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Abstract
Background: Polymorphisms or mutations in hypoxia inducible factor-1 alpha (HIF-1alpha) that
increases its activity and stability under normoxia have recently been identified. Likewise,
disruption of the TSC1/TSC2 complex through loss of TSC1 or TSC2 has been shown to result in
abnormal accumulation of HIF-1α. Here, we investigate the novel polymorphisms in exon 12, that
approximate the oxygen-dependent degradation domain of HIF-1alpha in five cell lines and 28
patients with oral squamous carcinomas. Moreover, we assess for the presence of polymorphisms
and mutations in TSC1 and TSC2, to ascertain if dysregulation of such might complement HIF-
1alpha expression.

Results: Denaturing high pressure liquid chromatography (DHPLC) analysis on PCR fragments in
exon 12 of HIF-1alpha from 28 patients with OSCC revealed that 6 of 28 patients had mismatched
heteroduplex patterns. Genomic DNA was extracted from peripheral blood leukocytes and direct
sequencing showed that in 5 of the six cases these changes represented polymorphisms while, one
case was a somatic mutation. Analyses of TSC1 and TSC2 revealed heteroduplexes in exons: TSC1
exon 17; TSC2 exons 36,40, and 41. The relative levels of HIF-1alpha were significantly greater for
tumors possessing a HIF-1alpha polymorphism or mutation within exon 12, whereas tumors
possessing a deletion or polymorphism in TSC1/TSC2 displayed a trend for higher levels of HIF-
1alpha. Western blot analyses for HIF-1alpha, TSC1 and TSC2 in five SCC cell lines revealed high
levels of HIF-1alpha in SCC cells possessing TSC1 and/or TSC2 mutations. Wild-type TSC2 cells
targeted with siRNA to TSC2 exhibited increased levels of HIF-1alpha. Transfection of a HIF-1alpha
mutant produced higher levels of HIF-1alpha in TSC1/TSC2 mutant cell lines than in wild type cells.
TSC1/TSC2 mutant cell lines administered Rapamycin blocked S6 phorphorylation and diminished
the levels of HIF-1alpha to those observed in cell lines with wild type TSC1/TSC2.

Conclusion: Dysregulation of the TSC1/TSC2 complex by mutation compliments HIF-1α
polymorphisms in the expression of HIF-1alpha in SCC of the head and neck, and may provide
biomarkers to predict responses to specific therapies and overall disease prognosis.
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Background
Hypoxia, a frequent effect of solid tumor growth in head
and neck cancer and other cancers, serves to generate a
cascade of molecular pathways which include angiogen-
esis, glycolysis, and various cell-cycle control proteins.
These cell-salvaging mechanisms can be carried out rap-
idly by a transcription factor that reacts to hypoxic condi-
tions, the hypoxia-inducible factor-1 (HIF-1) [1]. HIF-1 is
a heterodimer consisting of an α subunit and a β subunit,
both of which are members of the basic helix-loop-helix
Per/Arnt/Sim (PAS) family [2]. Stability of this dimer is
dependent to a large extent on oxygen [3,4]. Thus, in the
presence of oxygen HIFα family members are hydroxy-
lated on one of two conserved prolyl residues. This is
achieved by members of the egg-laying-defective nine
(EGLN) family or prolyl hydroxylases (PHD1, PHD2, and
PHD3) that achieve hydroxylation, using Fe2+ and ascor-
bate as cofactors [5,6]. In so doing, prolyl hydroxylation
creates a binding site for a ubiquitin ligase complex con-
taining the von Hippel-Lindau (VHL) tumor suppressor
protein, which results in HIFα destruction [7-10]. Most
recently, OS-9, a ubiquitous cellular protein was shown to
be a common partner for HIF-α and the PHDs, as well as
to enhance prolyl hydroxylation and degradation of HIF-
1α [11]. Conversely, in cells where OS-9 mRNA was tar-
geted for degradation, increased HIF-1α levels and accord-
ingly increased HIF-mediated transcription were observed
[11].

HIFα transcriptional activation function is also modu-
lated further by asparagine 803 hydroxylation by the
asparagine hydroxylase, factor-inhibiting HIF (FIH),
which affects recruitment of the coactivators p300/CBP
[12-17]. Interestingly, VHL itself has also been implicated
in the direct regulation of HIF-1α transcriptional activity,
either by recruiting histone deacetylases or by recruiting
other transcriptional repressors such as pVHL-associated
KRAB-A domain-containing protein (VHLaK) [18]. Thus,
in VHL disease, loss of VHL function results in HIF-1α sta-
bilization and increased expression of HIF-1α target genes
as noted above. However, more recently it has become
apparent that HIF-1α may be expressed and transcription-
ally active during normoxia and high levels of HIF-1α
have been observed in some normal tissues and in many
tumors in the absence of apparent hypoxia or loss of VHL
function [19-21]. In fact, increased levels of HIF-1α have
been reported in colon, breast, stomach, pancreas, pros-
tate, kidney, esophagus and head and neck cancers [22-
24]. Accordingly, there is accumulating evidence that
hypoxic-independent mechanisms are attributable for
HIF-1α expression.

