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Abstract

Background: Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that
remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization
across breast cancer tumors in a cohort of patients of either European or African ancestry.

Methods: We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female
cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to
the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular
subtypes, ethnicity, HER2+ status, other clinical variables and survival.

Results: We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are
associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status.
EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct
functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1,
possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1,
relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further
investigated using quantified genetic ancestry measures.

Conclusions: Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent
of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it
may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER
cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific
polymorphisms which alter the gene product.
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Background
Breast cancer is still one of the leading causes of death
among women. It is a complex disease with a wide range
of penetrance and expressivity that ultimately results in
variable survival rates among patient groupings, includ-
ing ethnicity groups [1-3]. Incidence and mortality rates
are well known to be significantly divergent among
women of certain ethnic groups [1,4-6]. In the US, White
women traditionally have a higher incidence of the disease
overall, but in the pre-menopausal category, women of
African descent have the highest incidence rate [1-3,6,7].
Aside from DNA changes, epigenetic modifications, which
regulate the expression potential of a gene, have been in-
creasingly implicated in breast tumorgenesis [8-13]. How-
ever, not much is known about the epigenetic regulators
of molecular pathways leading to derivation of specific
tumor subtypes.
The multiple subtypes of breast cancer can be consid-

ered distinct diseases, given the discrete molecular signa-
tures and divergent clinical outcomes associated with
each [14,15]. Molecular subtypes of breast cancer in-
clude; Luminal A/B, HER2+, triple negative and basal-
like. These subtypes are characterized by the expression
of specific hormone receptors and epithelial markers.
Explicitly, the luminal subtypes each express ER and/or
PR, the HER2+ subtype harbors gene amplification of
the ERBB2 gene (more commonly known as HER2) and
the triple negative subtypes lack expression of ER, PR
and HER2 amplification. The basal-like subcategory of
triple negative tumors [16,17] expresses EGFR and ck5/6
and is the most aggressive sub-type, with a higher mi-
totic index and reduced survival rates.
Interestingly, several epidemiological studies show that

breast cancer in African-American (Afr. Am.) women, as
compared to European-American (EA) women, are more
likely to be Estrogen Receptor negative (40% vs. 25%),
Progesterone Receptor Negative (50% vs. 35%), HER2/
Neu negative and ‘basal-like’ (44% more likely) [18-20].
International studies that address breast cancer rates
and phenotypes in African populations show that pre-
menopausal breast cancer incidence and more aggressive
tumor subtypes at are prevalent in these populations
[21-23] as well. These reports support a hypothesis that
molecular differences, due to the genetic ancestral
variation, among ethnic groups are important factors
cultivating a unique burden of specific subtypes within
certain populations.
Site-targeted chromatin remodeling is another emer-

ging mechanism of tumor etiology. Specifically, histone
modifications have been repeatedly implicated in the dif-
ferential regulation of genes which impact tumorgenesis
[18-20,24] including the regulation of steroid and growth
signal target genes [25-27]. Recently, studies show that
epigenetic haplotypes are associated with ER-negative
breast cancer subtypes [28]. One implicated epigenetic
regulator is Co-activator-Associated Arginine Methyl-
transferase 1 (CARM1). It is a chromatin remodeling
regulator of steroid hormone signaling pathways, acting
through methylation of several proteins [21,22,29], includ-
ing Histone 3 [23], and has been associated with breast
and prostate cancer etiology [18,30-32].
CARM1 is a member of the Protein Arginine Methyl-

transferase (PRMT) family and was first implicated in
steroid receptor signaling through its interaction with
the nuclear receptor p160 co-activators SRC-1 and
GRIP1 [33]. In breast cancer, CARM1 has been recently
shown to regulate estrogen dependent cell proliferation
through upregulation of the transcription factor E2F1,
an essential component of cell cycle regulation [34,35].
In addition to histone methylation, CARM1 has been
implicated in methylation of other proteins, including
SRC-3 which indirectly impacts estrogen mediated
breast cancer cell line proliferation [36]. Immunoprecipi-
tation of CARM1, in complex with p53, CBP, Sp1 and
cJun, at the ER promoter locus [37] implicates CARM1
as a regulator of ER expression. In fact, CARM1 is re-
quired for ER dependent breast cancer cell differenti-
ation [38,39] and this suggests CARM1 may impact the
ER status in breast cancer.
To determine if CARM1 might be involved in the devel-

opment of specific breast tumor subtypes we have mea-
sured the CARM1 expression levels, in adjacent-normal
and tumor tissues from a cohort of over 500 breast cancer
patients from the US (Chicago, IL) and Nigeria, Africa.
Here, we report the associations of CARM1 expression
and sub-cellular localization across 11 clinical variables,
including tumor types, ethnic groups and overall survival.

Results and discussions
Sub-cellular localization of CARM1 in breast cancer is
molecular subtype dependent
CARM1 has previously been shown to function as an
epigenetic transcriptional regulator in steroid hormone
pathways [25,34]; therefore, we anticipated the majority
of the CARM1 protein would be nuclear. With no re-
gard for tissue type or tumor subtypes, based on a Chi-
square test of independence (P = 0.001), we found that
overall there is a correlation of nuclear and cytoplasmic
expression levels of CARM1. Table 1 summarizes the
distribution of overlapping nuclear and cytoplasmic
scores for all samples analyzed. However, our further
investigation has determined that, while correlated, dis-
tinct levels of cytoplasmic CARM1 (cyt-CARM1) and
nuclear CARM1 (nuc-CARM1) create unique patterns
of sub-cellular localization relative to tumor-type categor-
ies. Figure 1A shows examples of this variation in expres-
sion levels and localization in representative immunostains
of adjacent-normal (top row) and tumor (bottom row)



