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Abstract

Background: Insights into the mechanisms associated with chemotherapy-resistance are important for
implementation of therapeutic strategies and for unraveling the mode of action of chemotherapeutics. Although
cidofovir (CDV) has proven efficacious in the treatment of human papillomavirus (HPV)-induced proliferation, no
studies concerning the development of resistance to CDV in HPV-positive tumor cells have been performed yet.

Methods: From the cervical carcinoma SiHa cells (SiHapgeni), Which are HPV-16 positive, cidofovir-resistant cells

pathogenicity in a mouse-xenograft model.

(SiHacpy) were selected, and differential gene expression profiles were analyzed by means of microarrays. We
examined in vitro phenotyping of resistant cells compared to parental cells as well as tumorigenicity and

Results: SiHap, had a resistant phenotype and a reduced growth both in vitro and in vivo. A markedly diminished
inflammatory response (as measured by production of host- and tumor-derived cytokines and number of
neutrophils and macrophages in spleen) was induced by SiHacpy than by SiHa,genia in the xenograft model.

Gene expression profiling identified several genes with differential expression upon acquisition of CDV-resistance
and pointed to a diminished induction of inflammatory response in SiHacpy, compared to SiHaparentar.

Conclusions: Our results indicate that acquisition of resistance to cidofovir in SiHa cells is linked to reduced
pathogenicity. The present study contributes to our understanding on the antiproliferative effects of CDV and on
the mechanisms involved, the inflammatory response playing a central role.
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Background

Three acyclic nucleoside phosphonate analogues (ANPs),
i.e. tenofovir (PMPA), adefovir (PMEA) and cidofovir
(CDV), are approved for the treatment of viral infections
[1,2]. Tenofovir and adefovir are active against retrovi-
ruses and hepadnaviruses, their oral prodrug forms
being approved for therapy of HIV (PMPA) and of
chronic hepatitis B virus infections (PMPA and PMEA).
Although CDV is formally licensed for treatment of
cytomegalovirus retinitis in AIDS patients, it is often
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used off-label for the management of diseases caused by
several DNA viruses, including adeno-, pox-, papilloma-,
polyoma-, and herpesviruses others than cytomegalo-
virus [3-6].

Besides their well-recognized antiviral properties, some
ANPs have shown anticancer potency. For instance,
PMEA, PMEDAP, PMEG, and prodrugs of PMEG [i.e.
cPr-PMDEDAP, GS-9219 and GS-9191] showed marked
cytotoxic properties in vitro [7-9]. Additionally, in vivo
antitumor activities for these compounds have been
described in different animal models: GS-9219 in a pet
dog model of non-Hodgkin's lymphoma [10] and cPr-
PMEDAP in a rat choriocarcinoma tumor model [11]. A
close correlation between the cytostatic activities of
PME derivatives and the inhibitory effects of their active
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metabolites (diphosphate forms) on cellular DNA poly-
merases o, 8, and € has been established. In these stud-
ies, PMEG-diphosphate (PMEGpp) emerged as the most
potent chain-terminating inhibitor of cellular DNA poly-
merases [12,13]. The utility of PMEG as an anticancer
agent is limited by poor cellular permeability and tox-
icity [13,14] and prodrugs, such as GS-9191 and GS-
9219, were designed to increase the permeability and
accumulation of PMEGpp in the cells [10,13].

Cidofovir represents also an ANP with marked anti-
proliferative effects but unlike PMEG, the effects of
CDV-diphosphate (CDVpp) on cellular DNA polymeri-
zation are weak [inhibition constant (Ki) of CDVpp for
cellular DNA polymerase-a of 51 uM versus 0.55 uM for
PMEGpp]. In addition, CDVpp is not an obligate chain
terminator [12,13] and, in contrast to PMEG, CDV has
been used to manage human papillomavirus (HPV)-in-
duced benign and malignant hyperproliferation with
minimal if any side-effects, as described in several case
reports and some phase II/IIT clinical trials [15-20]. Re-
cently, a phase II clinical trial was conducted in Belgium
to evaluate the safety and efficacy of CDV in the treat-
ment of high grade cervical lesions (NCT01303328). Full
data analysis of this Phase II clinical trial will be pro-
vided during the next months.

Cidofovir antitumor properties were also demonstrated
in different animal models of tumors related to trans-
forming viruses, including Epstein-Barr virus-associated
nasopharyngeal carcinoma [21] and HPV-induced cer-
vical carcinoma [22-24] xenografts in athymic-nude
mice, polyomavirus-induced hemangiomas in rats [25]
and hemangiosarcoma development in mice [26]. Also,
CDV proved effective against cottontail rabbit papillo-
mavirus in the domestic rabbit model [27].

We have recently shown that besides inhibition of
tumor growth, intratumoral CDV administration had a
beneficial effect on the pathology associated with the
growth of cervical carcinoma cells in athymic nude mice
as demonstrated by a favorable effect on body weight gain,
reduced splenomegaly and lower inflammatory state in an-
imals that received the compound versus the placebo-
treated group [24]. Furthermore, a whole genome gene
expression profiling performed on CDV-treated malignant
cells and normal keratinocytes allowed us to identify
unique signatures in tumor cells compared to normal ker-
atinocytes pointing to a selective drug effect [28]. Among
the functions that were distinctly regulated by CDV in ma-
lignant and normal cells, the acute phase response was
found exclusively activated in transformed cells but not in
normal keratinocytes. In addition, cell cycle regulation and
DNA repair by homologous recombination was only acti-
vated in normal cells [28].

There are several mechanisms by which cancer cells
develop drug-resistance and this is often a multi-
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factorial process. Understanding the mechanisms leading
to development of drug-resistance is crucial for the
implementation of therapeutic strategies, for providing
insights into the effects of anticancer drugs on specific
cellular functions, and also for predicting how acquisi-
tion of drug-resistance impacts tumorigenicity and pa-
thogenicity. Therefore, we established, from the cervical
carcinoma cell line SiHa (HPV16"), a CDV-resistant cell
subline (denoted SiHacpy) by stepwise dose escalation
of CDV. We investigated the in vitro and in vivo
phenotyping and growth rate of SiHacpy compared to
parental cells (SiHa,; e/ra1). Also, we evaluated the differ-
ential gene expression profiles between SiHa,ensa and
SiHacpy by microarray analysis in order to identify
genes changing expression upon selection of cells for
CDV-resistance. In the present study, we focused on the
analysis of functions and pathways involved in the in-
flammatory response that changed in SiHa cells follow-
ing acquisition of CDV-resistance. Importantly, we also
examined whether SiHa cells that acquired resistance to
CDV were impaired in pathogenicity in the xenograft
model.