Despite the observed importance of HIF-1α stabilization
by way of VHL loss of function in human malignancies
[25], polymorphisms or mutations in HIF-1α that

increase its activity under normoxia have recently been
identified. These HIF-1α variants exhibit significantly
higher transcription activity than wild-type (WT) HIF-1α,
under normoxic conditions (P < 0.02). Furthermore,
tumors from HNSCC patients with heterozygous alleles
were shown to have significantly increased numbers of
microvessels. Thus, the elevated transactivation capacity
of variant forms of HIF-1alpha has implied a role of HIF-
1α polymorphisms in generating individually different
tumor progression profiles [26].

TSC1 and TSC2 constitute the tuberous sclerosis complex
and hamartin and tuberin constitute their respective pro-
tein products. Hamartin and tuberin have been consid-
ered to act as tumor suppressors [27]. The proteins
interact with each other and non-truncating mutations
that disrupt this complex have been shown to cause tuber-
ous sclerosis [28]. Functionally, hamartin stabilizes
tuberin by preventing its ubiquitination. This TSC1/TSC2
complex regulates activity of p70S6 kinase by inhibiting
mTOR by way of the PI3K/Akt/mTOR pathway [29]. In so
doing TSC1/TSC2 exert translational control of protein
synthesis and cell growth. Hamartin and tuberin deficient
cells also manifest increased proliferation and reduced
expression of the cyclin dependent kinase (CDK) inhibi-
tor p27 [30]. Furthermore, TSC1/TSC2 participate more
directly in cell adhesion [31]. Hamartin interacts with the
ezrin-radixin-moesin family of cytoskeletal proteins and
activates the small GTPase Rho that directs cell adhesion
by controlling activation of focal adhesion complexes; at
the same time, tuberin appears to mediate E-cadherin
directed cell adhesion through the β-catenin signaling
pathway [30,32,33].

The suppressor roles of hamaratin and tuberin have been
extensively investigated in organs that are affected by the
tuberous sclerosis phenotype. More recently, it has been
shown that aberrant expression of TSC1 and TSC2 may be
present in breast cancers, renal carcinoma, transitional
cell carcinoma, basal cell carcinoma, squamous cell carci-
noma and shagreen patches and may serve as a prognostic
marker in breast cancer [34-37].

Here, we investigate the novel polymorphisms in exon 12,
that approximate the oxygen-dependent degradation
domain of HIF-1α in 28 patients with oral squamous car-
cinomas. Moreover, we explore the presence of polymor-
phisms and mutations in TSC1 and TSC2, downstream
suppressors of Akt signaling, to ascertain if dysregulation
of such elements might complement HIF-1α expression.
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Results
Immunocytochemical staining of HI-1α in oral squamous 
cell carcinomas (OSCCs)
A total of 28 OSCCs were grouped as 8 HIF-1α negative
tumors;20 HIF-1α positive tumors. 10 of the 20 positive
tumors (50 %) were classified as showing high HIF-1α
expression. The frequency of high HIF-1α expression was
not apparent with tumor stage or grade according to TNM
system (Table I).

Polymorphisms and/or mutations in: exon 12 of HIF-1α, 
exons 1,2, and 3 in vHL and TSC1/TSC2
DHPLC analysis on PCR fragments in exon 12 of HIF-1α
from 28 patients with OSCC revealed that 6 of 28 patients
had mismatched heteroduplex patterns, indicating the
existence of polymporphisms or mutations (Figure 1). To
identify and confirm the existence of polymorphisms or
somatic mutations, sequencing of the PCR fragments
from all of the patients and cell lines was performed.
These investigations established a base change of C to T at

1772, and G to A change at 1790. The consequences of
such were substitution of proline for serine at codon 582
in 4 subjects, and an alanine for threonine at codon 588
in 2 subjects. To determine whether these were somatic
mutations or polymorphisms, genomic DNA was
extracted from peripheral blood leukocytes. Direct
sequencing showed revealed that in 5 of the six cases these
changes represented polymorphisms and in one case the
G to A change represented a somatic mutation (Table I).
DHPLC analysis on PCR fragments in exons 1,2 and 3 of
VHL from 28 patients revealed no heteroduplexes. Con-
versely, the analyses of TSC1 and TSC2 reveal heterodu-
plexes in the following exons: TSC1 exon 17; TSC2 exons
36,40, and 41. A summary of results is shown in table I.