Table 1 IHC scores range from 0-3

nuc-CARM1 IHC scores

0 1 2 3 TOTAL

cyt-CARM1 IHC scores 0 7 4 3 0 14

1 53 36 75 10 174

2 19 55 174 64 312

3 2 9 36 28 75

TOTAL 81 104 288 102 635

The bold italics highlights the numbers of cores with identical scoring of nuc-
CARM1 and cyt-CARM1, indicating equalized localization. There is a general
correlative trend of similar expression levels between nuclear and cytoplasmic
localization overall, without regard for tumor subtypes.
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samples. When samples are grouped by histological sub-
types (Figure 1B – top), the overall average expression of
cyt-CARM1 and nuc-CARM1 levels do not appear to be
significantly different from each other. However, when
samples are grouped by molecular subtypes, significantly
different levels of both expression and sub-cellular
localization of CARM1 are detected (Analysis of Variance
(ANOVA) p<0.0001) (Figure 1B-bottom).
As CARM1 has previously been shown to function as

an epigenetic transcriptional regulator in steroid hor-
mone pathways [25,34], we expected the majority of
IHC staining for CARM1 to be nuclear. However, our
observations reveal that while the overall expression
levels of nuclear vs. cytoplasmic CARM1 are similar
across the sample population, there are specific tumor
molecular phenotypes where sub-cellular protein levels
are distinct. Accordingly, for the remainder of our
investigations we distinguish nuclear from cytoplasmic
expression as we investigate associations with our patho-
clinical variables. For this purpose, we assigned separate
nuclear and cytoplasmic scores for each tissue sample to
retain the relative levels of sub-cellular localization. An
overall summary of the statistical results for each of the
11 variables tested can be found in Table 2.

Relationship between CARM1, tumor subtypes and intra-
patient tumor progression
Because the relative sub-cellular localization of CARM1
is directly indicative of its biological function and pos-
sible influence on tumor progression, we determined
whether there were distinct levels of nuc-CARM1 or cyt-
CARM1 associated with malignancy or specific histo-
pathology tumor types. Specifically, we first investigated
whether nuc-CARM1 or cyt-CARM1 expression levels
were associated with the histological categories; Adjacent-
Normal (normal cells adjacent to tumors), Ductal Carcin-
oma In Situ (DCIS), Invasive and Metastatic (Lymph
Node (LN)) (Figure 1B and Table 2, Histological type). We
conducted this analysis without strict concern for increas-
ing severity. While we did not find a significant associ-
ation between these tumor categories and nuc-CARM1
expression (P=0.1049, n=575) there was a significant asso-
ciation with cyt-CARM1 expression (P=0.0319, n=576).
On average, there is a slightly higher level of cyt-
CARM1in the DCIS and invasive tumors compared to
normal and metastatic tumors. This observation may
indicate a tumor specific difference in CARM1 regulation
or function linked to the tumor cells’ microenvironment,
which may be lost during the Epithelial to Mesenchymal
Transition (EMT) of cells as they metastasize to a differ-
ent site.
To more distinctly address the question of CARM1 in

association with progression of tumor stages, we investi-
gated whether there were significant differences of
CARM1 expression levels along the spectrum of tumor
progression within individual patients. There were 222
patients with multiple TMA samples in our cohort. Of
these, 178 had samples with distinct histological sub-
types. Overall, there was an intra-patient correlation (i.e.
a patient who has a high score in an invasive tumor is
likely to also have a high score in adjacent normal)
Figure 2 shows representative stains of our intra-patient
samples. A pairwise comparison of intra-patient hist-
ology categories shows significant differences in cyt-
CARM1 levels between adjacent-normal and invasive
tissue types (WSR P=0.03 n=60). This suggests that from
the progression of normal to invasive malignancy the
localization of CARM1 becomes ‘more cytoplasmic’,
which would imply that the specific function of CARM1
may shift more toward cytoplasmic targets during pro-
gression of tumorigenesis. Other pairwise comparisons
indicated there was no significant change in CARM1
levels between one pathological stage to the next (Table 3).
However, limitations due to our low intra-patient num-
bers, likely prevented us from finding any additional
significant associations. The summary of intra-patient
samples is outlined in Additional file 1: Table S1.
To investigate CARM1 expression among molecular

tumor subtypes, we first utilized histological markers to
sort each tumor sample into the categorical molecular
subtypes; Basal-like, Luminal A, Luminal B, HER2+/ER-
(HER2+) and “unclassified” [40-44]. In contrast to the
histological subtypes, an ANOVA analysis across molecu-
lar subtype categories revealed that cyt-CARM1 levels are
extremely different across these subtype groupings
(P=0.0004, n=475) (Table 2 and Figure 3). Similarly, nuc-
CARM1 expression levels also show a significant difference
across tumor subtypes (P=0.0004, n=474). Specifically,
nuc-CARM1 IHC scores reveal a higher level of CARM1
in the nuclei of HER2+ tumor cells compared to Basal-like
and Luminal tumor cells while cyt-CARM1 IHC scores
reveal higher levels of CARM1 in the cytoplasm of both
Basal-like tumor cells and HER2+ subtypes (Figure 3) com-
pared to the other molecular subtypes. HER2+ tumor had
the highest expression of CARM1 overall.
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Figure 1 CARM1 expression and sub-cellular localization of across molecular and histological tumor subtypes. A. Representative CARM1
IHC stains for Adjacent-normal (top row) and tumor (bottom row) tissue cores. There is a diverse range of both cytoplasmic and nuclear
expression levels for each pathological and histological subtype. The specific histological subtype and nuclear receptor status are indicated on
respective images. The CARM1 nuclear/cytoplasmic scores are indicated in parentheses (e.g. (3/2) = nuclear score of 3 and cytoplasmic score of
2). B. Nuclear and Cytoplasmic CARM1 expression tumor score averages, grouped by histological tumor types (top) and molecular tumor
subtypes (bottom). Histological subtypes appear to show very little variation in CARM1 expression, with small variations in localization in the
invasive and metastatic tumor categories. Normal tissue indicates CARM1 is usually highest in the nucleus. For the molecular subtypes, there is a
wide range of variation among the categories. HER2+ tumors have the highest relative expression of CARM1, while basal-like subtypes have the
most divergent localization between nucleus and cytoplasm, with the majority of the protein residing in the cytoplasm, contrary to what is seen
in normal tissues overall. Asterisks denote findings that were statistically significant and are outlined in Table 1. Error bars are shown to denote
Standard Deviation(1).
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Table 2 Summary of statistical tests for each of the 11 variables investigated