Results

In vitro phenotyping of SiHacpy

SiHa cells (SiHayuenzq1) Were selected for CDV-resistance

(SiHacpy) following continuous in vitro exposure to

the drug for approximately 45 passages. The resulting

SiHacpy presented a reduced growth rate compared to

SiHay,4rentq; (doubling time of 40 h versus 26 h) (Figure 1).
A stable CDV-resistant phenotype in the absence

of selective drug pressure was found for the SiHacpy-

When evaluated in terms of cell growth inhibition
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Figure 1 Growth rate of SiHacpy compared to SiHapaentarr Cells
were seeded at a density of 2.5 x 10° cells per well in a volume of
0.1 ml into 96-well microtiter plates and allowed to proliferate. At
several time-points, cells were trypsinized and the number of cells
was determined with a Coulter Counter. Doubling time (DT) was
calculated with the formula: DT = (t - tp)/(Ilog2N - log2N,), where

t and ty are the times at which the cells were counted, and N and
No are the cell numbers at times t and to.
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(Table 1), a fold-resistance of >100 against CDV was
determined after 7 days of incubation with the drug.
SiHacpy displayed <10-fold cross-resistance to the
cytosine analogue Ara-C and to two unrelated ANPs
(i.e. PMEG and cPr-PMEDAP). It should be noted that
the antiproliferative effects of CDV (but not of PMEG
or cPr-PMEDAP) for SiHa,ueniar Were time-dependent,
pointing to a different mechanism of antiproliferative
effects for these drugs, in agreement with our previous
report [29].

An inhibition of 93% (SiHa,uentar) and 11% (SiHacpy)
in the number of cells was afforded by CDV treatment
at 158.7 uM for 7 days. To compare CDV effects on in-
duction of apoptosis in these cell cultures, annexin V
and PI staining was performed. Annexin V stains phos-
phatidylserine, a negatively charged phospholipid that is
translocated from the inner leaflet of the plasma mem-
brane to the outer leaflet during early apoptosis. Since
PI does not enter into cells with intact membranes, it
was used to identify necrotic cells. SiHa, e treated
with CDV (at 158.7 uM and 63.5 uM) for 7 days showed
increased percentage of apoptotic cells and diminished
amounts of viable cells (Table 2). In contrast, SiHacpy
were totally refractory to CDV-induced apoptosis while
they were still able to respond to PMEG, albeit to a
lower extent compared to SiHa,uen0. No signs of cell-
death by necrosis were seen in any of the two cell lines
following treatment with either CDV or PMEG.

Differentially expressed genes upon acquisition of CDV-
resistance

Gene expression profiling by microarray was performed
to identify potential mechanisms associated with CDV-
resistance. A total of 1,340 expression changes were
identified in SiHacpy compared with SiHa,urentarr 777
genes being upregulated and 563 downregulated. To val-
idate the microarray results, transcript levels of four
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genes (randomly selected before bioinformatics analysis)
were evaluated by qPCR, the expression patterns totally
matching the microarray data (Additional file 1).

Functional classification of differentially expressed
genes showed that they were implicated in a variety of
diverse and widely distributed functional categories and
biochemical pathways: 12 functional categories and 106
canonical pathways were associated with acquisition of
CDV-resistance in SiHa cells (data not shown).

In the present study, we focused on the inflammatory
response (one of the 12 functional categories associated
with acquisition of CDV-resistance), based on our previ-
ous findings showing that CDV treatment of three ma-
lignant cells (including SiHa,enze) and primary human
keratinocytes allowed the identification of ‘acute phase
response signaling’ as a pathway exclusively modulated
by CDV in transformed cells but not in normal cells
[28]. When analyzing the immune response functional
category in SiHacpy versus SiHa,uenia, CDV-resistance
was linked to a decrease (negative z-score) in four func-
tional annotations: ‘inflammatory response’, ‘activation of
granulocytes’, ‘inflammation of organ’, and ‘activation of
neutrophils’ (Additional file 2).

Twenty-one out of 106 canonical pathways affected
by the changes in gene expression when comparing
SiHacpy and SiHa,genq Were related to immune re-
sponse (Additional file 3). Several interleukin signaling
pathways (such as ‘IL-1 signaling’, IL-6 signaling’, ‘IL-8
signaling’, ‘IL-9 signaling’, IL-10 signaling’) as well as
‘interferon signaling’, the endogenous danger signaling
pathway ‘HMGBI signaling’, the prototypical proin-
flammatory signaling pathway ‘NF-kB signaling’, the
‘acute phase response signaling’, ‘Toll-like receptor
signaling’, and ‘MSP-RON signaling pathway’, were
among the several inflammatory response-related path-
ways altered following acquisition of CDV-resistance in
SiHa cells.

Table 1 Growth inhibition of SiHa s entar and SiHacpy after incubation with CDV, PMEG, cPr-PMEDAP or Ara-C

Compound Cell line CCsp (uM) Fold-resistance
Day 3 Day 5 Day 7 at day 7
cbv SiHaparental 77.1+225.1 152+ 136 63+6.0 >100
SiHacpy >634.7 >634.7 >634.7
PMEG SiHaparentar 085+ 1.14 016+0.16 0.10 +0.07 23
SiHacpy 1.79+234 039+033 023+£0016
cPr-PMEDAP SiHaarental 1.22+067 021+0.15 021+0.06 29
SiHacpy 344 +£0.52 122 £0.34 0.61£0.09
Ara-C SiHaparental 0.08+0.04 0.06+£0.02 0.13+£0.02 838
SiHacpy 115+037 0.99+0.37 1.15+049

Cells were seeded at a density of 2.5 x 10 cells per well in a volume of 0.1 ml into 96-well microtiter plates and allowed to proliferate for 24 h. At this time, media
containing different drug concentrations (tested in duplicate) were added (100 pl/well). After 3, 5, and 7 days of incubation, the cells were trypsinized and the
number of cells was determined with a Coulter Counter. Antiproliferative effects were expressed as CCso (50% cytostatic concentration), or concentration required
to reduce cell growth by 50% (relative to the number of cells in the untreated control cell cultures). Data are mean + standard deviation of at least two independent
experiments. Fold-resistance was calculated as the ratio CCs, for SiHacpy to CCs for SiHaparentar
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Table 2 Apoptosis detection by annexin V binding/Pl uptake assay in SiHa, s entas and SiHacpy

SiHaparentar SiHacpy

Untreated CDV 158.7 uM CDV 63.5 yM PMEG 6.5 hM  Untreated CDV 158.7 uM CDV 63.5 uM  PMEG 6.5 pM
Early apoptotic  1.2+09 221106 84+16 642+1.2 45+20 23£0. 24£02 306+43
Late apoptotic  06+0.2 50£56 27+£25 6.0£42 09+£04 06+0.1 06+0.1 39+0.7
Viable 972422 722+66 880+39 294+30 945+22 96.3+05 96.5+03 649+12
Necrotic 04+£03 07+03 09+02 04+0.1 02+0.1 08+06 05+02 07+03

Cells were seeded in 6-well microtiter plates at a density of 5 x 10* cells/well and allowed to proliferate for 24 h. Culture medium was removed and medium con-
taining the compounds was added. At 7 days post-treatment, cells were harvested with EDTA/PBS (760 mg/L). After rinsing the cells with PBS, the cell pellets were
simultaneously stained with annexin-FITC and Pl using the annexin-V-FITC staining kit (BD Biosciences, San Jose CA) and analyzed by flow cytometry. Dual fluores-
cence dot plots were obtained following combined annexin V-FITC and PI staining. Data represent the percentages in each quadrant of the dot plots and are the
mean = SD of at least two stainings. Viable (annexin V/PI") early apoptotic (annexin V*/PI"), necrotic (annexin V/PI*), and late apoptotic (annexin V*/PI*) cells.