Noteworthy, was that the relative levels of HIF-1α were
significantly greater for tumors possessing a HIF-1α poly-
morphism or mutation within exon 12. Interestingly,
tumors possessing a deletion or polymorphism in TSC1/
TSC2 displayed a trend for higher levels of HIF-1α and a

Table 1: Summary of SCC Tumors

Patient # Stage Grade HIF-1α Score HIF-1α P/M TSC1/2 P/M vHL P/M

1 2 WD 2 NC Exon 41(TSC2), P/G5346C NC
2 3 UD 1 NC NC NC
3 2 WD 3 NC NC NC
4 1 WD 2 NC Exon 41(TSC2), P/G5346C NC
5 2 MD 3 Exon 12, P/C1772T Exon 41(TSC2), P/G5346C NC
6 4 UD 2 NC NC NC
7 1 WD 1 NC Exon 41(TSC2), P/G5346C NC
8 2 WD 4 NC NC NC
9 1 WD 1 NC Exon 41(TSC2), P/G5346C NC
10 2 MD 3 NC NC NC
11 3 WD 3 Exon 12, P/C1772T Exon 41(TSC2), P/G5346C NC
12 2 MD 1 NC Exon 41(TSC2), P/G5346C NC
13 1 WD 1 NC NC NC
14 1 WD NC NC NC
15 3 MD 3 Exon 12, P/G1790A NC NC
16 2 MD 1 NC NC NC
17 2 WD 2 NC NC NC
18 2 WD 3 NC Exon 40 (TSC2) 528_5255 del NC
19 1 WD 2 NC NC NC
20 4 MD 2 NC NC NC
21 3 WD 3 Exon 12, P/G1790A NC NC
22 2 WD 1 NC NC NC
23 2 WD 1 NC NC NC
24 3 WD 2 NC NC NC
25 4 MD 2 NC NC NC
26 2 MD 3 Exon 12, P/C1772T NC NC
27 2 WD 2 NC NC
28 3 WD 4 Exon 12, M/C1771A Exon 36 (TSC2) 4681 delAG 40 (TSC2) 

5238_5255 del 41(TSC2) P/G5346C
NC

WD-Well differentiated;MD-Moderately Well-differentiated; UD-Undifferentiated;NC-No change wild-type; P-polymorphism; M-Mutation; del-
deletion
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single tumor with both a HIF-1α polymorphism and an
exon 36 and 40 TSC-2 deletion manifest the highest levels
of HIF-1α (Figure 2 & 3)

Western blot analyses for HIF-1α, OS-9, harmartin and 
tuberin in SCC cell lines
Western blot analysis for HIF-1α revealed high levels in
SCC-4a and SCC-25b while SCC 9 and SCC15 possessed
little or no levels of protein at normoxic conditions. How-
ever, when the cell lines were grown at in a hypoxic envi-
ronment of <0.5% oxygen the level of HIF-1α protein
were dramatically increased, especially in SCC-9 and SCC-
15 cell lines (not shown). The levels of vHL were near
equivalent for all of the cell lines (not shown) while the
levels of hamartin (TSC 1) were slightly diminish in SCC-
4a, and -25b cell lines compared with SCC-9, -15 and
SCC-11 cells. Tuberin (TSC2) levels were comparatively
diminished in the SCC-4a and SCC-25b cell lines (Figure
4).

Recognizing that the OS-9 enhances prolyl hydroxylation
and degradation of HIF-α, while in cells where OS-9 is
knocked-down, increased HIF-1α levels and increased
HIF-mediated transcription occur [11], we determined the
level of expression of OS-9 among the five cell lines. These
studies surprisingly revealed that the levels of HIF-1α did
not correlate well with the level of OS-9 expression and
that in the UMSCC-11 cell line the levels of OS-9 were the
greatest despite maintaining levels of HIF-1α during nor-
moxia (Figure 4 & 5).

TSC2 mutants and TSC2 targeted cells exhibit increased 
levels of HIF-1α
Although SCC4a and SCC 25b cells manifest high levels
of HIF-1α protein expression in normoxia, analysis of the

gene did not reveal any polymorphisms or mutation in
these or any of the other cell lines. Conversely, SCC-4a
revealed a frameshift deletion in exon 17 of TSC1and both
SCC4 a and SCC 25b cell lines revealed either deletions or
frameshifts involving TSC2 exon 40 (Table II). To deter-
mine if TSC2 down regulation could account for elevated
HIF-1α levels during normoxia TSC2 siRNA and a scram-
ble variant were introduced into SCC9 cells that possess
wild-type TSC1/TSC2 and manifest low to negligible lev-
els of HIF-1α during normoxia. SCC-4a cells containing a
TSC1 exon 17 deletion and a TSC2 exon 40 deletion were
also treated in a like manner. These studies resulted in ele-
vated levels of HIF-1α in SCC-9 cells resembling levels
observed in SCC-4a and SCC-25b cells, while like treat-
ment of SCC-4a cells produced little change in HIF-1α lev-
els. Noteworthy, was that treatment with the scrambled
siRNA did not amass HIF-1α in SCC-9 cells and had no
effect in SCC-4a cells. Together, these results indicate that
TSC2 loss or mutation may be sufficient for HIF-1α regu-
lation under atmospheric conditions (Figure 6). Transfec-
tion of the mutant P582S into SCC-4a cells produced
substantially higher levels of HIF-1α than transfections
with wild-type HIF-1α. Moreover, the levels of P582S HIF-
1α were greater in SCC-4a cells compared to SCC-9 cells,
which showed higher levels of HIF-1α than SCC-9 cells
transfected with wild-type HIF-1α (Figure 7).