Simple linear regression tests for cyt-CARM1 Simple linear regression tests for nuc-CARM1

N P-value Beta SE(Beta) N P-value Beta SE(Beta)

CK5/6* 574 0.0188 0.099 0.042 573 0.7506 0.0178 0.0559

EGFR* 574 0.0061 0.1377 0.0501 573 0.7031 0.0254 0.0667

Tumor grade* 416 0.0102 0.128 0.0496 415 0.1030 0.1059 0.0648

Cumulative logistic regression tests for cyt-CARM-1 Cumulative logistic regression tests for nuc-CARM-1

N P-value OR 95% OR CI N P-value OR 95% OR CI

ER 482 0.3053 0.834 0.588 - 1.181 481 0.6592 1.079 0.769 - 1.515

PR 480 0.8028 0.954 0.656 - 1.385 479 0.9608 1.009 0.702 - 1.452

HER2** 477 0.0023 1.948 1.269 - 2.989 476 <0.0001 2.596 1.702 - 3.959

Age 443 0.0669 0.989 0.977 - 1.001 629 0.5913 0.997 0.985 - 1.009

Tumor size 427 0.252 1.039 0.973 - 1.110 596 0.5936 1.018 0.955 - 1.085

One-way ANOVA tests for cyt-CARM-1 One1-way ANOVA tests for nuc-CARM-1

N P-value RMSE Significant differences N P-value RMSE Significant differences

Molecular subtype** 475 0.0004 0.6657 (HER2, Basal) > LumA 474 0.0004 0.872 HER2 > (LumA, Basal)

Histological subtype 576 0.0319 0.69 (none found) 575 0.1049 0.9146 (none found)

Ethnicity** 534 0.003 0.7019 Afr > (Cauc, AfrAm) 533 0.0001 0.0001 (Cauc, AfrAm) > Afr.

Depending on the structure of the data for each variable, one of three statistical tests were used; Simple Linear Regression, Cumulative Logistic Regression or
ANOVA. See methods for details of stats applications. Asterisks and bold font P-values indicate significant associations at 0.05 level. All significant associations are
described in detail in the text. RMSE root mean squared error; CI confidence interval; SE standard error; OR odds ratio; E(Y) expected values of CARM1 (Y) at
indicated level of variable’s score (0–3).
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Relationship between CARM1 and steroid nuclear
receptor (ER and PR) status
Because the expression of specific nuclear receptors is
correlated to molecular subtype categories, we have in-
vestigated the direct correlation of CARM1 with steroid
receptors ER and PR. Using cumulative logistic regres-
sion (CLR), we determined whether there were any
significant associations among ER or PR status and
CARM1. We found that in a tumor subtype independent
test there was no nuc-CARM1 or cyt-CARM1 associ-
ation with ER (CLR P=0.6592 and 0.3053, respectively)
or PR (CLR P=0.8028 and 0.9608, respectively). This
finding is very intriguing as CARM1 has been shown to
function as an ER cofactor; however, our study did not
detect a direct correlation between ER status and
CARM1 expression. In terms of sub-cellular localization,
there was a noticeable trend of relatively more nuclear
localization of CARM1 in the ER-positive tumor cat-
egories and more cytoplasmic localization of CARM1 in
ER-negative tumors; however, this trend was not statisti-
cally significant (WSR P= 0.062).
In an ER-negative context, the ‘typical’ mode of hor-

mone signal target-gene regulation can become atypical
in order to achieve hormone independent proliferation
and evasion of apoptosis. CARM1 works in concert with
other transcription cofactors in order to mediate estro-
gen target gene regulation [45,46]; however, its similar
function in the androgen pathway [28,30,47] in prostate
cells has been shown to gain independence from the an-
drogen signal [25,48]. We believe our data may suggest
similar steroid independence may be achieved for
CARM1 function in breast cancer subtypes that are es-
trogen independent (ER-negative). Conversely, in the ER
positive tumors, where CARM1 would most likely func-
tion as an ER nuclear cofactor, the protein is usually lo-
calized to the nucleus. This suggests that CARM1
epigenetic transcriptional function may become limited,
removed or at the very least, altered, in the absence of
the estrogen steroid receptor. In addition, given the link
of CARM1 to the regulation of ER gene expression, per-
haps the lack of CARM1 in the nuclei of ER-negative
tumor cells is a cause for the ER-negative status and this
hypothesis should be investigated further.