Using stringent criteria for microarray analysis (> 2-
fold change in expression and p-value < 0.05), 173 genes
related to the ‘inflammatory response’ function were
identified as differentially expressed when comparing
SiHacpy and SiHa, enian 86 being upregulated and 87
downregulated (Additional file 4). In order to visualize
the interactions of differentially expressed genes involved
in the inflammatory response, a network was con-
structed based on the differentially expressed genes in-
volved in the inflammatory response function (Figure 2).
Gene networks represent intermolecular connections
among interacting genes based on functional knowledge
inputs stored in the IPKB (ingenuity Pathways Know-
ledge Base). The different pathways and functions in
the inflammatory response associated with CDV-
resistance are indicated in this network. Among several
genes changing expression upon acquisition of CDV-
resistance, decreased gene expression of TGFBI (trans-
forming growth factor beta-1), STAT3 [signal transducer
and activator of transcription 3 (acute-phase response
factor)], SOCS3 (suppressor of cytokine signaling 3),
FOS (proto-oncogene c-Fos or activator protein 1), TLR3
and TLR4 (toll-like receptor 3 and 4) and increased
gene expression of CCNDI (cyclin D), CXCL2 [chemo-
kine (C-X-C motif) ligand 1], CEBPB (interleukin 6-
dependent DNA-binding protein) and STATI (signal
transducer and activator of transcription-1) appeared to
play a central role in the changes in the inflammatory
response that accompanied the development of CDV-
resistance (Figure 2). These genes were implicated in
several pathways and functions changed in SiHacpy versus
SiHaparental'

In vivo phenotyping, tumorigenicity and pathogenicity of
SiHacpy

In a following step, we examined whether SiHacpy
presented a resistant phenotype in vivo. Four weeks
intratumoral treatment with CDV of athymic nude mice
bearing the SiHacpy xenografts resulted in a moderate
but not significant effect on tumor growth (Additional
file 5). In contrast, the same treatment given to mice

harboring the SiHa,,, e,0s Xenograft caused a remarkable
and significant suppression of tumor growth, in agree-
ment with our previous report [24]. Interestingly, tumor
size was significantly lower in the SiHacpy cohort than
in the SiHa,4e0; group.

Therefore, we investigated the kinetics of growth and
the pathogenicity of SiHacpy in the xenograft model
in athymic nude mice. The growth rate of SiHacpy tu-
mors was significantly reduced compared to SiHa,enzar
(Figure 3A). SiHa,4 e tumor size (351.6 +259.8 mm®)
at week 3 was equivalent to that of SiHacpy (342.0 +
182.3 mm?) at week 5 (Figure 3A). In contrast to ani-
mals inoculated with SiHa,,ensq the cohort bearing
SiHacpy tumors did not develop signs of wasting syn-
drome. Body weight gain determined after subtraction of
the tumor weight showed that the SiHa,,senta group
gained significant less weight than tumor-free control
animals (Figure 3B). Despite no statistically significant
differences, mice with SiHacpy xenografts presented an
intermediate body weight gain.

Blood test analysis at week 5 showed similar results in
the SiHacpy tumor and tumor-free groups, except for a
significant increase in the platelet count in mice bearing
SiHacpy tumors (Table 3). By contrast, the SiHa,u enrar
group showed significant changes in several blood pa-
rameters compared to either tumor-free or SiHacpy
tumor mice. Hence, animals harboring SiHa,uenar tu-
mors showed markedly higher white blood cell (WBC)
count and lower RBC (red blood cell) count than tumor-
free animals, most likely as a consequence of the growth
of the xenograft and the subsequent induced inflamma-
tion. The increase in the platelet number observed in
the SiHa,uena group (but not in the SiHacpy cohort)
was accompanied by an increase in the mean platelet
volume. The growth of SiHa, ;s in mice also caused a
marked decrease in hemoglobin concentration and in
the mean corpuscular hemoglobin concentration, point-
ing to anemia. Also, the liver enzymes aspartate amino-
transferase and gamma-glutamyl transferase as well as
lactate dehydrogenase were increased in the blood of the
SiHa,4entar cohort. Elevation of creatine kinase (which is
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Figure 2 Network of inflammatory response and corresponding transcripts. Networks were constructed with IPA software using genes DE
involved in ‘inflammatory response’. A network is a graphical representation of the molecular relationships between molecules (nodes). The
biological relationship between two nodes is represented as an edge (line) connecting two nodes. All edges are supported by information from
the literature stored in the Ingenuity Pathways Knowledge Base. A solid line represents a direct interaction between two gene products and a
dotted line means there is an indirect interaction. The intensity of the node color indicates the degree of up-regulation (red) or down-regulation
(green) when comparing SiHacpy versus SiHapareniar Cells. Canonical pathways identified by IPA in the networks are shown in blue while the
functional annotations are shown in yellow.

an indication of damage to muscle) and of creatinine
(a sign of impaired kidney function) was also seen in the
SiHa,urentar group. Taken together, these data clearly sig-
nified a pronounced alteration of hematological and
chemical blood parameters in the SiHa,,e/0; group and
a lesser pathogenic effect of SiHacpy versus SiHa,u entar
in the xenograft model.

The SiHa,uena; cohort showed a time-dependent
splenomegaly that started at week 3, while the group in-
oculated with SiHacpy had no signs of splenomegaly at
any time point (Figure 3C). Splenomegaly caused by
SiHa, s entar tumors was associated with severe changes
in the relative size of the red and white pulp and with
infiltration of polymorphonuclear leukocytes in the
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Figure 3 Growth of SiHacpy compared to SiHa,g/entar in a
xenograft model in athymic nude mice. (A) Tumor growth was
determined in nu/nu mice bearing SiHacpy or SiHagrentar grown as
xenograft at different time points post-inoculation of the cells. Data
were collected from two independent experiments (including a total
of 15 mice/group) over a period of 5 weeks and are presented as
the average tumor volume (mm?) + SEM. Tumors were measured by
means of a digital caliper in two directions (perpendicular diameters)
and the formula V = (4mab?)/3, with ‘@’ and ‘b’ being the largest and
smallest radius of the tumor, respectively, was applied to calculate
the tumor volume. (B) Body weight of the mice (excluding the
tumor mass) was determined after 5 weeks of inoculation of the
cells and body weight gain was calculated as percentage of the
initial body weight of the mice at the start of the experiment. Data
shown represent the average (+SD) of five individual mice per
group. Healthy control mice gained 47.0 + 4.4% of their initial body
weight, while mice bearing the SiHapgrena cells only gained 332 +
7.1% (p < 0.01 compared to tumor-free mice). An intermediate body
weight gain of 382 +9.8 (p > 0.05) compared to healthy control
mice was recorded for mice with SiHacp,. (C) Weight of the spleens
was assessed at different weeks post-inoculation of the cells.

extended red pulp (Figure 4). In the SiHacpy cohort, no
considerable alterations in the morphology of the spleen
were noted.