Recognizing that mTOR, which is down stream of AKT,
mediates cell growth and protein synthesis, we employed
Rapamycin, a known inhibitor of mTOR, to determine if
this signaling pathway affected HIF-1α protein expres-
sion. Treatment of SCC 4a and SCC 25b cells under con-
ditions that have been shown to block S6
phorphorylation reduced the levels of phosphorylated S6
(Figure 8) and of HIF-1α to those observed in cell lines
with wild type TSC1/TSC2. Interestingly, Rapamycin had
little effect in SCC-9 and -15 (not shown) cells both of
which possess wild type TSC1/TSC2 (Figure 8).

Discussion
This study identified 6 cases of tongue SCCs from among
28 cases that manifest HIF-1α heteroduplexes within exon
12 of HIF-1α. Five of the cases were polymorphisms while
one case was shown to be a mutation. The two polymor-
phic variants, P582S and A588T, and the single case pre-
senting as a mutation were the same as those previous
described by Tamimoto et al. in a survey of 55 cases of
head and neck carcinomas [26]. Interestingly, the same
variants have also been described in renal carcinomas,
colorectal carcinoma and more recently among prostate
cancers [19,38,39]. The cases studied here showed signifi-
cantly higher levels of HIF-1α by immunohistochemistry,
however, there was no correlation between HIF-1α levels
with tumor stage or grade according to TNM system.
Although previous studies have suggested that the poly-

Representative DHPLC profiles of heteroduplexesFigure 1
Representative DHPLC profiles of heteroduplexes. 
HIF-1α heteroduplex, left panel and TSC2 heteroduplex, 
right panel. a) Wild-type HIF-1α exon 12, b) HIF-1α heter-
oduplex in exon 12; c) wild-type TSC2 exon 40 and d) here-
roduplex in exon 40 TSC2.
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morphic variants were always associated with tumors that
were greater than T2, the tumors in this study were not
part of a progressive series and tumor grading at a single
time point was not felt to provide any useful information,
albeit all HIF-1α variants were identified in tumors that
were graded as T2 or greater [26].

In that the substituted amino acids in the HIF-1α variants
identified here are located within or near the N-TAD,
interacting with E3 ubiquitin ligase pvHL, it has been sug-
gested that the protein expression levels observed in these
tumors and their observed greater transactivation capacity
may be due to alteration of the HIF-1α stability. Although
previous investigations using COS7 cells found no differ-
ences in protein degradation between wild-type HIF-1α
and the variant forms [26], more recently it has been dem-
onstrated that P582S HIF-1α stability in CV1 cells was less
responsive to iron chelators, which normally promotes
HIF-1α accumulation, than were cells possessing wild
type HIF-1α. Moreover, these investigators showed that
wild-type containing cells rapidly degraded HIF-1 in nor-
moxia while HIF-1α variants maintained protein levels
comparable to those observed during hypoxia [19]. Inter-
estingly, proline 582 is not considered as a site for HIF-1α
hydroxylation and this site is not been known to promote

vHL binding. In fact, site directed substitution of serine for
proline at this position has been shown to have no effect
on vHL binding after hydroxylation at proline 564 [40].
Although, some have considered that hydroxylation of
proline 582 may influence similar post-translational

Immmunohistochemical staining of SCC tumorsFigure 3
Immmunohistochemical staining of SCC tumors. 
Immunostaining for HIF-1α (SC10790), (Santa Cruz Biotech., 
Inc. Santa Cruz, CA, USA) was performed on 5 µM sections. 
Staining was analyzed with horseradish peroxidase-linked 
goat antimouse (Santa Cruz Biotechnology, Santa Cruz, CA) 
Tumors lacking HIF-1α (top panel) and tumors that manifest 
an exon 12 HIF-1α polymorphism and TSC deletions in exon 
36 and 40 (bottom panel).

The relative scores (0–4+) of HIF-1α levels in 28 squamous carcinomas of the tongue analyzes by immunohistochemistry and scanned using NIH image softwareFigure 2
The relative scores (0–4+) of HIF-1α levels in 28 squa-
mous carcinomas of the tongue analyzes by immuno-
histochemistry and scanned using NIH image 
software. a) HIF-1α negative, N, no polyporphisms or 
mutations identified for HIF-1α, or TSC1 or TSC2; b) HIF-
1α positive (2.1 ± .45), N, no polyporphisms or mutations 
identified for HIF-1α, or TSC1 or TSC2; c) HIF-1α positive 
(3.3 ± .3), P/M, HIF-1α polymorphism or mutation, N, no 
polymorphism or mutation in TSC1 or TSC2; d) HIF-1α pos-
itive (4.0), P/M, HIF-1α polymorphism mutation + TSC dele-
tion or mutation;e) HIF-1α positive (2.9 ± .4), N, no 
polyporphisms or mutations identified for HIF-1α, TSC 
deletion or mutation. (*, P < 0.05)
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modifications of the full-length HIF-1α molecule or suc-
cessive steps in the dependent degradation pathway, a
more methodological approach will be necessary to settle
this point [19].

