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Abstract
Oral cancer develops through a series of histopathological stages: through mild (low grade),
moderate, and severe (high grade) dysplasia to carcinoma in situ and then invasive disease. Early
detection of those oral premalignant lesions (OPLs) that will develop into invasive tumors is
necessary to improve the poor prognosis of oral cancer. Because no tools exist for delineating
progression risk in low grade oral lesions, we cannot determine which of these cases require
aggressive intervention. We undertook whole genome analysis by tiling-path array comparative
genomic hybridization for a rare panel of early and late stage OPLs (n = 62), all of which had
extensive longitudinal follow up (>10 years). Genome profiles for oral squamous cell carcinomas
(n = 24) were generated for comparison. Parallel analysis of genome alterations and clinical
parameters was performed to identify features associated with disease progression. Genome
alterations in low grade dysplasias progressing to invasive disease more closely resembled those
observed for later stage disease than they did those observed for non-progressing low grade
dysplasias. This was despite the histopathological similarity between progressing and non-
progressing cases. Strikingly, unbiased computational analysis of genomic alteration data correctly
classified nearly all progressing low grade dysplasia cases. Our data demonstrate that high
resolution genomic analysis can be used to evaluate progression risk in low grade OPLs, a marked
improvement over present histopathological approaches which cannot delineate progression risk.
Taken together, our data suggest that whole genome technologies could be used in management
strategies for patients presenting with precancerous oral lesions.

Background
At present, risk of progression in oral premalignant
lesions (OPLs) is typically determined based on his-
topathological evaluation of biopsied material. High
grade dysplasia (HGD) and carcinoma in situ (CIS) are

considered high risk for progression to invasive disease. In
contrast, only a small proportion of low grade dysplasias
(LGDs) – which represent the majority of diagnosed OPLs
– progress to invasive disease [1,2]. Histological features
cannot currently be used to delineate "progressing" and
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"non-progressing" LGDs [3]. Consequently, LGDs that are
prime candidates for early intervention are not easily
identified. Novel approaches for defining progression
likelihood for histopathologically similar LGDs are
required.

Chromosome instability, particularly loss of chromosome
arms 3p and 9p, has previously been associated with an
increased probability of progression in oral cancer, dem-
onstrating the potential utility of molecular markers in
predicting progression risk [4-7]. Additionally, p53 status
has been used to predict progression in Barretts esophagus
and other groups have reported genomic instability in
tumor-associated dysplastic oral tissue [8-11]. To date,
efforts to undertake whole genome analysis of premalig-
nant lesions have been precluded by 1) the rarity of LGD
specimens with longitudinal follow-up and clinical out-
come details and 2) the lack of robust high resolution
genome profiling methodologies that can utilize the lim-
ited DNA yield from microdissected formalin-fixed paraf-
fin-embedded lesions. In this study, we compared the
genomes of precancerous oral tissues from different dis-
ease stages to identify stage-specific DNA alterations.
Analysis of this rare sample set not only revealed qualita-
tive and quantitative differences in DNA alterations
depending on histopathological stage, but also showed
that these features are associated with known clinical out-
comes.

Results and discussion
Genome profiles were generated by tiling-path array CGH
for a panel of 86 oral lesions with longitudinal follow-up
that included 24 invasive oral squamous cell carcinomas
(OSCCs) and 62 OPLs. This sample panel was comprised
of 32 HGD and CIS lesions, 21 non-progressing LGDs,
and nine progressing LGDs where the average time to pro-
gression to a higher grade was 27.2 months. (Demo-
graphic patient information are supplemental – see
Additional File 1: Table S1.) Two classes of segmental
changes were defined: whole chromosome arm changes
and segmental DNA copy number changes. Segmental
genomic gains and losses were defined using the aCGH-
Smooth algorithm (Figure 1) [12]. Similar to earlier find-
ings using locus specific probes, both Figure 1 and Figure
2 show how increases in lesion severity paralleled
increases in the degree of genomic instability (i.e. the
number of genomic alterations) [13,14].

