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Abstract

Human serum and other body fluids are rich resources for the identification of novel biomarkers, which can be
measured in routine clinical diagnosis. microRNAs are small non-coding RNA molecules, which have an important
function in regulating RNA stability and gene expression. The deregulation of microRNAs has been linked to cancer
development and tumor progression. Recently, it has been reported that serum and other body fluids contain
sufficiently stable microRNA signatures. Thus, the profiles of circulating microRNAs have been explored in a variety
of studies aiming at the identification of novel non-invasive biomarkers.
In this review, we discuss recent findings indicating that circulating microRNAs are useful as non-invasive
biomarkers for different tumor types. Additionally, we summarize the knowledge about the mechanism of
microRNA release and the putative functional roles of circulating microRNAs. Although several challenges remain
to be addressed, circulating microRNAs have the potential to be useful for the diagnosis and prognosis of cancer
diseases.

Background
One of the major challenges in cancer research is the
identification of stable biomarkers, which can be routi-
nely measured in easily accessible samples. Over many
decades it has been shown that cell-free DNA and RNA
is present in serum and other body fluids and that these
circulating nucleic acids may represent potential bio-
markers (reviewed in [1-3]). One decade ago, micro-
RNAs (miRNAs) were discovered as a novel class of
evolutionarily conserved small (18 - 24 nucleotides)
non-coding RNA molecules, which are important regu-
lators of gene expression [4,5]. By targeting the 3’
untranslated region (UTR) of mRNA transcripts, miR-
NAs influence RNA stability and translational efficiency
via degradation or protein translation inhibition, respec-
tively [4,6-9]. Thus, alterations in miRNA-expression
can affect crucial biological processes in cancer deve-
lopment and progression, such as proliferation, differ-
entiation and apoptosis [10,11]. For example, the
well-described let 7 miRNA family is evolutionary con-
served from C. elegans to humans and has been shown
to directly target the human RAS oncogenes [12]. In
humans, significantly reduced expression of let-7 family

members has been found in various cancers including
lung, colon, ovarian, and gastric cancer, as well as leio-
myoma and melanoma [13]. Its decreased expression is
associated with a significantly shorter survival of lung
cancer patients and promotes the colony forming ability
of lung cancer cells in vitro [14]. miRNA 221 and
miRNA 222 are located on chromosome X, and have
been reported to be up regulated in various tumor types
such as ovarian cancer [15], hepatocellular cancer [16]
and glioblastomas [17]. Both miRNAs were shown to
promote cell growth, cell cycle progression and invasion
in these cancer types in vitro and in vivo [16,17]. Thus,
they act as so-called “oncomirs”. These effects are
mediated by the direct inhibition of the tumor suppres-
sors PTEN [18] and CDKN1B [15].
Similar to mRNA, the expression of miRNAs can be

influenced by several factors, e.g. chromosomal re-
arrangements, promoter methylation changes and regu-
lation of transcription, all of which are known to occur
in human malignancies [19-22].

Cell-free miRNAs and possible release
mechanisms
While miRNA presence is relevant for the regulation of
cancer-associated genes in tissues, the possibility to
extract and reliably determine cell-free miRNA content
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in body fluids like serum was first shown in 2008 [23].
This finding was confirmed by a subsequent study
revealing that miRNAs are enriched in the small RNA
fraction isolated from serum samples [24]. Cell-free
miRNAs in body fluids are stable under harsh condi-
tions including boiling, low/high pH, extended storage
and multiple freeze-thaw cycles [24-28]. In contrast,
synthetic miRNAs were found to be quickly degraded by
the high levels of RNAse activity in plasma [25]. Filter-
ing and differential centrifugation experiments suggest
that miRNAs are not derived from cells circulating in
the blood [25]. At present, there are at least two possi-
ble explanations for the stability and origin of circulating
miRNAs:
One hypothesis is that passive release occurs during tis-

sue injury. For example, miRNA-208 was shown to be
exclusively expressed in the heart and was measured in
the serum after heart tissue injury [29]. The same unspe-
cific release could also exist in cancer, since the high rate
of proliferation and cell lysis in tumors might contribute
to the abundance of miRNAs in the blood stream. Alter-
natively, miRNAs are contained in small particles and are
therefore protected against RNase activity. Recently, it
has been shown that a transfer of mRNA and miRNA
between cells can be accomplished through microvesicles
[30]. These are small (50 nm to 100 nm) particles, which
are shed from the cell plasma membrane into the extra-
cellular space and released into the blood stream [31,32].
Microvesicles are derived from different cell types, e.g.
reticulocytes, dendritic cells, B/T cells and mast cells
[33-37]. Additionally, it was shown that non-hematopoie-
tic cells like intestinal epithelial cells and neuroglial cells
are capable to release microvesicles [38,39].

