,
which were then assigned to genes as described previously
[14]. Unique GKC CIS regions/genes were identified from
73 Cadm1+/+ and 117 Cadm1−/− lymphomatous mice as
two independent groups (Figure 4a). The two groups of
CIS calls (using a genome-wide P value of cut off of <0.1)
were compared to generate a list of CIS found only in the
Cadm1−/− mice. Then, increasing the stringency to include
only those CIS with a genome-wide adjusted P-value of
<0.05, gave us a final list of 10 ‘Cadm1-null specific’ CIS
(Figure 4b).
The most statistically significant CIS was in the Nr3c1

gene, which encodes the glucocorticoid receptor (GR), and
the insertions would be predicted to have a loss-of-
function effect on Nr3c1, consistent with the finding of
promoter hypermethylation or mono-allelic deletion of
NR3C1 in several cancer types including colo-rectal
cancer (CRC) [15] and leukemia [16], respectively.
Glucocorticoids (GCs), which bind the GR and allow it to
translocate to the nucleus and modulate gene expression,
are effective inhibitors of proliferation and tumorigenesis
and routinely used in treating T-cell acute lymphoblastic
leukemia (T-ALL) [16]. Interestingly, three of the other
nine CIS genes identified are known interactors/regulators
of the GR. St13 encodes the Hsp70-interacting protein that
is involved in the assembly process of the GR, and ST13
mRNA and protein levels are down-regulated in CRC [17].
The Ets1 proto-oncogene is a transcription factor that can
act as a “molecular switch” for auto-regulation of the GR
promoter, and high ETS1 expression predicts poor
prognosis in patients with ovarian cancer [18]. The Csf3r
encodes the cell-surface granulocyte colony-stimulating



Figure 3 Insertional mutagenesis using Sleeping Beauty transposons in Cadm1 mice. Cadm1 mice were bred onto a genetic background
that allowed for Sleeping Beauty (SB) transposon-mediated insertional mutagenesis to occur in the soma, and placed on tumor watch. a. Cadm1
SB null mice died significantly faster than their wildtype SB littermates. b. This decreased survival of Cadm1 SB null mice was due to tumor
formation, of a variety of types. c. Representative immunohistochemical images of (i) a lymphoma staining positive for CD3, (ii) a lymphoma
staining positive for CD45R, (iii) and a leukemia staining positive for MPO. All magnifications are x400.
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factor (G-CSF) receptor, and activated GR can synergize
with G-CSF signals [19].
Cell junctions including tight junctions, adherens junc-

tions and desmosomes, consist of multi-protein complexes
that provide contact between neighboring cells or between
a cell and the extracellular matrix and as such play impor-
tant roles in regulation of cell proliferation and differenti-
ation, as well as cancer [20]. Like CADM1, two of our CIS
genes are part of these multi-protein complexes. Fchsd2
encodes the FCH and double SH3 domains protein 2
(FCHSD2), which binds to epithelial junction MAGuKs,
specifically MAGI-1 and CASK [21]; CADM1 has been
shown to interact with several MAGuK members, includ-
ing CASK [22]. Jup encodes junction plakoglobin (JUP),
which complexes with numerous other desmosomal pro-
teins (including cadherins, desmogleins and desmocollins)
[23]), and was recently shown to be expressed on the
surface of colorectal cancer cells associated with high
metastatic potential [24].
Finally, it is interesting to note that in addition to

‘Cadm1 null-specific’ CIS, we also identified CIS that were
only found in tumors from wildtype mice (i.e., not found
in Cadm1 null tumors). These CIS represent loci that are
mutated in the process of tumorigenesis in the presence
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Figure 4 Common insertion sites (CIS) found in the leukemia/lymphoma cases from Cadm1 mice. Gaussian kernel convolution (GKC) CIS
were called as detailed in the Materials and Methods (Additional file 1). a. Venn diagram showing the CIS found in the leukemia/lymphoma cases
from Cadm1+/+ (blue circle) and Cadm1−/− (red circle) mice. CIS shown in black are those with a genome-wide adjusted P-value of <0.05, and CIS
shown in grey are those also present in the opposite genotype but at a genome-wide adjusted P-value of >0.05. CIS that are not located
within ± 150 K base pairs of a gene are given the label ‘CIS’ followed by the chromosome and the peak location of the Gaussian kernel. b. Details
of the CIS (with a genome-wide adjusted P-value of <0.05) found only in tumors from Cadm1−/− mice, thus representing Cadm1 null-specific CIS.
‘Tumors in CIS’ is the number of individual tumor samples (mice) that contained insertions in the gene/CIS region.
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of an intact Cadm1 signaling pathway, and whose
contribution to tumorigenesis is potentially rendered
obsolete in the absence of Cadm1. Some of these genes,
such as Pik3r5 and Malt1, have also been identified as CIS
in leukemia/lymphomas from wildtype mice in other
Sleeping Beauty transposon screens we have performed
(unpublished data). Several CIS genes including Pten,
Notch1 and Erg are mutated in both wildtype and Cadm1
null tumors suggesting that mutation of these genes
can contribute to tumorigenesis regardless of Cadm1
status [25].
Thus we have shown that CADM1 is a bona fide tumor

suppressor gene, and loss of Cadm1 results in an increased
tumor incidence. Our insertional mutagenesis screen
provides new insights into Cadm1-mediated tumor
suppression by identifying genes that co-operate with loss
of Cadm1 in lymphomagenesis, in particular those
regulating glucocorticoid signaling and cell junctions.
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Additional files

Additional file 1: Supplementary information. Materials and Methods.
Reference list [26].

Additional file 2: Figure S1. Analysis of CADM1 expression across
different tumor types. A. Box plots showing tumor types with
significantly lower CADM1 expression in cancer versus normal tissues in at
least three independent microarray datasets. B, C. Ranked CADM1
expression in a dataset of lung adenocarcinomas and Kaplan-Meier
survival curves comparing disease-free survival between cases with the
lowest (<25th percentile) vs. highest (>25th percentile) CADM1
expression (P = 2.7x10-8, log-rank test). D. Details of the microarray
datasets used [27–31].
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