Relationship between CARM1 and growth factor
receptors, HER2 and EGFR
The significant differences in cytoplasmic and nuclear
levels of CARM1 between the basal-like and luminal
tumor subtypes, suggests that hormone receptors, other
than ER, interact with CARM1. Specifically, the “basal-
like” and “unclassified” categories lack ER expression
and have CARM1 predominantly localized to the cyto-
plasm. A cumulative logistic regression analysis revealed
a significant association between HER2 status and both
cyt-CARM1 and nuc-CARM1 (Figure 4). Specifically, we
found a positive association with HER2 status and cyt-
CARM1 (P=0.0023, Odds Ratio (OR) = 1.95 95% CI:
1.27-2.99). We also found a positive association between
HER2 status and nuc-CARM1 (WSR P=0.002) (Figure 4).
Similarly, the average expression trends among the
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Figure 2 Inter-patient assessments of CARM1 levels. Case matched samples are shown for the indicated histo-pathological tumor type
(normal, DCIS, invasive or metastatic) and molecular subtypes (Triple negative, HER2+ and Luminal A). Tissues from individual cases are stacked in
columns in the order of increasing severity. A. Representative stages of progression and the representative differential expression of normal to
invasive. We observe high levels of CARM1, even within the adjacent normal, which may indicate pre-cancerous upregulation. B. Representative
stages of progression from normal to DCIS to Invasive. Again, we note high levels of CARM1 in the adjacent normal; however, we do not always
observe increasing expression with severity of pathology. There are significant associations with sub-cellular localization, indicating the CARM1
levels may be higher prior to carcinogenesis but localization changes with function throughout the process.
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tumor subtype groups, shows that HER2+ tumors have a
relatively higher level of both nuclear and cytoplasmic
expression when compared to averages in the other
tumor types (Figure 1B). In addition, distributions of
CARM1 scores among the molecular subtypes indicate
that the HER2+ tumors have the largest percentage of
the highest nuc-CARM1 scores (Figure 3). These data
indicate that tumors with an amplified HER2 gene also
have high levels of CARM1 expression overall. Also,
these data show that CARM1 is preferentially localized
to the nucleus in the presence of high levels of HER2.
In addition, for the Epidermal Growth Factor Receptor

(EGFR), we found a positive association with cyt-
CARM1 (P=0.0061) but no significant association with
Table 3 Inter-patient analyses based on Wilcoxon rank
sum tests

Pathology transition Cyt-CARM1 Nuc-CARM1

n P value n P value

Normal vs DCIS 16 0.103 16 0.371

Normal vs invasive* 60 0.036 60 0.684

DCIS vs invasive 36 0.727 36 0.558

Invasive vs metatstatic 35 0.948 34 0.928

DCIS vs metastatic n.d. n.d. n.d. n.d.

Bold italics indicates statistically significant associations. The only significant
finding was between normal and invasive tumor types.
nuc-CARM1 (Table 2). This indicates EGFR expression
correlates with higher levels of CARM1 expression, but
only when CARM1 is preferentially localized to the cyto-
plasm. This observation might suggest that CARM1
could play a functional role in the cytoplasm, possibly
through some interaction with EGFR, as it too is prefer-
entially localized to the cytoplasm. In addition, because
the only molecular subtype that expresses EGFR is the
basal-like tumor, our observations may give insight to
the etiology of the basal-like subtype.
To model these potential interactions, we have identi-

fied two independent lines of evidence that indicate
HER2 protein may physically interact with CARM1protein
in the HER2+ tumors, while EGFR may physically or func-
tionally interaction with CARM1 protein in basal-like tu-
mors. This model is summarized in Figure 5, where we
show a modified STRING Database network [49] sug-
gesting how CARM1 may physically interact with HER2
using protein-protein binding data. In addition, we show a
possible connection to the EGF pathway through protein-
protein binding data with EGFR. These pathways could
presumably circumvent the usual CARM1-ER protein-
protein interaction, effectively expanding CARM1 func-
tion beyond its role as an ER cofactor in breast tissue.
Previous studies support these models by showing that

CARM1 function is not isolated to chromatin associated
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Figure 3 CARM1 expression score distributions of individual tumors. Top, bar graph indicating cumulative percentages of each score level within
indicatedmolecular subtypes. Bottom, data table indicates actual numbers of cores, showing distributions of CARM1 scoreswithin eachmolecular tumor subtype.
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histones [50]. We hypothesize that cytoplasmic methyla-
tion targets are modified more often within basal-like
tumor subtypes where cyt-CARM1 is higher. In fact, a
recent study shows evidence that EGFR, a receptor
which is exclusively expressed in basal-like subtypes, is
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Figure 4 CARM1 localization is associated with HER2 status. Bar graph
all tumors stratified by HER2 status.
methylated by PRMT5, a member of the CARM1 pro-
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arginine methylation might enhance the protein’s auto-
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54.27%

45.79%

11.29%

32.71%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Negative Positive/Amplified

HER2 status and Nuc-CARM1 scores

0 1 2 3

C
at

eg
or

y 
P

er
ce

nt
ag

e

s are shown depicting the distributions of individual CARM1 scores for
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Figure 5 Model of CARM1 interaction with HER2 and EGFR. A STRING database interaction network is modified to indicate putative
interaction paths between CARM1 to HER2 and CARM1 to EGFR. Dashed red line highlights a potential physical connection through protein-
protein binding of CARM1 in complex with HER2. The dashed green line indicates a potential functional connection to EGF through both post-
translational modifications and physical interaction with EGFR complexes. In an ER-negative tumor, the ESR1 interaction is absent; therefore the
interaction would occur through CTNNB1. The evidence box shows the source and type of data used to designate the protein interactions.
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occur in basal-like tumor types as other subtypes do not
express EGFR. This lends significant insight to the etio-
logical mechanisms that may drive aggressive progres-
sion of this particular molecular subtype. However, more
evidence is needed to determine if CARM1 would target
the same arginine and also to determine the functional
consequences of such a modification.