Putative functional roles of circulating miRNAs
Microvesicles, also known as exosomes, are supposed to
be important for cell-cell communication. However, the
role of incorporated miRNA molecules is unclear. Hun-
ter et al. compared the expression levels of miRNAs
from microvesicles with that of platelets and peripheral
blood mononuclear cells in healthy individuals [40]. Sig-
nificant differences were found and target prediction
demonstrated that the majority of the miRNAs from the
microvesicles are involved in the regulation of hemato-
poiesis and cellular differentiation [40].
Recently, the mechanism of microvesicle based

miRNA release was reported to involve a ceramide-
dependent secretory machinery [41]: Kosaka and collea-
gues showed that miRNA abundance changes after
overexpression and inhibition of a rate-limiting enzyme
involved in ceramide biosynthesis [41]. Interestingly,
they also found that miRNAs are transported in micro-
vesicles and exert gene silencing in recipient cells. The
recent data suggest that cells can actively secrete

endogenous miRNAs. However, it remains unclear
whether there is a specific mechanism leading to an
increase of certain selected miRNAs.
Although the exact mechanism for microvesicle for-

mation and nucleic acid incorporation is still unknown,
exosomes seem to have important roles in cell-cell com-
munication [32]. Therefore, the contained miRNAs
could also have important functions in tumor develop-
ment and progression: In 1979, it was shown that tumor
related exosomes are present in the blood of women
suffering from ovarian cancer [42]. Recently, the quan-
tity of tumor-derived exosomes in the peripheral circu-
lation has been found to be highly correlated with
ovarian cancer stages [26]. Moreover, the miRNA con-
tent of tumor cell-derived exosomes is correlated to the
miRNA level in the primary tumor [26,43]. Skog et al.
reported that glioblastoma-derived RNA contained in
microvesicles is functional and is taken up by and pro-
cessed in human brain microvascular endothelial cells
(HBMVEC) in cultures [44]. This lead to the hypothesis
that tumor cells use exosomes to transport genetic
information, including miRNAs, to surrounding cells
and thereby support tumor growth and progression [44].
If this hypothesis holds true, miRNAs could be suitable
candidates to manipulate the microvesicles’ target cells
by regulating their RNA stability and translation. More-
over, circulating miRNAs might modulate immune
responses [45,46]: For example, microvesicles derived
from human melanoma and colon cancer can promote
tumor growth and immune escape by mediating the dif-
ferentiation of monocytes towards TGFb-secreting mye-
loid suppressive cells [45]. However, it has not been
investigated if these effects are mediated by the miRNAs
contained in the microvesicles.

Circulating miRNAs reflect physiological and
pathological changes
In healthy individuals, the levels of cell-free miRNAs
present in sera are stable [24,27]. Under healthy condi-
tions, the serum miRNA profile is similar to that of cir-
culating blood cells [24]. Thus, alterations of serum
miRNA levels may be indicative of physiological or
pathological changes and may possibly be used as surro-
gate biomarkers [47]. For example, circulating miRNAs
were found in the sera of pregnant women [27]:
miRNA-526a, miRNA-527 and miRNA-520d-5p showed
a considerably high fold-change and could be used to
distinguish pregnant from non-pregnant women with
high accuracy. Moreover, placenta derived miRNAs (e.g.
miRNA 141, miRNA 149, miRNA 299 5p and miRNA
517a) are detectable in the maternal plasma, and their
concentrations decrease directly after childbirth [48,49].
Therefore, miRNAs have been discussed as novel non-
invasive markers for prenatal diagnosis [48].
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As to pathological changes, tissue specific miRNAs
were analyzed in the blood stream as markers for myo-
cardial injury and drug induced liver injury: A rat model
of acute myocardial infarction demonstrated that the
plasma levels of the cardiac-specific miRNA-208 and
miRNA-499 are increased in this disease [50]. These
miRNAs are also elevated in the plasma of human
patients with acute myocardial infarction [50,51]. Drug
induced liver injury, a frequent side effect which signifi-
cantly influences the patient’s health and treatment
costs, is associated with increased plasma levels of
miRNA 122 and miRNA 192 in a mouse model [52].
Cell-free miRNAs are also associated with inflamma-

tory diseases [53,54]: Circulating miRNA-146a and
miRNA-223 were significantly reduced in septic patients
when compared to patients with a systemic inflamma-
tory response syndrome or healthy controls [53].
Furthermore, reduced plasma levels of miRNA 132 were
observed in patients with rheumatoid arthritis and
osteoarthrosis compared to healthy controls [55].