When the different immune cell types in the spleens
were quantified, striking differences were noted between
animals inoculated with the two SiHa cell lines. Hence,
the SiHa,;ye0; group had a very pronounced and time-
dependent increase in the number of neutrophils per
spleen compared to healthy control mice (Figure 5). This
increase could be attributed not only to splenomegaly
but also to a higher percentage of neutrophils within the
splenocytes in SiHa, e, mice compared to healthy an-
imals (data not shown). Splenomegaly in mice inoculated
with SiHa,senra Was also associated with increased
numbers of macrophages, NK-cells and B-cells per
spleen compared to healthy animals.

When comparing the SiHacpy group with healthy
animals, a slight increase (although significant) in the
amounts of macrophages and neutrophils was measured,
respectively, from weeks 3 and 4 onwards, while the
numbers of NK-cells and B-cells did not differ between
the two cohorts throughout the entire experiment
(Figure 5).

The SiHacpy cohort had a much lower amount of neu-
trophils per spleen compared to the SiHa,, enta group
which became evident from 2 weeks onwards. The num-
ber of macrophages, NK cells and B cells were lower in
animals harboring SiHacpy xenografts, starting from
week 3 onwards, compared to the SiHa, 10 cohort.

The groups with SiHa,;entq; and SiHacpy tumors also
differed in their ability to modulate tumor-derived
cytokines and host-derived cytokines in the sera of
mice (Figure 6). Most of the human-derived cytokines
measured in the sera of tumor-bearing mice were
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Table 3 Complete blood count of tumor-bearing mice
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Blood test Average + SD p-value (t-test)

Tumor- SiHa,arentar SiHacpy Tumor-free vs Tumor-free vs SiHa,arentar VS

free tumor tumor SiHaparentar SiHacpy SiHacpv
Hematology
Hemoglobin [g/dl] 139+03 10617 129+£12 * ns. ns.
Hematocrit 046+001 037+0.06 043 +0.03 ns. ns. ns.
RBC count [1 sz/l] 891+032 7.08+1.17 838+ 091 * ns. ns.
MCV [fl] 51215  529+05 517+£19 ns. ns. ns.
MCH [pg] 156+£05 <15 159402 - ns. -
MCHC [g/dl] 306£0.7 282+05 298+0.7 ** n.s. *
RDW [%)] 174+£08 184+08 182+1.0 ns. ns. ns.
Reticulocyte count 31+08 2616 33+05 n.s. n.s. n.s.
(%]
IRF [%] 410+103 248+103 367+54 ns. ns. ns.
Platelet count [107/1] 1037 +113 1566 + 22 1783 + 240 ** ** n.s.
MPV [fl] 71+02 78+04 72+0.1 * ns. *
WBC count [107/1] 2174022 208.11+107.15 9391663 * ns. x*
Chemistry
Creatinine [mg/dl] <020 <020 <020 - - -
AST [U/1] 88+13 392+188 127 +39 * ns. *
ALT [U/1] 48+ 11 63+46 33+16 n.s. ns. ns.
GGT [U/1] <3 12+6 <3 - - -
Bilirubin [mg/dl] <10 <10 <10 - - -
CK UM 144+ 16 400 + 60 224+124 o n.s. n.s.
LDH [U/1] 1263 +361 8966+ 1613 3253+ 1772 ** n.s. *

Five weeks after inoculation of the tumor cells, blood was collected and examined by complete blood count. RBC: red blood cell; MCV: mean cell volume; MCH:
mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; RDW: red blood cell distribution width; IRF: immature reticulocyte count;
MPV: mean platelet volume; WBC: white blood cell; AST: aspartate aminotransferase; ALT: alanine aminotransferase; GGT: gamma-glutamyl transferase; CK: creatine
kinase; LDH: lactate dehydrogenase. Statistical significance was assessed based on unpaired two-tailed Student’s t-test, n.s.: not significant; *: significant (p values

< 0.05); **: very significant (p < 0.01); and ***: extremely significant (p < 0.001).

undetectable. However, four tumor-derived cytokines
(IL-6, IL-8, TNF-a, and IFN-y) were found time-
dependently induced in the SiHa,,sente group. Human
TNE-a and INF-y were undetectable at any time point
in the SiHacpy group while human IL-6 and human IL-8
were detected at very low levels starting at week 3. Not-
ably, SiHa,uen0; cells were able to produce very high
levels of IL-6. The decreased production of IL-6 by
SiHacpy compared to SiHa,ena Was confirmed by an
ELISA assay performed with cell-culture supernatants
from both cell types (Additional file 6).

Figure 6 also shows the mouse-derived cytokines
(IL-1B, IEN-y, TNF-q, and IL-17) differently detected in
tumor-bearing mice versus control healthy animals. In
the tumor-free group, the host derived cytokines IL-1j,
IFN-y and TNF-a showed a time-dependent decline in
concentration as a consequence of immune cell matur-
ation while IL-17 levels remained stable in function of
time. Sera of older mice showed lower and stable con-
centrations of cytokines (data not shown), pointing to an

effect of immune maturation on cytokine levels rather
than an effect of housing or experimental conditions.
Differences between healthy mice and the SiHa,u ensa
cohort started to be noticeable from week 2 (IL-1f), 4
(TNF-a and IL-17) or 5 (IFN-y). While IFN-y, TNF-«
and IL-17 levels remained stable or decreased during
the first weeks in the SiHa,,sena group, their levels
raised from week 4 onwards. Although IL-1p still de-
creased in function of time in mice with SiHa,  enrar
tumors, the levels were significantly higher than in
healthy animals. Except for IL-1p at week 5, host-
derived cytokines levels did not significantly differ be-
tween the tumor-free and the SiHacpy cohorts at any
time point post-inoculation of the cells, pointing to a
markedly diminished host inflammatory response com-
pared to SiHa,, e,z Xenografts.