Recently, we have shown that persistent activation of the
Akt pathway was a common event among head and neck
squamous carcinomas [41]. Consequently, we explored
downstream of Akt to ascertain whether polymorphisms
or mutations might explain the elevated levels of HIF-1α.
In so doing, nine cases from among the 28 tongue cancers
were identified that manifest TSC1 or TSC2 herteodu-
plexes upon DHPLC analysis. Among these, 8 of the cases
contained a polymorphism in exon 41 of the TSC2 gene.
This polymorphism, G5346C, has been previously shown
to be silent and have no effect on the gene product [42].
One of the cases, patient 18, also had frame-shift deletion
in exon 36 and exon 40 of TSC2 as well as being associ-
ated with an HIF-1α variant. This case showed extremely
high levels of HIF-1α expression suggesting that the two
events might complement each other. Interestingly, of the
three cells lines that possessed stable high levels of HIF-1α
during normoxia, two were shown to contain TSC2 dele-
tion mutations in exon 40 and one of them also contained
a frame-shift deletion in exon 17 in TSC1. In that TSC1/
TSC2 inhibit mTOR downstream from Akt signaling we
sought to substantiate that HIF-1α protein expression was
dependent on integrity of the TSC complex. The use of
siRNA strategies revealed that targeted degradation of the
TSC2 enhanced the levels of HIF-1α in cells containing
wild-type TSC2 whereas, the mutant cell line was refrac-
tive to such targeted degradation. These findings are in
consort with an earlier demonstration that TSC2 regulates
VEGF, a HIF-1 target through an mTOR pathway [43].

In solid head and neck squamous carcinomas Rapamycin
exhibits a potent anti-tumor effect in vivo, inhibiting

DNA-synthesis and inducing the apoptotic death of
HNSCC cells, which ultimately results in tumor regres-
sion. Similar results are not observed for cells grown in
vitro where the drug appears only to be cytostatic and only
reduced cell cycle progression, particularly by delaying
their entry into S phase, and by arresting cell lines in G1
phase at high doses. Those studies suggested that mTOR
may occupy a position at the crossroad of a network of
molecular pathways sensing the energy supply, growth
promoting or inhibitory factors, the metabolic status of
the cells, and the availability of nutrients, and integrates
this complex array of incoming information to regulate
the synthesis of proteins that are required for cell growth
[44]. The studies here showed that treatment with
Rapamycin had no effect on HIF-1α levels either during

Western blot for HIF-1α, TSC1, TSC2, OS-9 and ActinFigure 4
Western blot for HIF-1α, TSC1, TSC2, OS-9 and 
Actin. Cells were grown under normoxic conditions, har-
vested and analyzed using SDS-PAGE followed by Western 
blotting as described in Methods. The representative lanes 
are as follows: a) SCC-4a, b)SCC-9, c)SCC-15, d) SCC-25b, 
and e)UMBSCC-11.

Real-time PCR analysis for the relative expression of HIF-1α and OS-9 among five SCC cell linesFigure 5
Real-time PCR analysis for the relative expression of 
HIF-1α and OS-9 among five SCC cell lines. Cells were 
plated in 6-well plates using a density of 5 × 104 cells/well and 
were allowed to grow to 80% confluence. The cells were 
washed twice with cold PBS, lysed in RIPA buffer for 10 min 
and scraped. The extracts were centrifuged and equivalent 
amounts of protein (50 µg) were then separated by SDS-
PAGE and then transferred to polyvinylidene difluoride 
membranes. The membranes were blocked for 1 h in block-
ing buffer, which was subsequently replaced by the primary 
antibody in blocking buffer, overnight at 4°C. After incuba-
tion, the membranes were washed three times in washing 
buffer. Primary antibody was detected using horseradish per-
oxidase-linked goat antimouse (Santa Cruz Biotechnology, 
Santa Cruz, CA) or goat antirabbit IgG antibody (Santa Cruz 
Biotechnology) and visualized with SuperSignal West Pico 
chemiluminescent substrate (Pierce, Rockford, IL). The bands 
were scanned and quantified using NIH image software. The 
levels of HIF-1α were: SCC- 4a (1.0 ± 0), SCC- 9 (1.3 ± .2); 
SCC-15 (1.0 ± .3), SCC-25b (1.5 ± .5), and UMBSCC-11 (4.0 
± .7). The levels of OS-9 expression were:SCC-4a (1.0 ± 0), 
SCC- 9 (1.2 ± .3); SCC-15 (1.0 ± .3), SCC-25b (.5 ± .1), and 
UMBSCC-11 (7.6 ± .8). (*, P < 0.05)
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serum-rich or serum deprived condition in cells possess-
ing wild-type TSC1/TSC2, however, in the two cell lines
possessing a deletion mutation in TSC2 Rapamycin
diminished the levels of HIF-1α. Thus, implying that
mutations in the TSC1/TSC2 complex could in vitro tip
this scale towards an mTOR regulation of HIF-1 mediated
cell growth.