Relationship between CARM1 and other clinical
characteristics (age, stage, grade, size)
Using a cumulative logistic regression we investigated
associations of CARM1 with age at disease onset. We
detect a trend of younger women to have higher levels
of cyt-CARM1; however the effect was not large enough
to be significant (P= 0.06).
In addition, we utilized simple linear regressions and

ANOVA analyses to investigate the association of
CARM1 with other clinical annotations; including tumor
size, grade and stage. There was an expected significant
difference in tumor sizes among ethnic groups (WSR P=
<0.0001) which matches the national trends. Specifically,
the mean tumor size was 4.65 cm for the African ethnic
group, (range of 1.5 cm -16 cm) and 3.33 cm for the do-
mestic group (which includes Af. Am. and Caucasian pa-
tients) with a range of 0.2 cm to 17 cm. However, we did
not find a significant trend or association between tumor
size and cyt-CARM1 or nuc-CARM1 (P=0.252 and
0.5936 respectively).
Similarly, we did find a positive trend between nuc-

CARM1 and tumor grade, but this was not significant
(P=0.103). Interestingly, there was a significant positive
association between cyt-CARM1 and tumor grade
(P=0.010). This indicates that the increased localization of
CARM1 to the cytoplasm corresponds to the increased
aggressiveness of the tumor, suggesting CARM1’s cyto-
plasmic function may be involved with increased cellular
proliferation and/or invasiveness.

Overall comparative relevance of our cohort findings as
relates to ethnic disparities
Many of our CARM1 associations correlate with tumor
categories that are reported to be more prevalent in spe-
cific ethnic groups. For instance, there is an association
of cyt-CARM1 in basal-like tumors, which is a tumor
subtype that has relatively higher incidence rates in cer-
tain ethnic groups. Accordingly, we wanted to investi-
gate whether CARM1 expression has associations with
ethnicity. However, to ensure our sample set is appropri-
ate for this testing, we first determined if our cohort is
representative of current trends in ethnic group dispar-
ities, nationally. To test, within our cohort, the national
relevance of ethnicity associations commonly identified
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in other domestic cohorts, we first investigated the well-
documented general cancer disparities observed between
Afr. Am. and Cau women. We determined concordance
with national findings and confirmed a 30% disparity in
5-year-survival (Figure 6). Overall, this is consistent with
the national trend [52] (p<0.0001) showing a higher
mortality rate in the Afr. Am. group (Figure 6).
Also, we determined whether our cohort has sufficient

power to detect typical survival disparities based on
commonly used molecular makers. Specifically, we
stratified our population based upon the three most sig-
nificant histological markers known to predict survival
trends; ER, PR and HER2. We investigated ER status dis-
parities and observed a significant association of ER sta-
tus among ethnic groups in our cohort (Chi-Square
P>0.0001), with Cau having more ER positive and Afr.
Am. and Afr having more ER negative tumors. Addition-
ally, there was a significant ethnicity differential in
tumor grade (WSR P=0.046), PR status (P<0.0001) and
tumor subtypes as defined as Basal-like, Luminal A, Lu-
minal B, HER2+/ER- and ‘unclassified’ (P=0.001). In
addition, we observed these molecular markers show
significant survival associations (Wilcoxon p<0.0001 for
each), all in concordance with national trends. These
findings indicate our patient subset for survival analysis
is appropriate for detecting survival disparities linked to
molecular markers in clinical practice.

Ethnicity findings and potential issues with self-Identified
race as a proxy in cancer studies
Because our preliminary analyses demonstrate the simi-
larity of national trends within our cohort, we moved
forward with our investigation of associations bet-
ween CARM1 and ethnicity. Specifically, our cohort was
categorized into 3 ethnic groups, African (Afr.), African
American (Afr. Am.) or Caucasian (Cau). An ANOVA
across a total of 534 samples revealed an overall signifi-
cant difference in both cyt-CARM1 and nuc-CARM1
expression among the ethnicity groups (Table 2 and
Figure 7). Interestingly, our findings indicate that differ-
ential nuc-CARM1 expression is more significant than
differential cyt-CARM1 (P= 0.0001 and 0.003, respec-
tively). Specifically, pairwise ethnic group comparisons
indicate that levels of cyt-CARM1 are higher in Africans
than both Afr. Am. (WSR P=0.0013) and Cau (WSR P=
0.010). Correlatively, the levels of nuc-CARM1 expres-
sion are significantly higher in Afr. Am. and Cau groups
when compared to Africans.
Intriguingly, our findings show that the largest differ-

ence in CARM1 expression exists between the two
ethnic groups that presumably share relatively more
common ancestral genetic background. However, our
cumulative evidence may actually indicate that CARM1
expression levels are not correlated with African ances-
try but rather indicate a distinct expression pattern spe-
cific to our African patient population. Accordingly, we
tested whether the CARM1 expression differences asso-
ciated with ethnicity could be explained by geographical
regions. For this analysis we grouped the populations by
domestic (Afr. Am and Cau combined) or African sample
origin and found significant differences (WSR P=0.0165),
though not as significant as our previous analysis.
Our inclusion of native African patients presumably

assists with increasing power for comparative ethnicity
analyses. Essentially, we have included the African an-
cestral group as well as the admixed Cau group for our
analyses of the admixed Afr. Am. groups. In this manner,
we considered ethnicity as an ordered categorical
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variable of “African-ness” for our drawn conclusions.
Cumulatively, our findings suggest that there is a re-
gional bias in CARM1 and that the Afr. Am. group cor-
relates more with its assumed admixed population than
with its implied ancestral population.
However, it is possible that the ancestral link for a sig-