HGDs, despite being classified as pre-invasive, showed a
degree of genomic instability comparable to what was
observed in invasive tumors; they had an average of 16.6
segmental DNA changes and 2.4 whole chromosome arm
changes per sample, while tumors averaged 23.2 segmen-
tal DNA changes and 3.5 whole arm changes. Interest-
ingly, the most frequently observed regions of genomic

alteration were different for HGD/CIS lesions as com-
pared to invasive tumors. In terms of whole chromosome
arm changes, the most commonly observed alteration in
HGD/CIS lesions was gain of chromosome 20p (10/32
cases). On the other hand, deletion of chromosome 3p
(11/27) and gain of chromosome 8q (9/27) were the
most commonly observed whole arm alterations seen in
invasive tumors. With respect to intra-chromosomal seg-
mental DNA copy number changes, the most commonly
altered regions in HGD/CIS lesions occurred within chro-
mosome arms 1p, 2q, 3q, 5q, 7q, and 8p, while the most
common changes seen for invasive tumors occurred
within chromosome arms 5p, 9q, 11q, and 19p (Figure
1). This may indicate that the genetic alterations that drive
disease initiation and progression are different from those
that drive tumor invasion, the earlier alterations masked
by subsequent genomic instability.

Amongst low grade dysplasias, only some cases appeared
to harbor genome alterations. Review of the clinical data
revealed a striking association between the presence of
genomic imbalances and subsequent progression to inva-
sive disease. Figure 3 shows a typical karyogram of a pro-
gressing LGD, where multiple alterations are apparent.
Across the progressing LGD cases, an average of 9.2
genomic changes was observed (either intra-chromo-
somal or whole arm alterations). Interestingly, no altera-
tions were shared by all progressing LGD cases.
Chromosome arm 9p was the most frequently altered
chromosome (altered in 78% of cases), followed by 8q,
20p, and 20q (each observed in 56% of cases). Of the 21
non-progressing LGDs, alterations were only detected in
four cases – and in these instances, only one or two
changes were typically observed.

The total genomic alterations for progressing LGDs more
closely resembled the HGD cases, which are known to
have a higher likelihood of progression (Figure 2) [15,16].
These data suggest that the degree of genomic instability
in a given OPL may have utility for predicting progression
likelihood. To investigate this further, we used patterns of
genomic alteration (Figure 1) to classify individual lesions
relative to the rest of the sample panel. We first evaluated
whether DNA alteration features could be used to differ-
entiate lesions with a high risk of progression and tumors
(HGD, CIS lesions, OSCCs) from lesions that did not
progress (non-progressing LGD lesions). Specifically, we
used a k-nearest neighbor statistical analysis (where k = 3;
see Methods) to test if these very different groups could be
distinguished based on the number of DNA alterations
they harbored (with whole chromosome arm and seg-
mental changes weighted equally) [17]. Each sample was
called as either "HGD/CIS/OSCC" or "non-progressing
LGD" based on a consensus comparison against the three
closest samples, as defined by a Euclidean distance calcu-
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Summary of chromosomal alterations for all 86 casesFigure 1
Summary of chromosomal alterations for all 86 cases. Samples are grouped into non-progressing low grade dysplasias, 
progressing low grade dysplasias, high grade lesions (severe dysplasia and CIS lesions), and oral squamous cell carcinomas. A 
blue box indicates the presence of at least one segmental change on the chromosome arm and a red box represents a whole 
arm alteration. Copy number changes due to polymorphic regions were not included in the analysis. Case numbers are listed 
to the left, while chromosome arms are listed at the top.



Molecular Cancer 2009, 8:50 http://www.molecular-cancer.com/content/8/1/50
lated using the number of DNA alterations (the histologi-
cal subclass was known for all samples except the given
test case). If multiple samples were of equal distance from
the unclassified sample, then all of the samples at that dis-
tance were used. For example, if five samples shared the
third closest distance, a total of seven samples would be
used in deriving the consensus classification (the first two
nearest neighbors, plus the five neighbors with equal dis-
tance). This blind approach, based solely on analysis of
genome alterations, correctly classified most of the sam-
ples we analyzed, including 81% of the LGDs and 87.5%
of the HGD/CIS/OSCC lesions. Moreover, the difference
in the number of segmental alterations between non-pro-
gressing LGDs and HGD/CIS/OSCC was statistically sig-
nificant (Mann Whitney U test, p < 10-12).