Discussion
In the present study, we showed that SiHa cells that ac-
quired CDV-resistance proved to be refractory to CDV-
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.mg{giga' white pulp

red pulp

Figure 4 Spleen pathology of mice inoculated with SiHacpy
versus SiHapgrentar- Tissues were fixed in neutral buffered formalin,
subsequently embedded in paraffin and 5 um sections were
hematoxylin-eosin (H & E) stained and microscopically examined.
Representative H&E stained tissue sections of spleens from tumor-
free (A), and mice bearing SiHa,grenas (B) or SiHacpy (C) xenografts,
five weeks after inoculation of the cells (2.5x magnification).
Splenomegaly caused by SiHapqrenr tumors was associated with
severe changes in the relative size of the red and white pulp with
an expanded red pulp, only sparse spots of white pulp and virtually
no marginal zones remaining. In animals inoculated with SiHacpy, no
major alterations in the morphology of the spleen were noted.
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antiproliferative effects and to CDV-induced apoptosis
in vitro. These HPV-16 positive cervical carcinoma cells
demonstrated a high barrier for the development of
resistance to CDV as selection required prolonged
exposure to CDV (approximately 45 passages during a
2-years time).

Genome wide gene expression analysis has been previ-
ously used to identify gene expression signatures associ-
ated with resistance to chemotherapeutic agents [30-32].
Here, we compared microarray gene expression values
of SiHacpy with SiHa,;ense; and bioinformatics analysis
revealed the implication of a variety of biological func-
tions and pathways (linked to cell death, cell growth and
proliferation, cellular movement, metabolism, cell and
tissue development as well as inflammatory response)
changing following acquisition of resistance to CDV.
Thus, it appears that acquisition of CDV-resistance is a
multifactorial process, which is in agreement with find-
ings on development of resistance to several chemother-
apeutics [33].

By examining the identities of the genes in the ‘in-
flammatory response’ exhibiting changes in expression
upon acquisition of CDV-resistance, it can be assumed
that the identified genes may not be the ‘drivers’ of
drug-resistance, but they changed expression as a con-
sequence of altered expression of the ‘driver’ genes.
Candidate genes that should be further explored include
c-Fos, c-Jun, PI3K and MAPK since they were changing
expression upon acquisition of CDV-resistance and were
involved in most of the inflammatory response pathways.
Further investigations to elucidate the genes that drive
acquisition of CDV-resistance are currently ongoing.

The changes in inflammatory response observed in
cells that acquire CDV-resistance are expected to be a
consequence of the development of CDV-resistance ra-
ther than the cause of the resistant phenotype in vitro.
While not causing the resistant phenotype per se, the al-
terations in inflammatory response are expected to affect
the tumor microenvironment iz vivo and to contribute
to the observed reduction in pathogenicity and tumori-
genicity. Therefore, it was interesting to investigate how
acquisition of CDV-resistance in SiHa cells affected the
inflammatory response induced by these cells in an athy-
mic nude mice xenograft model.

In the in vitro setting, SiHacpy proved clearly resistant
to CDV but this must occur via a mechanism that does
not directly involve cells of the immune system or the
tumor microenvironment. In contrast, in vivo, the de-
creased inflammatory response observed with SiHacpy
compared to SiHa, erq affected the tumor microenvir-
onment and contributed to a reduced pathogenicity of
the xenografts as SiHacpy provoked less inflammation
in the xenograft model (evidenced by a reduced produc-
tion of mice- and human-derived cytokines, diminished
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effect on chemical and hematological blood parameters,
lower number of immune cells in the spleen, and lesser
splenomegaly compared to parental cells).

In contrast to SiHacpy SiHa,uens generated a pro-
nounced stimulation of immune cells (mostly neutro-
phils) when evaluated in comparison to healthy animals.
One could argue that the reduced induction of neutro-
phils, macrophages, B-cells and NK-cells by SiHacpy
could be the consequence of reduced growth rate ob-
served for the SiHacpy not only in vitro but also in vivo.
Yet, SiHa,urenta tumor size at week 3 was equivalent to
that of SiHacpy at week 5 (tumor size of, respectively,
351.6 £259.8 mm® and 342.0 +182.3 mm®) while the
amount of neutrophils, macrophages and NK-cells was
considerable higher in mice with SiHa,,ensq; xenografts
than in those with SiHacpy tumors at these time points.
Similarly, when putting side by side the SiHa,4ey:0; and
SiHacpy groups at the moment that they have an
equivalent tumor size (week 3 and week 5, respectively),
IL-1p was detected in higher amounts in the SiHa, enrar
cohort. IL-1B plays a key role in the regulation of
neutrophil recruitment through up-regulation of endo-
thelial adhesion molecule expression on endothelium
and through induction of local chemokine production
(including IL-8) production [34], and indeed lower IL-1f

levels correlated with lower numbers of neutrophils in
the SiHacpy cohort.

Neutrophils and macrophages have a major role in
defense mechanisms and protect the host from injury
and infections. However, they were shown to infiltrate
most solid cancers and tumor-associated macrophages
(TAMs) and tumor-associated neutrophils (TANs) were
shown to be involved in stimulation of tumor growth,
their densities being linked to poor outcomes and
shorter survival in several cancer types [35,36]. A recent
study showed that elevated white blood cells and neutro-
phil counts at the time of recurrence diagnosis corre-
lated with shorter survival in patients with recurrent
cervical cancer [37]. In other cancers, such as colon can-
cer, small cell lung carcinoma, and melanoma, an ele-
vated neutrophil-to-lymphocyte ratio also predicted a
significantly higher risk of death [38-40].

Recently, a role for the spleen as a site for storage and
rapid deployment of monocytes to inflammatory sites
has been unraveled, identifying splenic monocytes as a
resource that the body uses to regulate inflammation
[41]. Cortez-Retamoza and colleagues [42] demonstrated
the function of the spleen as a reservoir of monocytes
using a mouse model of lung adenocarcinoma. High
numbers of TAMs and TANs relocated from the spleen
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to the tumor stroma. Furthermore, removal of the spleen
(either before or after tumor initiation) reduced TAMs
and TANs responses markedly and delayed tumor
growth [42]. Local accumulation of granulocytes and
macrophage progenitors in the splenic red pulp was
linked to the reservoir capacity of the spleen during
tumor progression. Our data showing an infiltration of
polymorphonuclear leukocytes in the extended red pulp
in the SiHa,ueu. Xenograft cohort (but not in the
SiHacpy one) suggest that the spleen might also play an
important role as reservoir of monocytes. Moreover, a
pronounced increase in the number of WBC was de-
tected in the SiHa,,ensa but not in the SiHacpy group.
Our microarray data also indicated that acquisition
of CDV-resistance was associated with reduction of
‘inflammatory response’, ‘activation of granulocytes’,
inflammation of organ’ and ‘activation of neutrophils’
(Additional file 2), which can explain the diminished
stimulation of the production of neutrophils and
macrophages by the host. Decreased expression of
genes whose products are responsible for activation
of neutrophils and/or granulocytes (such as complement
components, endothelin 1, IL-15, integrin 2, monocyte
chemoattractant protein 1, macrophage inflammatory pro-
tein 4a, protein kinase C inhibitor 2, GTP-binding protein
Ram, and monocyte differentiation antigen CD14) point
to a decreased capacity of SiHacpy cells to activate and

