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Abstract
Numerical and structural centrosome abnormalities are detected in various human malignancies
and have been implicated in the formation of multipolar mitoses, chromosome missegregation, and
chromosomal instability. Despite this association between centrosome abnormalities and
cancerous growth, a causative role of centrosome aberrations in generating chromosomal
instability and aneuploidy has not been universally established. We report here excessive numerical
and structural centrosome abnormalities in a malignant Burkitt's lymphoma harboring the
characteristic t(8;14) chromosomal translocation. Using conventional karyotyping and fluorescence
in situ hybridization (FISH), we detected no signs of ongoing numerical chromosome instability,
although the tumor displayed sporadic multipolar metaphases. These findings demonstrate that
centrosome abnormalities are not a universal surrogate marker for chromosomal instability in
malignant tumors. Moreover, our results suggest a model in which additional cellular alterations
may be required to promote centrosome-related mitotic defects in tumor cells.

Findings
Numerical and structural centrosome abnormalities are
hallmarks of various cancers and have been implicated in
the generation of multipolar mitoses and chromosomal
instability [1,2]. Centrosomes function as major microtu-
bule organizing centers in animal and human cells and
thus contribute importantly to proper spindle formation
and function during mitosis [3]. Normally, the single cen-
trosome of a G1 cell duplicates precisely once prior to
mitosis in a process that is intimately linked to the cell
division cycle [4]. Accurate control of centrosome duplica-
tion is critical for symmetric mitotic spindle formation
and thereby contributes to the maintenance of genome
integrity.

Various oncogenic stimuli have been associated with
abnormal centrosome numbers [5]. Centrosome altera-
tions in tumor cells are believed to lead to multipolar
mitosis, asymmetric chromosome segregation and aneu-
ploidy [2,6]. For most cancers, however, the association
between centrosome aberrations and malignant progres-
sion is merely based on correlation and a causative role of
centrosome abnormalities in establishing and maintain-
ing numerical chromosome instability as defined by
dynamic changes in chromosome copy numbers [7] has
not been universally established [6].

Here, we studied centrosome abnormalities and chromo-
somal instability in an abdominal lymph node biopsy
sample from a 19-years-old male patient with recurrent
Burkitt's lymphoma (the use of patient material in this
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Histology and karyotype of Burkitt's lymphomaFigure 1
Histology and karyotype of Burkitt's lymphoma. (A) H&E staining of a lymph node biopsy specimen from a patient with 
Burkitt's lymphoma. Scale bar indicates 50 µm. (B) Karyotype analysis. Arrows indicate breakpoints of the diagnostic t(8;14) 
chromosomal translocation. Arrowhead indicates loss of one copy of chromosome 17 (see text for details).
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study was approved by Harvard Medical School Office of
Research Subject Protection; HMS IRB docket # E012302-
1). Routine hematoxylin & eosin (H&E) staining of for-
malin-fixed, paraffin-embedded tissue revealed the histo-
morphology of malignant Burkitt's lymphoma (Fig. 1A).
Burkitt's lymphoma is a highly aggressive B cell neoplasia
with a characteristic t(8;14) chromosomal translocation
involving the c-MYC locus on chromosome 8 and typi-
cally the immunoglobulin heavy chain locus on chromo-
some 14 [8]. GTG-banded metaphase cells were obtained
from unstimulated 24 hour cultures and the t(8;14) chro-
mosomal translocation was detected in all fifteen met-
aphases analyzed (Fig. 1B).

Analysis of centrosome abnormalities was performed
using immunofluorescence microscopy for the pericentri-
olar marker γ-tubulin [9]. Briefly, tissue sections were
deparaffinized in xylene and dehydrated in ethanol. Slides
were then boiled in 10 mM citrate buffer (pH 6.0) for 30
min in a microwave oven followed by digestion with
Digest-All-3 pepsin solution (Zymed) for 5 min at 37°C.
Slides were blocked with 10% normal donkey serum
(Jackson Immunoresearch) for 15 min at room tempera-
ture followed by incubation with a mouse monoclonal
anti-γ-tubulin antibody (GTU-88; Sigma) at a 1:1000
dilution overnight at 4°C. After washing in PBS, sections
were incubated with a donkey anti-mouse rhodamine red
conjugated secondary antibody (Jackson Immunore-
search) at a 1:100 dilution in PBS for 2 hours at 37°C.
Cells were finally washed in PBS, counterstained with
DAPI (Vector), and analyzed by epifluorescence micros-
copy. Since normal centrosome duplication gives rise to
two centrosomes per cell, cells with more than two γ-tubu-
lin dots were considered abnormal. In addition, structural
centrosome abnormalities as characterized by deviations
from the typical dot-like staining pattern were assessed.