nificant portion of our Afr. Am patients may be in
African populations outside of Nigeria. This alternate
African ancestry scenario would confound the Nigerian
ancestry of Afr. Am. patients in our analysis and could
possibly give rise to non-correlation between the Afr
and Afr. Am. samples. Accordingly, we should consider
our ethnicity findings as preliminary until validation
studies can be completed which utilize molecular ances-
try measures (See Conclusions, below). Regardless of the
analytical limitations in our self-identified admixed
groups there is a clear distinction of CARM1 expression
and localization in our Afr population.
Ideally, proper identification of ancestry associations

with molecular markers requires a method of quantifying
ancestry. Whether genetically or epigenetically driven, a
biological mechanism of ancestry-specific disease expres-
sivity relies on the premise of a common molecular
variant that is stabilized within the descendant group be-
ing observed. In the case of CARM1, such a variant must
have either ancestral polymorphism origin, which may
exist as trans-generational epigenetic imprints mediated
by CARM1 [53], or common environmental influences,
which could modify or potentiate CARM1 function. There
are over 500 known polymorphisms in the CARM-1 gene,
of which approximately 10% show unique minor allele fre-
quencies restricted to African ancestral groups in HapMap
analyses. Of these, several are non-synonymous changes.
Our particular dataset is based upon self-identity and
not a quantified measurement of genetic ancestry. Associ-
ating self-identified race with a molecular trait can be
problematic and especially in consideration of the genetic
admixture inherent in our domestic study population of
Afr. Am. patients. We are currently conducting follow-up
studies to validate the African associations we have
detected here. We are using methods of quantifying an-
cestry and haplotype-block mapping [7,54,55] utilizing
such techniques as Ancestral Informative Marker (AIMs)
[56,57] genotyping so as to both define individual’s gen-
omic ancestry globally and among CARM1 SNP loci. Spe-
cifically, this will allow us to determine the actual CARM1
haplotypes in our population and correlate these with gen-
etic ancestry and CARM1 sub-cellular localization and/or
target methylation.

CARM1 associations with survival
Traditionally, breast cancer survival studies include only
the invasive histological subtype; however, we concur
with studies that view DCIS as a non-obligate precursor
[41] to the invasive tumor, which can be classified into
molecular/clinical subtypes with identical markers. Inte-
grating these subtypes into survival analyses lends
power to detect factors determining disease progression
[41]. Because we did find associations of CARM1 levels
in DCIS, we conducted an alternative survival analysis
including this histological subtype in our analysis
(Figure 8). In doing so, we increased our sample number
from 161 to 252, thereby increasing overall statistical
power. The median survival time was 9.55 years. (95%
CI=I: 3.8-13.9). Our CARM1 survival investigation
revealed a marginally significant association of nuc-
CARM1 (WSR P=0.0186) but no association with cyt-
CARM1 (Table 2 and Figure 8).
Lastly, while the Afr. Am. vs. Cau survival curves

mimic the national trends (Figure 6), interestingly, we
can detect an increase in mortality disparities within the
ER-negative tumor categories (Figure 9), which includes
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all histological tumor categories. This finding reveals
that, first, the ethnic group disparities are not simply
due to the ER-negative status and second, that there is a
larger ‘race effect’ in the ER-negative sub-categories that
was confounded in the ‘all tumors’ survival curve. We
hypothesize this reveals a biological difference between
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ever, given that the disparities decrease to approximately
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10% in the ER-positive tumor categories (Figure 9), and
these patients were all recruited and treated from within
the same hospital system with standardized treatment
protocols; we are focusing our efforts on pathological dif-
ferences, rather than subtle and subjective patient care
variables. Interestingly we did identify an association with
CARM1 and survival within the ER-negative tumor types
(Additional file 2: Figure S1).

Conclusions
We have determined that differential expression and
localization of CARM1 is associated with two molecular
subtypes of breast cancer (HER2+ and basal-like) but could
not identify an association with the histological subtypes or
pathological progression of tumors from DCIS to metastasis.
We conclude that the sub-cellular localization of CARM1
is somehow related to the specific differentiation of mo-
lecular tumor subtypes. These molecular subtypes are
directly linked to the expression of specific hormone recep-
tors. Specifically, we find that the presence of EGFR and
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Figure 9 ER status and subgroup survival trends. Compared to the 30%
(Figure 6), disparities decrease to 10% in the ER positive tumor category (to
While both ethnic groups show a lower survival rate in ER negative tumor
HER2 in specific tumor subtypes corresponds with distinct
expression and localization of CARM1, suggesting poten-
tial interactions between CARM1 and these hormone re-
ceptors. Our results show that in tumors where HER2 is
over-expressed, CARM1 is generally upregulated with
higher levels found in the nucleus. However, when EGFR is
expressed (in the absence of ER) CARM1 levels are higher
in the cytoplasm. In the absence of HER2 amplification or
EGFR, CARM1 has higher levels in the nucleus. Lastly, in
the ER- context, CARM1 has higher levels in the cyto-
plasm. These are insightful findings which cumulatively in-
dicate distinct CARM1 activity and function among
specific tumor subtypes. Factors which facilitate the sub-
cellular localization CARM1 may play a vital role in breast
cancer subtype etiology.
In addition, we have identified an association between

CARM1 expression and ethnicity in our cohort. Specific-
ally, we observe significantly higher levels of cyt-CARM1
in the African race group, independent of tumor cat-
egories, relative to the higher levels of nuc-CARM1 in
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Afr. Am. and Cau patients. Most tumor sections show
an apparent nuclear exclusion of CARM1 in the African
samples (data not shown). This suggests an underlying
influence on protein localization that may be unique to
a specific ethnicity group. This is a plausible hypothesis;
given there are polymorphisms in CARM1 which alter
the amino acid sequence and are specific to the correla-
tive HapMap ancestral group. Follow-up studies, using
Ancestral Informative Markers to quantify genetic an-
cestry, will help elucidate these ethnicity associations.