attract neutrophils and macrophages at the tumor site
compared to SiHa, ez

Overall, our data showed that SiHacpy elicited a re-
duced inflammatory response in the xenograft model
when evaluated in comparison with SiHa,, ;e Inflam-
mation is present in almost all cancer tissues and the
inflammatory state is necessary in tumor tissue remodel-
ing, angiogenesis and metastasis [43-45]. Altered expres-
sion of cytokines and growth factors is crucial in the
malignant transformation of many cancers. Inflamma-
tion, actually ‘smoldering’ inflammation, is now consid-
ered as one of the hallmarks of cancer [43,46]. Recent
studies pointed out the importance of cytokine profiles
in patients with cervical intraepithelial and invasive neo-
plasia, suggesting that tumor progression is dependent
on suppression of cellular immunity [47,48]. Hence, de-
creased levels of Thl cytokines were reported in high-
grade lesions, consistent with the role of Thl cytokines as
potent activators of cell-mediated immunity [48-50]. Scott
and colleagues also demonstrated that persistence of an
HPV infection is linked to a failure to express Thl cyto-
kines [51]. Chronic Th2 type inflammation is commonly
seen during persistent infection with high-risk HPV types
promoting tumor progression [52]. Furthermore, high-risk
HPV types are able to initiate a local Th2 inflammation at
an early stage, creating an immunosuppressive microenvir-
onment that contributes to tumor progression [47].
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We have previously shown that the production of
a number of cytokines by SiHa,,senza, including the
pro-inflammatory cytokines IL-6, IL-8, TNF-«a and IFN-
Y, is decreased following CDV therapy in the xenograft
model in nu/nu mice [24]. Here, we demonstrated that
SiHacpy produced significant lower levels of these pro-
inflammatory cytokines in mice. These findings were
supported by bioinformatics analysis of microarray gene
expression profiling that showed alteration of interleukin
(IL-1, IL-6, IL-8, IL-9, IL-10) and interferon signaling
pathways.

Acquisition of CDV-resistance resulted in inhibition of
the IL-6, IL-9, and IL-10 signaling pathways as inferred
by a decreased expression of STAT3, SOCS2 and
SOCS3. The STAT3 protein is activated through phos-
phorylation in response to various cytokines and growth
factors including IFNs, EGE, IL-5, and IL-6, mediating
the expression of a variety of genes in response to cell
stimuli, and thus playing a key role in many cellular
processes [53,54]. SOCS family members are cytokine-
inducible negative regulators of cytokine receptor signal-
ing via the Janus kinase/signal transducer and activation
of transcription pathway (the JAK/STAT pathway) [55].
Transcripts encoding SOCS are upregulated in response
to cytokine stimulation, and the corresponding SOCS
proteins inhibit cytokine-induced signaling pathways.
Therefore, SOCS proteins form part of a classical nega-
tive feedback circuit [56,57]. Expression of SOCS2 can be
induced by a subset of cytokines such as GM-CSE, IL-10
and IFN-y while that of SOCS3 by IL-6, IL-10 and IFN-y.
It can be inferred that reduced expression of STAT3 and
SOCS genes in SiHacpy versus SiHa,gyensar is the conse-
quence of reduced levels of cytokines, and indeed,
SiHacpy produced lower levels of pro-inflammatory cyto-
kines (IL-6, IL-8, TNF-a and IFN-y) in mice.

In the xenograft model, human IL-6, IL-8, and TNF-«
are expected to have an important role in the mice path-
ology because they are known to be biologically active in
mice, in contrast to IFN-y and its receptor that are spe-
cies specific [58]. SiHa,sena but not CDV-resistant
cells, produced high levels of IL-6. This cytokine is
known to induce extensive extramedullar hematopoiesis
leading to production of neutrophils that localize to the
tumor microenvironment promoting tumor growth by
protease-induced angiogenesis [59].

TNE, originally identified for its ability to induce rapid
hemorrhagic necrosis of experimental tumors, is now
recognized as a central mediator of inflammation,
representing one of the molecular links between chronic
inflammation and the subsequent development of malig-
nant disease [60]. TNF-a is a strong activator of NF-kB,
an injury transcription factor that contributes to cell sur-
vival, proliferation, invasion, inflammation and angio-
genesis [61]. Tumor promotion by TNF-a can involve
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diverse pathways, including enhancement of tumor
growth and invasion, leukocyte recruitment, angiogen-
esis and facilitation of mesenchymal transition [62].
SiHacpy showed increased expression of the TNF recep-
tor TNFRSF11B and diminished expression of the TNF
ligand TNESF15 (Additional file 4), which is expected to
affect NF-kB activation and apoptosis induction. This
hypothesis is based on the fact that TNFRSF11B is a
decoy receptor for RANKL (receptor activator of NF-kB
ligand) and TRAIL (TNF-related apoptosis-inducing lig-
and), and that TNFSF15 (which is inducible by TNF and
IL-1a) binds to TNFRSF21 (an activator of NF-kB and
of apoptosis). Further evidence for an effect on NF-xB
activation in SiHacpy versus SiHa,gensq; is provided by
increased expression of the TNF associated factor
TRAF3 (a known inhibitor of NF-kB activation) and of
IKBKG [the regulatory subunit of the inhibitor of kappa
B kinase (IKK) complex, also known as NEMO)].

The decreased expression of several genes implicated
in the HMGB1 (high mobility group box 1) signaling
pathways in SiHacpy versus SiHa,uyenq further supports
the reduced tumorigenicity and inflammation of cells that
acquired CDV-resistance. As post-translational modifi-
cations determine intracellular distribution and key
functions of HMGBI1, changes at the mRNA level for
HMGBI1 were not detected. However, in the HMGB1
signaling pathway, expression of mitogen-activated pro-
tein kinases (MAPKs) and of the serine/threonine kin-
ase AKT3 was reduced in SiHacpy versus SiHa,arentan
leading, respectively, to diminished expression of c-Fos
and c-Jun and to regulation of NK-kB. c-Fos and c-Jun
form the transcription factor complex AP-1 which regu-
lates gene expression in response to a variety of stimuli
(such as cytokines, growth factors, stress, and microbial
infections) and controls a number of cellular processes.
HMGBI, considered as a prototypic damage-associated
molecular pattern (DAMP) molecule, acts as both a
ligand and a sensor of the signal-transducing innate
responses. Therefore, it can be assumed that a decrease in
HMGBI signaling following acquisition of CDV-resistance
may result in lower stimulation of pro-inflammatory
cytokines.