Numerical and/or structural centrosome abnormalities
were detected in approximately 30% to 50% of cells (Fig.
2A). Accurate detection of mitotic spindle poles, however,
was obscured due to tissue sectioning which precluded a
quantitative evaluation of centrosome-associated mitotic
abnormalities. However, some abnormal mitotic figures
were observed in H&E stained sections (Fig. 2B,2C).
Quantitation of more than one-hundred mitoses revealed
a normal configuration in 95% of cells (76% normal met-
aphases and 19% normal anaphases – Fig. 2B,2D). We
found a multipolar metaphase arrangement in 5% of cells
(Fig. 2C,2D), however, multipolar anaphases were absent.

To investigate whether the observed centrosome abnor-
malities were associated with ongoing numerical chromo-
some instability, chromosome 11 copy numbers were
analyzed by fluorescence in situ hybridization (FISH).
Chromosome 11 copy number changes are among the

five most frequently found numerical chromosome
abnormalities in Burkitt's lymphoma karyotypes retrieved
from the CGAP database [10]. For interphase FISH, a
Spectrum Green-labeled chromosome 11 α-satellite
probe (D11Z1) was used according to the manufacturer's
protocol (Vysis). None out of more than one-thousand
cells analyzed showed more than two copies of chromo-
some 11 (Fig. 2E). Consistent with this observation,
cytogenetic analysis revealed a single predominant
pseudo-diploid karyotype: 46, XY, t(8;14)(q24;q32),-17,
der(19)t(7;19)(q11.2;q13), +mar (Fig. 1B). This karyo-
type is in line with previous studies that showed no evi-
dence for gross aneuploidy in most Burkitt's lymphomas
[10]. The absence of ongoing numerical chromosome
instability was not due to impaired proliferative activity as
evidenced by the high mitotic index (Fig. 1A).

The tumor suppressor protein p53 is inactivated in up to
40% of Burkitt's lymphoma [11] and loss of one copy of
chromosome 17, which harbors the p53 gene, is found in
the case presented here. In order to test whether the
remaining p53 allele might be mutated and since most
mutant p53 proteins are stabilized [12], we performed
p53 immunofluorescence staining of the Burkitt's lym-
phoma in comparison to normal lymph node tissue (Fig.
3). Tissue sections were processed as described above and
incubated with a mouse monoclonal anti-p53 antibody
(DO-7, Novocastra) at a 1:100 dilution overnight at 4°C
followed by a rhodamine red-conjugated secondary don-
key anti-mouse antibody at a 1:100 dilution for 2 hours at
37°C. In contrast to normal tissue, immunofluorescence
analysis of the Burkitt's lymphoma revealed strong p53
positivity suggesting that the remaining p53 allele has
undergone mutation (Fig. 3).

Taken together, our results show that centrosome abnor-
malities do not necessarily correlate with ongoing numer-
ical chromosome instability and that even the presence of
multipolar metaphases is not sufficient to predict whether
a cell or a tumor is chromosomally unstable. This indi-
cates that numerical chromosome stability can be main-
tained in a tumor despite high-level centrosome
abnormalities. In conclusion, the impact of centrosome
abnormalities on genomic destabilization and malignant
progression needs to be analyzed in the context of the cel-
lular background in which these alterations occur.