Methods
Cohort description, sample numbers and objectives
This cohort study was IRB approved at the University of
Chicago through the Center for Interdisciplinary Health
Disparities Research. Of the 796 patient samples, 160
did not have enough tissue remaining for either nuc-
CARM1 or cyt-CARM1 due to previous sectioning of
the TMA block. Therefore, our analyses are based on
immunohistochemical (IHC) results obtained from 635
samples across 8 tissue-microarrays (TMAs) were joint
nuc-CARM1 and cyt-CARM1 could be obtained. Of the
total number of complete CARM1 samples, 480 have
relevant ER, PR, HER2, c/k 5/6 and EGFR data for the
molecular subtype analyses. The TMA sample compila-
tions were designed to investigate the differential expres-
sion and statistical associations of oncogenes in breast
tumor and adjacent normal tissues. The original complete
cohort includes approximately 800 tissue core samples
from 549 individuals belonging to African (Nigerian)
(308), Afr. Am. (114), Caucasian (Cau) (95) and Native
American (1) self-identified ethnic groups (31 patients
had no ethnic group information). Domestic samples were
obtained from patients that were admitted through the
University of Chicago system between years 1992 to 2002.
African samples were obtained through collaboration with
O. Olopade and Nigerian resources, as described in Huo,
2009 [58].
Our study objectives included an assessment of

CARM1 expression or localization and its associations
with 11 clinical factors. Specifically, in our analyses cyt-
CARM1 and nuc-CARM1 were the main response
variables while the clinical factors were the potential ex-
planatory variables. The clinical factors included; age
and tumor size as continuous variables, scores (on a scale
of 0–3) for tumor grade, ck5/6 IHC scores and EFGR IHC
scores used as ordered scale variables, nuclear receptor
status of ER, PR, HER2 as dichotomous 0/1 indicators and
purely categorical variables for molecular tumor subtype
(Luminal A, Luminal B, HER2+, Basal-like/Triple Nega-
tive) and histological tumor subtype (DCIS, Invasive,
Metastatic). Lastly, we conducted a preliminary investiga-
tion on CARM1-survival associations. Of our cohort sam-
ples with complete CARM1, ER and PR data, 46% and
34% were scored positive for ER and PR, respectively. See
statistical analyses section for more information on testing
design. (See Additional file 3: Table S2 for specific sam-
ples’ details and distributions).

Tissue microarray construction and composition
All samples used for this study were fixed in 10% forma-
lin and embedded in paraffin. Representative areas of the
different lesions (metastases into regional lymph nodes,
invasive carcinomas, carcinomas in situ, adjacent normal
epithelium) were carefully selected from hematoxylin and
eosin stained sections and marked on individual paraffin
blocks for the creation of TMA. The tissue cores 1mm in
diameter were precisely arrayed into a new paraffin block
as described by Kononen et al. [59]. TMAs were generated
using an automated arrayer (ATA-27, Beecher, Inc., Sun
Prairie, WI). A series of 15 TMAs were constructed, with
a combined composition of 857 cores representing tumor
and normal tissue specimens obtained from the Histology
and Pathology Department of University of Chicago and
from Nigeria, Africa, through collaboration between na-
tive hospitals and O. Olopade. In our TMA designs, we
have included a sub-set of individuals with multiple cores.
Each core was obtained from a distinct tumor and is not
considered a ‘same-tumor’ replicate, but rather represents
multiple lesions in the same individual at the time of
breast cancer diagnosis and surgical resection. Of note, we
surveyed the occurrence of multiple samples and observed
that African women were more likely to have only 1 core
(mean = 1.2 cores), relative to Caucasian or African-
Americans (mean = 1.8 cores). However, this variation
is most likely due to sample-gathering mechanisms and
protocols that differ between African and USA study
sites. For individuals with metastases samples (n = 50),
we have collected matching primary site specimens and
with the exception of 9 samples possibly lost during
slide processing; these samples were paired and indi-
cated in specified analyses.

Molecular and histological assessment of tumor subtypes
The tumor subtypes were defined in two ways, histo-
logical subtypes and molecular subtypes. The histological
subtypes are based upon histological characteristics of
tumor growth and morphology upon visual microscopic
evaluation by the certified histologist. The categories of
the histological subtypes include: DCIS, Invasive, Meta-
static or Normal. Tumors which did not fall under these
subtypes were not included in histological subtype ana-
lyses and did not have a suitable number to establish
additional categories (i.e. metaplastic). The molecular sub-
types were determined based upon categorical molecular
markers which are used to diagnose the clinical status of
the disease. These markers include the expression of; ER,
PR, EGFR, HER2 (gene amplification) and ck 5/6. The
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categories of the molecular subtype include; Luminal A,
Luminal B, basal-like, HER2+, triple-negative and unclas-
sified and were defined as previously reported [58]. In
brief, these subtypes are defined based upon the expres-
sion levels of specific hormone receptors (Estrogen Recep-
tor (ER), Progesterone Receptor (PR) and v-erb-b2
erythroblastic leukemia viral oncogene homolog 2 (ERBB2
or HER2). The presence of ER defines the Luminal sub-
types and the absence of PR distinguishes Luminal B from
Luminal B. The absence of all three is defined as “Triple
Negative”. When the triple negative tumors are further
characterized with EGFR and ck5/6 expression, they are
then categorized as ‘Basal-like’. The uncategorized tumors
lacked ER expression but data on other markers was not
successfully obtained. Tumors where categorized into one
of five categories for statistical analysis involving molecu-
lar subtypes, as the “triple-negative” tumors were com-
bined with “unclassified”.