Another interesting finding when comparing SiHacpy
and SiHa,gene; is their differences in TLR signaling,
with TLR3 and TLR4 is downregulated in SiHacpy-
TLRs activate several signaling elements that results in
activation of pro-inflammatory cytokines, regulating
apoptosis, antimicrobial response and immune respon-
ses. Expression of TLRs in tumor cells can promote
inflammation and cell survival in the tumor micro-
environment [63,64]. Moreover, expression of TLRs in
esophageal squamous carcinoma [65] and in cervical le-
sions [66] was shown to correlate with disease severity.
As TLRs promote tumor cell growth and cytokine
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secretion, leading to the escape of tumor cells from im-
mune surveillance, it can be assumed that reduced TLR
expression in SiHacpy will contribute to a reduced in-
flammatory response and decreased tumor growth com-
pared to the parental cells.

Further evidence for lower tumorigenicity induced by
SiHacpy versus SiHapuensas in mice is provided by
changes in the ‘MSP/RON signaling pathway. Macro-
phage-stimulating protein (MSP) activates the RON re-
ceptor tyrosine kinase, which regulates several activities
of epithelial cells [67]. The MSP-RON pathway plays
also a role in epithelial carcinogenesis and RON is found
over-expressed in many breast, colon, and pancreatic
tumors [67]. As activation of the MSP-RON pathway
directs invasive growth (characterized by increased cell
replication, migration, and matrix invasion) [68,69], it
can be inferred that the decreased expression of genes
involved in this pathway [such as TLR4, TLR3, monocyte
chemoattractant protein 1 (CCL2) and integrin 2] in
SiHacpy versus SiHa,uensar Will be translated in a re-
duced tumorigenicity in vivo.

In the context of developing CDV as an anti-cancer
drug, our findings have therapeutic/biological signifi-
cance since we showed that acquisition of CDV-
resistance is expected to result in a reduced malignant
phenotype.

Today, no evidence for the development of resistance
to CDV in the treatment of HPV-associated (malignant)
lesions has been reported.

Conclusions

Although several studies have characterized CDV-resistant
herpes- [70], and poxviruses [71], this is the first study
reporting the in vivo characterization of tumor cells
selected for CDV-resistance. Similarly to a reduced
pathogenicity described for CDV-resistant viruses, de-
velopment of resistance to CDV as an anti-cancer
drug was associated with a marked reduction in
pathogenicity. The present study contributes to our
understanding on how the alterations in inflammatory
response following acquisition of CDV-resistance while
not causing the resistant phenotype per se affect the tumor
microenvironment in vivo and contribute to a reduced
pathogenicity and tumorigenicity.

Methods

Compounds

Cidofovir [CDV, (S)-HPMPC, (S)-1-(3-hydroxy-2-phos-
phonylmethoxypropyl)cytosine], PMEG {[9-(2-phospho
nylmethoxyethyl)guanine]} and cPr-PMEDAP {cyclo-
propyl-9-[2-(phosphonomethoxyethyl]diaminopurine]}
were kindly provided by Gilead Sciences, Inc., Foster City,
California. Cytarabine [Ara-C, (B-D-Arabinofuranosyl)
cytosine] was obtained from Sigma.
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Cells

SiHa cells, HPV16-positive cervical carcinoma (ATCC,
# HTB-35™), were maintained in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal calf serum.
SiHa cells resistant to CDV were selected by passing the
cells under increasing drug concentration for approxi-
mately 45 passages (initial drug concentration of 1.6 uM
and final concentration of 317.3 pM) during a 2-years
time. The parental SiHa cells and those selected for re-
sistance to CDV were denoted SiHa,uena; and SiHacpys
respectively. In order to demonstrate that both cell lines
were related, short tandem repeat (STR) analysis was
performed at the Forensic Laboratory of UZ Leuven
(Leuven, Belgium). Despite some small alterations fol-
lowing long-term culturing of the cells, the STR analysis
confirmed that SiHa,,enra and SiHacpy, were related
and thus that the resistant cell line is indeed a derivative
of the parental cell line (see Additional file 7).

Drug-antiproliferative effects and in vitro growth rate
Inhibition of SiHa, et and SiHacpy growth was deter-
mined following different times of incubation with the
compounds. Compounds were tested at different con-
centrations in a range of 0.63 uM — 634.7 uM for CDV,
0.0065 pM — 6.54 pM for PMEG, 0.061 pM — 60.99 uM
for cPr-PMEDAP, and 0.0205 uM — 20.53 puM for Ara-C.
Antiproliferative effects were expressed as CCsy (50%
cystostatic concentration), or concentration required to
reduce cell growth by 50%.

Doubling time (DT) of SiHa,uena and SiHacpy was
determined in 48-well microtiter plates from growth
curves performed in absence of the drug by using the
formula: DT = (t - to)/(logoN — logyNy), where t and tg
are the times at which the cells were counted, and N
and N are the cell numbers at times t and t;.

Detection of apoptosis

To differentiate between living, apoptotic and necrotic
cells, SiHa, ;¢4 and SiHacpy were grown for 7 days in
the presence of CDV or PMEG. Cells were simultan-
eously stained with annexin V-FITC and propidium iod-
ide (PI) using the FITC Annexin V Apoptosis Detection
Kit (BD Pharmigen™). Dual fluorescence dot plots
were determined with a FACSCalibur flow cytometer
equipped with CellQuest software (BD Biosciences).

Microarray experiments

SiHa,4rentar and SiHacpy cells were allowed to grow for
72 h in medium without CDV. Total RNA of 1 x10°
cells was isolated with TRIzol reagent (Invitrogen) ac-
cording to the manufacturer’s instructions. The RNA
was further purified by RNeasy Mini Kit (Qiagen). RNA
quality and quantity were assessed by using a Bioanaly-
zer system (Agilent).
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Human Genome U133 Plus 2.0 arrays (Affymetrix)
containing more than 54,000 probe sets and covering
approximately 38,500 genes were used to analyze the ex-
pression profile of the two cell lines, and both conditions
were tested in triplicate. Array hybridization, scanning
and image analyzing were done following the manufac-
turer’s protocols (Affymetrix GeneChip Expression Assay)
at the VIB Nucleomics Core Facility (www.nucleomics.be).
Raw data were corrected for background signal using the
RMA (Robust Multi-array analysis) algorithm (affy_1.22.0
package of BioConductor). The detection (Present/
Absent) call generated by the Affymetrix microarray
suite version 5 software (MAS 5.0) was used to re-
move probe sets that were not reliable detected in any
of the microarrays before further analysis.

Differentially expressed (DE) probe sets between
SiHa,4entqr and SiHacpy were determined using a mod-
erated t-statistic test [LIMMA (linear models for micro-
array data), BioConductor]. The Benjamini-Hochberg
correction for multiple testing [p < 0.05, false discovery
rate (FDR)=0.05] was performed. Probe sets were
considered significantly DE if the absolute fold-change
(FC) was > 2 and the P-value was < 0.05 (LIMMA) after
applying the Benjamini-Hochberg correction.