There is strong evidence that up regulation of HIF by
mTOR is a frequent mechanism regulating tumor growth.
Although the oncogenic events that have been associated
with mTOR upregulation of HIF have included persistent
activation of Akt, overexpression of HER2 and the BCR-
ABL, and inactivation of PTEN, similar effects may also be
achieved by dysregulation of the TSC1/TSC2 complex by
mutation, promoter hypermethylation [45], or by bind-
ing with HPV16 E6, which results in the proteasome-
mediated degradation of TSC2 [46]. The demonstration
here using established cell lines transfected with HIF-1α
and the P582S mutant indicates that alterations in HIF-1α
and TSC1/TSC2 compliment each other expressing ele-
vated levels of HIF-1α in the face of normal vHL and nor-
moxia. Whether such alterations in the TSC1/TSC2
complex coupled with HIF-1α polymorphisms influence
the progression to SCC of the head and neck needs to be
further assessed in a larger number of cases and may pro-
vide biomarkers to predict responses to specific therapies
and overall disease prognosis.

Materials and methods
Archival tissue material
Twenty eight primary squamous cell carcinomas (16
males and 12 females) of the tongue tumor were retrieved
from the Tumor Bank of the Greenebaum Cancer Center,
University of Maryland Baltimore. In that the identity of
the subjects was not identifiable by the parameters pro-
vided the investigation was judged as exempt by Institu-
tional Review Board.

Cell lines
Established cell lines of human oral squamous carcinoma
cells (SCCs) SCC-4a, -9, -15 and -25 b were obtained or
developed (SCC-4a reestablished from SCC-4 xenograph
and SCC-25b reestablished from SCC-25 xenograph)
from American Type Culture Collection (ATCC) (Manas-
sas, VA) UMBSCC11 was developed at the University of
Maryland Baltimore. For these studies, cells were cultured
in a 1:1 mixture of Ham's F12 and DMEM containing 10%
FBS, 100 U of penicillin, 100 µg/ml streptomycin and 0.4
µg/ml hydrocortisone (Sigma Chemical Co., St. Louis,
MO) at 37°C in a 5% CO2 air atmosphere (normoxia).
Cells were subcultured by disaggregation with trypsin
(0.1%)-EDTA (0.01%) in PBS at pH 7.5.

Protein lysate preparation and western blotting
Cells were plated in 6-well plates using a density of 5 × 104

cells/well and were allowed to grow to 80% confluence.
The cells were washed twice with cold PBS, lysed in RIPA
buffer (50 mM Tris [pH 7.4], 150 mM NaCl, 1% Triton X-
100, 1% deoxycholic acid, sodium salt, 0.1% sodium
dodecyl sulfate [SDS], 100 µg/ml phenylmethylsulfonyl
fluoride, 1 µg/ml aprotinin, 1 mM dithiothreitol and 1
mM sodium orthovanadate) for 10 min and scraped. The
extracts were centrifuged at 40,000 g for 15 min at 4°C.
Protein concentrations were measured and equalized
using Bio-Rad protein assay (Bio-Rad Laboratories, Rich-
mond, CA) according to the manufacturer's instructions.

Equivalent amounts of protein (50 µg) were then sepa-
rated by SDS-PAGE and then transferred to polyvinyli-
dene difluoride membranes. Equivalent loading was
confirmed by staining membranes with Ponceau-S. The
membranes were blocked for 1 h in blocking buffer (1×
Tris-buffered saline, 5% nonfat dry milk, and 0.1% Tween
20), which was subsequently replaced by the primary
antibody in blocking buffer, overnight at 4°C. After incu-
bation, the membranes were washed three times in wash-
ing buffer (1× Tris-buffered saline and 0.1% Tween 20).
Primary antibody was detected using horseradish peroxi-
dase-linked goat antimouse (Santa Cruz Biotechnology,
Santa Cruz, CA) or goat antirabbit IgG antibody (Santa
Cruz Biotechnology) and visualized with SuperSignal
West Pico chemiluminescent substrate (Pierce, Rockford,
IL). The bands were scanned and quantified using NIH
image software.

Plasmids, HIF-1α protein levels
The P582S HIF-1α mutant was produced by in vitro site
directed mutagenesis from HA-tagged wild-type HIF-1α in
pcDNA3 using Stratagene QuickChange Site-Directed
mutagenesis kit, as previously described [19]. To demon-
strate the levels of HIF-1α and mutant protein SCC-4a and
SCC-9 cells were transfected using the appropriate plas-
mid with Lipofectamine 2000 (Invitrogene) and the levels
assessed by Western blot using anti-HA epitope tag anti-
bodies and visualized with SuperSignal West Pico chemi-
luminescent substrate (Pierce, Rockford, IL) as described
above.

Immunostaining
Tumor tissue immunostaining for HIF-1α (SC10790),
(Santa Cruz Biotech., Inc. Santa Cruz, CA, USA) was per-
formed on 5 µM sections made from the above samples.
Staining was analyzed with horseradish peroxidase-linked
goat antimouse (Santa Cruz Biotechnology, Santa Cruz,
CA) or goat antirabbit IgG antibody (Santa Cruz Biotech-
nology). The samples were graded either as strongly posi-
tive (++++, where more than 70% of tumor cells expressed
staining), moderately positive (+++, 50% to 70% posi-
Page 7 of 11
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tive), Positive (++, 10% to 50% positive staining) or
weakly positive (+ < 10% positive staining) Negative and
positive controls were included in each batch.