Immunohistochemical staining and scoring
Primary antibodies against CARM1 were obtained from a
commercial source (ABCam; ab110024). IHC conditions
were optimized for proper dilution and secondary antibody
colorimetric development by the University of Chicago
Immunohistochemistry core facility using normal tissue
whole section serial dilution series. (Specific protocol can
be provided via personal communication.) Evaluation of
immunohistochemical staining IHC scoring was performed
by two independent reviewers without knowledge of
patient outcomes. All discrepancies were resolved by a
second examination by two observers simultaneously using
a multi-head microscope. The semi-quantitative analysis
was based on the evaluation of the intensity of cytoplasmic
and nuclear reaction for CARM1 analogous to the scoring
system as described by Hong H et al. [48].
Histological grading was performed based upon the

Elston-Ellis modified Scarff-Bloom-Richardson method
and a World Health Organization based three-tier grade
[60-64]. The results of the Brown Staining were evalu-
ated by visual inspection and based on the intensity of
the stain using a standard scale of 0–3 and as previously
reported for another subset of this population cohort
([58])Cut-off for positive staining was ≥10% of cells in
tissue core area and was assessed for each individual sam-
ple of each TMA. A random subset of 50 samples were
independently evaluated by one additional pathologist to
confirm scoring ranges and consistency. Examples of
negative control stains are in Additional file 4: Figure S2.

Statistical analyses
For our statistical measures we focused on 11 factors, in-
cluding; nuclear receptor status (ER and PR assessed as
positive or negative), HER2 amplification status (assessed
as positive or negative); IHC scores of ck5/6 and EFGR
(scored on a 0–3 scale of intensity), molecular or histo-
logical tumor subtype (see Pathologic Assessment sec-
tion of Methods), pathological grade (scored on a scale
of 1–3), age at diagnosis and tumor size. We also
conducted preliminary survival studies, which were sep-
arated into studies using only invasive cases and studies
which were inclusive of all molecular and histological
subtype category. Some secondary survival analyses were
conducted within molecular categories, but small sample
size renders these as preliminary observations.
Following discards from IHC processing damage and

QC assessment, there was sufficient CARM1 data for
796 samples obtained from 549 individuals, with 79 Cau,
92 Afr. Am. and 239 Africans (Additional file 3: Table
S2). IHC processing of other factors measured resulted
in artifacts and the additional loss of certain samples
and therefore are missing data necessary for some spe-
cific statistical comparison. These were discarded for
those particular analyses which the missing data are rele-
vant. The number of samples used for each major ana-
lysis is outlined in Table 1. Specifically, tumor subtypes
were considered in two ways, histological and molecular.
The ‘histological subtype’ parameter includes the sorting
of DCIS, invasive and metastatic categories, while the
‘molecular subtype’ parameter includes the sorting of
“Luminal A”, “Luminal B”, “HER2+”, “unclassified ER-“
and “basal-like”, based upon prior IHC analysis of these
samples and cases [65,66]. Subsequent analyses for
patho-clinical associations and overall survival outcomes
were initially based solely on invasive cases for which
only 371 patients were used. In all statistical tests, P-
values less than 0.05 were considered significant.
The primary response variables are cyt-CARM1 and

nuc-CARM1. The CARM1 scores were obtained in the
same manner as the EGFR and ck5/6 scores, on a 0–3
scale. Because the expression levels of nuc-CARM1 are
not directly correlated with cyt-CARM1 levels, we mea-
sured the associations of these variables separately and
also created a “relative CARM1 score” that equates to the
nuclear score, subtracted from the cytoplasmic score.
ANOVA and/or Random-effects ordinal regression

models were used for comparisons among tumor types.
Kruskal-Wallis tests were used determine significant dif-
ferences among variables. Spearman correlations were
used to determine relatedness. The Wilcoxon rank-sum
test was used in ethnicity tests and Kaplan-Meier gener-
ated survival curves underwent log-rank tests for sur-
vival associations. All statistical analyses were performed
and validated by independent statistician consultants
using various SAS and STATA 9.0 statistical packages as
previously described [58].
Search Tool for the Retrieval of Interacting Genes/Pro-

teins (STRING) version 9.0 was used to determine the
interaction model.
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Additional files

Additional file 1: Table S1. The summary of numbers of patients with
indicated tissue/tumor types. A subset of these are used for our intra-
patient analyses. The patients analyzed depends on the presence of the
tumor types in the comparison and successful stains for both nuc-CARM1
and cyt-CARM1 for all samples for that patient. The actual number of
patients utilized for each test is indicated in Table 3.

Additional file 2: Figure S1. Kaplan-Meier curves for cyt-CARM1 within
the ER negative (top) and ER positive (bottom) tumor categories. We find
a greatly significant association with survival and cyt-CARM1 for ER
negative cases, but no association within the ER positive cases.

Additional file 3: Table S2. Descriptive Tables of samples. Of the
samples that were retained for statistical analysis, the distributions within
categorical groupings are listed in indicated tables. These numbers are
reduced from the original numbers included in the TMA design, if
specific core samples were lost or damaged during IHC processing of any
category.

Additional file 4: Figure S2. Representative secondary antibody control
for our CARM1 IHC protocols.
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