The entire set of microarray data is deposited in the
Gene Expression Omnibus (GEO, http://www.ncbi.nlm.
nih.gov/projects/geo) according to MIAME standards
under accession number GSE26748: http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?token=Ipivfquymowyazo&
acc=GSE26748.

Bioinformatics analysis of differentially expressed genes
was carried out with Ingenuity Pathways Analysis (IPA,
Ingenuity® Systems) version 9. Data sets with the corre-
sponding FC and P-value were uploaded into the IPA
(Ingenuity Pathway Analysis, Ingenuity® Systems) soft-
ware. Stringent criteria, equivalent to those described
for the selection of DE probes, were applied to identify
DE genes. When genes were represented by 2 or more
probe sets on the arrays, only the maximum FC was
used. Uncharacterized probe sets were not included in
the analysis.

The IPA application reveals relevant pathways and bio-
logical functions by comparing the number of genes that
participate in a given function or pathway, relative to the
total number of occurrences of those genes in all the
pathways stored in the IPKB (Ingenuity Pathway Know-
ledge Base). Validation of the microarray data was per-
formed with 4 genes (randomly selected) by quantitative
reverse transcription-polymerase chain reaction (qPCR)
as previously reported [28].

Animal experiments
Female nu/nu NMRI mice (4-5 weeks old) were pur-
chased from Janvier Breeding Center. All animal work
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was approved by the KU Leuven Ethics Committee for
Animal Care and Use (Permission number: P160-2008).

Mice were inoculated sub-cutaneously on the back
with 2 x 10° cells in a volume of 200 pl, week 0 being
considered the time point of cell inoculation. To esti-
mate body weight gain, mice were sacrificed weekly and
tumors were excised, weighed and subtracted from the
total body weight. Gain in body weight was calculated as
the percentage of body weight gained compared to the
mice weight at week 0.

Spleens from 3 mice per group were isolated at differ-
ent weeks to determine the percentage of immune cell
populations. Spleens were processed and splenocytes
were stained with specific antibodies and analyzed by
flow cytometry as described previously [24]. One mouse
per group was euthanized weekly to collect various tis-
sues for histopathological examination.

Total blood from 5 mice per group was collected in
EDTA tubes at week 5 to perform hematology and blood
chemistry testing at the University Hospitals Leuven,
Department of Laboratory Medicine, Leuven, Belgium.

At various time points, tumor- and host-derived cyto-
kines were quantified in the sera of mice (3 animals per
group) with a Bio-plex 200 system (Bio-Rad Laboratories)
according to the manufacturer’s protocols.

Statistical analysis

Statistical significance was assessed based on unpaired
two-tailed Student’s ¢-test with GraphPad Prism 5 soft-
ware (GraphPad Software Inc., La Jolla, CA, USA). Sig-
nificance was indicated as: ns, not significant (p > 0.05);
*, significant (p < values 0.05); **, very significant (p <
0.01); and ***, extremely significant (p < 0.001).

Additional files

Additional file 1: Validation of gene expression between
microarray and gPCR. The gene expression levels of microarray are
presented by log, fold changes, whereas those of qPCR are indicated by
AACt that are comparable to the log, fold change values in microarray.
DHRS2 (Dehydrogenase/reductase SDR family member 2), HISTTH2AC
(Histone H2A type 1-C), GALC (Galactocerebrosidase), KRT14 (Keratin 14).

Additional file 2: Functional annotations associated with
inflammatory response found to be distinct between SiHa,arentar
and SiHacpy. The criteria for selection of functional annotations were
based on z-score and statistical significance (P-value < 0.05). The regula-
tion z-score predicts whether an identified biological function is activated
or inhibited. Positive z-scores indicate activation of a biological function,
while negative z-scores suggest an inhibition. Absolute z-score values
above 1 were considered significant.

Additional file 3: Canonical pathways related to immune response
found to be distinct between SiHa,g/entas and SiHacpy. The
significance of the associations between the genes from the two data
sets and the canonical pathways were determined based on two
parameters: (a) the P-value, calculated by the Fischer's exact test, that
determines the probability that there is an association between the
genes in the data set and the canonical pathway that cannot be
explained by chance alone and (b) the ratio of the number of genes
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from the data set in a given pathway divided by the total number of
molecules in the given canonical pathway. P-values < 0.05 were
considered statistically significant.

Additional file 4: Gene expression changes related to the
‘inflammatory response’ function in SiHacpy compared to

the absolute fold-change (FC) was > 2 and the P-value was < 0.05
(LIMMA) after applying the Benjamini-Hochberg correction. Upregulated
and downregulated genes are indicated by respectively positive and
negative log, fold changes.

Additional file 5: Effects of intratumoral CDV treatment on tumor
growth in xenograft model. (A) Kinetics of tumor growth were
determined in mice bearing a xenograft that received either no
treatment or intratumoral CDV treatment (25 pl of a 10 mg/ml CDV
solution) once a day, five times per week, for a period of four weeks.
Data are presented as the average tumor volume [mm?] of five mice
(£SEM). Tumors were measured by means of a digital caliper in two
directions (perpendicular diameters) and the formula V = (4mab?)/3, with

was applied to calculate the tumor volume. (B) Efficacy of treatment
following four weeks of intratumoral CDV treatment. Efficacy was
evaluated by means of the inhibitory rate (IR) on tumor growth and was
calculated as IR=(C-T)/C x 100% (C and T being the respective tumor

SiHaparentar Xenografts resulted in an IR of 95% (p-value < 0.01), while
treatment of SiHacpy xenograft showed an IR of 51% (p-value > 0.05).

Additional file 6: Interleukin 6 (IL-6) levels in SiHa,grentar and
SiHacpy cell culture supernatants. IL-6 levels were measured using the
enzyme-linked immunosorbent assay kit (Invitrogen™) using cell culture
supernatants. Cells were seeded at a density of 4 x 10* cells per well in
3 ml culture medium in 6-well plates. After 24 h the medium was chan-
ged, and supernatant was subsequently collected after 3, 5, and 7 days.
Human IL-6 levels in the supernatant (diluted 1:25 in PBS) of cultured
cells were determined by using the IL-6 human ELISA kit following
manufacturer’s instructions. Samples were measured in triplicate.

Additional file 7: STR profile of SiHa,grentas and SiHacpy cells. The

shown in the table. Determination of the STR profile of both cell lines
illustrated a drift of a few markers (i.e. D151656, D21511 and D151677)
following long-term culturing of the cells. Overall these data demon-
strated the relationship between the two cell lines and confirmed
SiHacpy being a derivative of the SiHapgenear cells.

SiHaparentar Genes were considered significantly differentially expressed if

‘a’ and ‘b’ being the largest and smallest radius of the tumor, respectively,

volumes of the untreated controls and the treated tumors). Treatment of

different alleles for the STR loci that were identified in both cells lines are
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