Real-time RT-PCR assays
Total RNA was extracted from cells by using the RNAque-
ous kit #1912 (Ambion, Austin, TX, USA) and were
treated with DNase. Five µg total RNA was used for first-
strand synthesis. cDNA was used for PCR analysis of HIF-
1α (forward 5'-CCACAGGACAGTACAGGATG-3' and
reverse 5'-TCAAGTCGTGCTGAATAATACC-3'), OS-9 (for-
ward 5'-GGATGATGAAACAGCCAAGG-3' and reverse 5'-
GCACATAAGAGCAGGACAAG-3') and 18S rRNA (the

340 base pair fragment of 18s rRNA was used as the
housekeeping gene using 5'-AATTGACGGAAGGGCAC-
CAC-3' and 5'-CGGACATCTAAGGGCATCACAG-3' as for-
ward and reverse primers, respectively) [11]. Real-time
PCR was performed by using SYBR Green PCR Master Mix
and the Applied Biosystems 7000 Real-time PCR Detec-
tion System (ABI, Foster, Ca). Expression of HIF-1α
mRNA and OS-9 RNA relative to 18S rRNA was calculated
based on the threshold cycle (CT) for amplification as
2(∆CT). Melting-curve data for all the samples were
obtained to ensure specific amplification.

Statistical analysis
Data are presented as mean ± SEM. Differences between
experiments were analyzed for statistical significance (p <
0.05) by ANOVA or two-sample t tests as appropriate.

DNA extraction and polymerase chain reaction
Genomic DNA was isolated from peripheral blood mono-
nuclear cells and patient tumor samples to assess poly-
morphisms versus mutations using GenomicPrep. Cell
and Tissue DNA Isolation Kit (Amersham Biosci.; Piscara-
way, NJ). as described previously [47]. Genomic polymer-
ase chain reaction (PCR) was carried out in 50- µl reaction
volumes containing 100 ng genomic DNA, 0.5 mM prim-
ers, 0.2 mM dNTP, 5 ml reaction buffer (100 mM TRIS
pH8.3, 500 mM KCl, 15 mM MgCl2, 0.01% gelatin) and
1 U TaqPro Complete DNA polymerase (Danville Scien-
tific; Metuchen, NJ).

To assess HIF-1α we focused on the polymporphisms
found in human HIF-1α that resulted in an amino acid
substitution within exon 12. Consequently, PCR was per-
formed to amplify the 178-bp fragment of human HIF-1α
gene
(CATGTATTTGCTGTTTTAAAGGACACAGATTTAGACTTG
GAGATGTTAGCTCCCTATATCCCAATGGATGATGACTT
CCAGTTACGTTCCTTCGATCAGTTGTCACCATTAGAAA

The relative optical density of HIF-1α proteins from West-ern blotsFigure 6
The relative optical density of HIF-1α proteins from 
Western blots. SCC-4a and SCC-9 cells were treated with 
20 ng of siRNA directed against TSC2. A TSC2 scramble was 
included as an internal control and verified by Western blot-
ting (not shown). The cells were exposed for 30 minutes to 
EGF and then lysed. Representative gel bands corresponding 
to HIF-1α are immediately depicted above the bar graph. (*, 
P < 0.05)

Table 2: Summary of SCC cell lines

Cell Lines TSC1/TSC2 Nucleotide Change Type of Mutation HIF-1α Nucleotide 
Change

Type of Mutation

SSC4a Exon
17(TSC1)
40 (TSC2)
41 (TSC2)

2111_2112delAT 
(TSC1);
5238_5255del
G5346C

Frameshift in-frame 
deletion
Polymorphism

NC NC

SSC9 NC NA NA NC NC
SSC15 NC NA NA NC NC
SCC25b Exon

40(TSC2)
5238_5255del in-frame deletion NC NC

UMBSSC11 NC NA NA NC NC

WD-Well differentiated;MD-Moderately Well-differentiated; UD-Undifferentiated;NC-No change wild-type; P-polymorphism; M-Mutation; del-
deletion
Page 8 of 11
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GCAGTTCCGCAAGCCCTGAAAGCGCAAGTCCT-
CAAAGCACAGTTACAGTATTCCAGCAGACTC) using a
primer set, HIF-1α (forward 5'-CAT GTA TTT GCT GTT
TTA AAG-3') and HIF-1α (reverse 5'-GAG TCT GCT GGA
ATA CTG TAA CTG-3') under the following conditions: 30
cycles of denaturing at 95°C for 30 s, annealing at 61°C
for 30 s and extension at 72°C for 30 s. [19,26].