The question why a tumor cell with centrosome abnor-
malities does not necessarily acquire numerical chromo-
some imbalances may have several answers. In general,
two models that lead to centrosome abnormalities with
distinct functional consequences can be envisioned [13].
According to the first model, numerical centrosome
abnormalities can arise as a consequence of abortive
mitotic events and impaired cytokinesis [14–16]. Under
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Excessive centrosome abnormalities without ongoing numerical chromosome instabilityFigure 2
Excessive centrosome abnormalities without ongoing numerical chromosome instability. (A) Centrosome 
abnormalities as detected by immunofluorescence microscopy for γ-tubulin. Arrow indicates a normal centrosome (corre-
sponding to lower right insert). Arrowheads indicate abnormal centrosomes (arrowheads and inserts correspond counter-
clockwise). Both numerical abnormalities (top right insert) and structural abnormalities with excessive γ-tubulin positive 
material are found (top left and lower left inserts). Nuclei stained with DAPI. Scale bar indicates 10 µm. (B) Normal mitotic fig-
ure detected in H&E stained section. Scale bar indicates 10 µm. (C) Abnormal multipolar mitotic figure in H&E stained section. 
Scale bar indicates 10 µm. (D) Quantitation of lymphoma cells undergoing metaphase or anaphase with a normal polarity 
(open bars) as opposed to an abnormal polarity (black bars) detected in H&E stained sections. More than one-hundred cell 
division figures were analyzed. (E) Fluorescence in situ hybridization (FISH) analysis for chromosome 11 confirms diploidy of 
the malignant lymphoma. Nuclei stained with DAPI. Scale bar indicates 10 µm.
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such conditions, centrosome abnormalities are unlikely
to cause expansion of a population of genomically unsta-
ble tumor cells because such cells are unable to complete
mitosis and to give rise to viable progeny. In striking con-
trast, studies in breast cancer and primary human cell
populations expressing the human papillomavirus type
16 (HPV-16) E7 oncoprotein provided evidence that
abnormal centrosome duplication can precede genomic
destabilization and arise in morphologically normal cells
with functional p53 [15,17]. Such cells have no inherent
cell division defects, and thus, they are more likely to
undergo abnormal mitosis even though additional check-

point mechanisms may need to be subverted in order to
give rise to chromosomally unstable daughter cells. In
support of the notion that abnormal centrosome numbers
and multipolar mitoses do not necessarily cause genomic
instability, it has been shown that in HPV E7-expressing
cells there are dramatic quantitative differences between
multipolar metaphase cells and cells with a multipolar
ana- or telophase configuration [18,19]. A similar finding
is presented here where multipolar anaphases were unde-
tectable despite approximately 5% of multipolar met-
aphase cells (Fig. 2B,2C,2D). The molecular basis for a
hypothetical checkpoint that halts mitotic progression in

Accumulation of p53 in Burkitt's lymphomaFigure 3
Accumulation of p53 in Burkitt's lymphoma. Expression of p53 was assessed by immunofluorescence staining (DO-7 
monoclonal antibody) using sections from a normal lymph node (upper panels) as negative control. The Burkitt's lymphoma 
(lower panels) shows strong immunoreactivity for p53. Scale bar indicates 50 µm.
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the presence of multiple spindle poles has not yet been
established [20]. Although p53 has been implicated in a
post-mitotic checkpoint following spindle disruption
[21], results presented here and reports by others [22,23]
suggest that checkpoint mechanisms other than p53 are
involved in suppressing aneuploidy. This does not rule
out that p53 inactivation contributes indirectly to
genomic destabilization [24] by interfering with apop-
totic cell death and thus allowing chromosomally unsta-
ble cells to remain in the proliferative pool. Another
mechanism that may limit chromosome missegregation
in the presence of multiple spindle poles involves coales-
cence of centrosomes whereby a bipolar spindle is formed
by clusters of multiple centrosomes [25].

Overexpression of c-MYC in vitro has been shown to result
in structural chromosomal aberrations [26] and DNA
damage [27]. Structural chromosome abnormalities in
addition to the t(8;14) translocation are frequently
detected in Burkitt's lymphoma including the case pre-
sented here. These findings, together with the observed
loss of one copy of chromosome 17, may indicate that
chromosomal instability might have been present at ear-
lier stages of lymphomagenesis.

Since overexpression of c-MYC can cause a G2/M arrest
and polyploidization [28,29], accumulation of centro-
somes in cells with impaired mitotic progression likely
accounts for the majority of cells with centrosome abnor-
malities. Whether the c-MYC oncogene can directly con-
tribute to the formation of multiple centrosomes in
otherwise normal cells as it has been shown for the HPV-
16 E7 oncoprotein [15] awaits further clarification.

In summary, our results show that numerical and/or
structural centrosome abnormalities are not a universal
surrogate marker for chromosomal instability. Further
studies are warranted to investigate whether other cancers
show a similar lack of correlation between centrosome
abnormalities and numerical chromosome instability.
Moreover, our study suggests that cellular mechanisms
other than p53 inactivation may interfere with progres-
sion through mitosis in the presence of centrosome-
related cell division defects. Further investigations
addressing these problems will help to lead to a more
definitive model of the role of centrosome abnormalities
in cancer development and progression.

Abbreviations
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