Given our earlier observation that the genome features of
progressing LGDs more closely resembled higher grade
lesions than non-progressing LGDs, we next checked to
see if patterns of DNA alteration could be used to distin-
guish between progressing and non-progressing LGDs. To
do this, we applied the same k-nearest neighbor approach
described above. Briefly, we analyzed each progressing
LGD genome profile against all of the genome profiles
generated for the non-progressing LGDs and the HGD/
CIS/OSCC lesions. (DNA alterations were defined and
weighted as above.) If the progressing lesion more closely
resembled the high grade lesions and tumors, it was clas-

sified as a progressing LGD. If it more closely resembled
the non-progressing LGDs, it was grouped with those
cases. This approach correctly classified 88.9% of the pro-
gressing LGD lesions and the difference in the number of
segmental alterations between non-progressing LGDs and
progressing LGDs was also statistically significant (p < 10-

4). This rate of successful classification stands as a marked
improvement over current histopathological approaches,
which are not at all able to predict progression likelihood
for LGDs.

Conclusion
This study provides the first detailed analysis of the
genomes of oral premalignant lesions and supports the
use of genome profiling as a clinical tool for predicting
progression risk. The recent association of chromosomal
instability with post-resection oral tumor recurrence also
supports application of genomic tools for guiding man-
agement strategies [18]. Comparative analysis of the
genome profiles of these early stage specimens revealed a
conspicuous difference in the abundance of genetic alter-
ations between low grade dysplasias that progressed to
invasive disease and those that did not. The genome pro-
files of low grade OPLs known to progress to cancer more
closely resembled profiles of high grade OPLs than they
did those of non-progressing low grade OPLs. This was
despite the histopathological similarity between progress-
ing and non-progressing cases. As with the higher grade
lesions, progressing low grade OPLs showed complex pat-
terns of genome alteration. These alterations included
both gross chromosomal aberrations, which include
whole arm and whole chromosome amplifications and
deletions, as well as localized intra-chromosomal seg-
mental gains and losses (alterations in some instances
that would have been too small to detect by conventional
molecular cytogenetic techniques). These findings, com-
bined with previous reports linking loss of heterozygosity
status to disease progression, demonstrate that there are
multiple genetic mechanisms involved in progression to
invasive oral cancer. More importantly, they show that
characterization of genomic alterations in low grade dys-
plasias can be used as an effective predictor for disease
progression likelihood.

Methods
Tissue samples
Formalin-fixed paraffin-embedded tissue blocks were
obtained from the British Columbia Oral Biopsy Service
and diagnoses were confirmed by an oral pathologist.
Cells of the OPLs and tumor were microdissected from
H&E-stained sections. Only samples with greater than
80% tumor cell content were used in this study. Microdis-
sected tissue was placed in a sodium dodecyl sulfate solu-
tion with proteinase K at 48°C and spiked with additional
enzyme twice a day for 72 hours. Genomic DNA was

Box plot showing percentage of genome alteredFigure 2
Box plot showing percentage of genome altered. As in 
Figure 1, samples are grouped into non-progressing LGDs, 
progressing LGDs, HGD/CIS lesions, and OSCCs. Genome 
altered was calculated by dividing the number of clones 
deemed changed (gain or loss), by aCGH-Smooth, by the total 
number of clones assayed for each sample. Chromosomes X 
and Y were excluded from this analysis.
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Whole genome tiling path array CGH karyogram of an oral low grade dysplasia which subsequently progressed to cancerFigure 3
Whole genome tiling path array CGH karyogram of an oral low grade dysplasia which subsequently pro-
gressed to cancer. Whole genome tiling path array CGH karyogram of an oral low grade dysplasia which subsequently pro-
gressed to cancer (Oral51). Each dark blue dot on the karyogram represents the average signal ratio for an individual BAC 
clone from the array. Clones were plotted vertically against known chromosomal position. Log2 signal intensity ratios for each 
clone were plotted horizontally, with colored vertical lines denoting log2 signal ratios from -1 to 1. Where the signal intensity 
ratio equals zero (purple line), equivalent DNA copy number between the sample and the reference DNA was inferred. Alter-
natively, DNA copy number increases were inferred where log2 > 0 (red line) and losses were inferred where log2 < 0 (green 
line). Numerous whole chromosome, whole arm, and segmental changes are apparent. Examples of these alterations were 
magnified and are represented in orange boxes. High level segmental amplicons for chromosome 2 and 4 are depicted in this 
manner. Lower copy number segmental (chromosome 8) and whole arm (chromosome 12) gains are similarly shown. The 
magnified image for Chromosome 9 shows a complex genomic rearrangement that includes multiple segmental losses and a 
high level segmental amplification event.
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extracted by a standard phenol:chloroform/ethanol pre-
cipitation protocol. Samples were selected for further
study based on the quantity and quality of DNA. Demo-
graphic information for these samples can be viewed in
Additional File 1: Table S1. All lesions were obtained from
different patients and were taken before treatment was
given.