PCR primers for the amplification of TSC1 and TSC2
exons were as previously described [47]. 28 patient tumor
samples and negative (no DNA) control for each
amplimer were amplified. Cycling parameters were 95°C
for 12 min followed by 33 cycles at 53°C (TSC2 exons 2,
4, 5, 8, 11, 14, 15, 16, 17, 19 and 20), 55°C (TSC1 exons
3–14;TSC1 exons 15–23;TSC2 exons 3, 6, 7, 13, 21, 22,
25, 27, 28, 29, 30 and 33 fragment b TSC2 exons 1, 9, 10,

12, 23, 24, 31, 33 fragment c, 37, 39, 40 and 41) or 57°C
(TSC2 exons 18, 26, 32, 33 fragment a, 34, 35, 36 and 38)
for 1 min, 72°C for 1 min and 94°C for 1 min, with a final
step of 72°C for 10 min.

To assess vHL primer sets for all 3 exons were employed.
The primer sequences were as follows: for exon 1 (forward
5'-CGCGAAGACTACGGAGGTCG-3') (reverse 5'GGAT-
GTGTCCTGCCTCAAGGG-3'); exon 2 (forward 5'-ACCG-
GTGTGGCTCTTAACA-3'0 (reverse 5'-
CTTACCACAACAACCTTATCTT-3') and exon 3 (forward
5'-GCCTCTTGTTCGTTCCTTGTACT-3') (reverse 5'-GAT-
CAAGACTCATCAGTACCATC-3').

Denaturing HPLC
DHPLC was performed utilizing a WAVE DNA fragment
analysis system (Transgenomic, Omaha, NE). For these
studies five microliters of heteroduplexed PCR fragments
was injected onto the DNASep cartridge. Products were

a, b: The relative levels of HIF-1α and phosphorylation of s6K1 following treatment with Rapamycin in SCC-4a and SCC9 cellsFigure 8
a, b: The relative levels of HIF-1α and phosphoryla-
tion of s6K1 following treatment with Rapamycin in 
SCC-4a and SCC9 cells. a)The level of phosphorylation of 
s6K1 were determined following treatment of SCC-4a and 
SCC-9 cells with 25 µM Rapamycin for 30 minutes followed 
by EGF for 1h and then lysed. The cell extracts were sub-
jected to SDS-PAGE and immunoblotting. b) Cells were pre-
treated with 25 µM of Rapamycin as indicated for 30 min, 
and then exposed to EGF, after 1 hour the cells were har-
vested and the cell extracts subjected to SDS-PAGE and 
immunoblotting. Each bar indicates the mean and SD of three 
repeat wells. Representative gel bands are depicted above 
the bar graph. (*, P < 0.05)

a, b : Mutant HIF-1α P582S has enhanced protein levels in SCC cells possessing TSC1/TSC2 mutationsFigure 7
a, b : Mutant HIF-1α P582S has enhanced protein lev-
els in SCC cells possessing TSC1/TSC2 mutations. 
Full length, HA-tagged wild-type HIF-1α and P582S mutant in 
pcDNA3 plasmids were transfected into SCC-4a and SCC-9 
cells. a: Immunoblot of HIF-1α with anti-HAepitope-tag anti-
body. Anti-actin antibody was used as control for normaliza-
tion of protein samples. b:Relative optical density of Western 
blots bands of HIF-1α wild-type and P582S mutant in SCC-1a 
and SCC-9 cells. 10 ng, 50 ng, and 100 ng plasmid: a, b, c and 
g, h, i (WT), 10 ng, 50 ng, and 100 ng plasmid: d, e, f and j, k, l 
(P582S mutant). (*, P < 0.05)
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eluted at a constant flow rate of 0.9 ml/min with a linear
acetonitrile gradient determined by WAVEMaker software
(Transgenomic, Omaha, NE) based on the size and GC
content of the amplicon. The gradient was achieved by
combining 0.1 M triethylammonium acetate (TEAA)
buffer (pH 7) (Transgenomic) and Buffer B (0.1 M TEAA
with 25% acetonitrile) (Transgenomic). Eluted DNA frag-
ments were detected by the system's UV detector and ana-
lyzed as chromatograms. Homo- and heteroduplex peaks
were detected between the initial injection peak, pro-
duced by residual nucleotides and primers in the reaction,
and the wash peak, produced by the acetonitrile flush at
the end of each analysis. Melt profiles were constructed
using the WAVEMaker software (Transgenomic). A range
of partial denaturation temperatures was predicted by this
software. PCR products were initially analyzed under non-
denaturing conditions, 50°C, to assess the quality of the
peak representing both hetero- and homoduplex DNA
fragments in a mutant sample. All temperatures within
the predicted range for partial denaturation were then
assessed for their ability to resolve homo- and heterodu-
plexes. A single temperature was chosen where all mutants
could be resolved.

For HIF-1α DHPLC analyses heteroduplexes were
detected at 58.4°C. For TSC1 and TSC2 a list of the PCR
DHPLC run temperatures, run times and ACN gradients
used were those indicated by Jones et al. [47]. VHL heter-
oduplexes were detected at 61.5°C.

DNA sequencing
PCR products displaying an abnormal elution profile or
variant DHPLC melt profiles were directly sequenced by
using the Sequenase PCR Product Sequencing Kit accord-
ing to the manufacturer's instructions (Amersham).
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