Whole genome tiling-path array comparative genomic 
hybridization (CGH)
The array platform, comprised of 26,363 overlapping ele-
ments, was manufactured on site, as previously described
[19,20]. Briefly, 200 ng of test and reference DNA were
separately labeled with Cyanine-3 and Cyanine-5 dCTPs
Using the BioPrime DNA labeling system (Invitrogen,
Burlington, Ontario, Canada). DNA probes were then
pooled and unincorporated nucleotides were removed
with a YM-30 Microcon centrifugation tube (Millipore).
Next, 100 μg of Cot-1 DNA (Invitrogen) was added and
the entire mixture was precipitated. This material was then
re-suspended in a 45 μl cocktail consisting of DIG Easy
hybridization solution (Roche), sheared herring sperm
DNA (Sigma-Aldrich), and yeast tRNA (Calbiochem).
Probe denaturing and blocking steps followed at 85°C
and 45°C for 10 minutes and for one hour respectively.
Subsequently, the probe mixture was applied to the sur-
face of the array, coverslips were applied, and arrays were
incubated at 45°C for 36 hours. Slides next underwent
five agitating washes in 0.1× saline sodium citrate, 0.1%
SDS at 45°C (each wash ~5 min). Rinses with 0.1× SSC
followed, then drying by centrifugation. Genome profiles
are available online through the NCBI Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/,
GSE11275).

Imaging and analysis
A CCD-based imaging system (Arrayworx eAuto, API,
Issaquah, WA) was used to determine signal intensities in
each dye channel. Images were analyzed with Softworx
array analysis software. Experimental bias due to the array
platform was removed using a stepwise normalization
framework [21]. All spots with standard deviations > 0.1
were excluded from the analysis. Custom viewing soft-
ware, SeeGH, was used to visualize all data as log2 ratio
plots [22]. Array probes were aligned based on the May
2004 mapping of the human genome. To delineate
regions of copy number gain and loss, segmentation anal-
ysis was performed on array data using the aCGH-Smooth
algorithm (default parameters were used on all settings
except for the following changes: lambda value = 6.75,
maximum number of breakpoints in initial pool = 100,
minimum difference between levels = 0.2) [12]. The copy
number status for clones filtered by the above criteria was
inferred by the status of neighboring clones. A chromo-
some arm was considered changed if ≥ 90% of clones
spanning the arm exhibited the same alteration status. A

segmental change was defined as being a continuous alter-
ation between 10 clones and half a chromosome arm in
size. Segmental alterations reported to be polymorphisms
were excluded from analysis [23]. Tumor genome profile
data are available online through the NCBI Gene Expres-
sion Omnibus (http://www.ncbi.nlm.nih.gov/geo/, acces-
sion number GSE11275).

Statistical analysis
K-nearest neighbor analysis was used to classify the sam-
ples based on the number of segmental and whole chro-
mosome arm changes that were present. Since an even
number of groups existed, we used the nearest three
neighbors. A standard Euclidean distance metric was used
to determine the distance to each neighbor, with equal
weighting given to both segmental and whole arm
changes. If more than three neighbors were at equal dis-
tance, all neighbors at that distance were used.
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