Serum miRNAs as biomarkers for cancer diagnosis
The availability of novel biomarkers could improve diag-
nosis and the clinical management of cancer. A perfect
biomarker should be easily accessible in a noninvasive
manner. Therefore, miRNA profiles in serum and
plasma samples from cancer patients have been
screened to identify novel biomarkers for the diagnosis
of tumors (summarized in Table 1):
Lawrie et al. were the first to discover tumor specific

deregulation of circulating miRNAs. Their study demon-
strated that miRNA-21 is highly abundant in the sera of
diffuse large B-cell lymphoma patients [23]. miRNA pro-
filing of leukemia patients has shown circulating
miRNA-92a to be considerably downregulated in the
case of malignancy [56]. In 2008, Mitchell et al. reported
that miRNAs derived from epithelial tumors are also
rapidly released into the blood stream [25]. They used a
mouse model to show that human miRNAs can be
detected in the blood of mice after prostate cancer
xenograft transplantation. The amount of human miR-
NAs was correlated with the xenograft tumor mass.
These results clearly demonstrated that tumor-derived
miRNAs can enter the circulation even when originating
from epithelial cancers. Additionally, Mitchell et al.
found circulating miRNA-141 to be significantly elevated
in sera of metastatic prostate cancer when compared to
those of healthy controls [25]. Ng and colleagues
employed quantitative polymerase chain reaction
(qPCR) to analyze miRNA profiles in colon cancer cells,
the corresponding adjacent normal colonic tissue and
plasma of patients and healthy controls [57,58]: In this
study, five miRNAs were found to be significantly over-
expressed in the tumor cells as well as more abundant

in the plasma samples of tumor patients compared to
those of healthy volunteers (Table 1). miRNA-92 and
miRNA-17-3p were confirmed as diagnostic markers for
colon cancer in an independent validation study [57].
Both miRNAs belong to the miRNA-17-92 gene cluster,
which is supposed to be involved in cancer pathogenesis
[59].
Circulating miRNAs were analyzed for the feasibility

to detect early cancer development. Huang et al. studied
the miRNA profiles in the blood stream of early stage
colon cancer patients. Interestingly, they identified cir-
culating miRNAs which distinguished adenomas from
healthy controls with a 73% sensitivity and a 79% speci-
ficity [60]. These data indicate that cell-free miRNAs are
promising markers for early tumor diagnosis. Novel bio-
markers could be particularly useful for an earlier detec-
tion of tumors, which are clinically asymptomatic for
extended periods. Pancreatic cancer, for instance, is
often diagnosed in an advanced stage and associated
with very short survival times. miRNA-21, miRNA-155,
miRNA-196a and miRNA-210, which are known to be
associated with pancreatic cancer, were also found to be
elevated in the plasma of pancreatic carcinoma patients
[28,61]. These miRNAs have been largely studied for
their functional consequences: miRNA-21 is known to
be upregulated in several tumor entities and targets
known tumor suppressive genes like PTEN and PDCD4
[62,63]. miRNA-155 has been found to downregulate the
proapoptotic protein TP53INP1 [64]. miRNA-196a was
described to be a prognostic marker in pancreatic can-
cer [65]. miRNA-210 is directly regulated by HIF1A and
therefore induced by hypoxia [66].
The performance of circulating miRNAs as diagnostic

markers has been compared to established blood-based
markers: Women with high risk for ovarian cancer can
undergo a CA 125 serum-based screening test. However,
with a sensitivity of 40%, CA-125 is a poor marker for
the early detection of this tumor. A set of serum miR-
NAs has recently been found to be highly abundant in
patients with ovarian cancer. Some of these miRNAs
were also deregulated in patients exhibiting normal
CA-125 serum levels [67]. These data indicate that
circulating miRNAs might be non-invasive markers,
which could contribute to improving established clinical
diagnostic tests.
Serum miRNA profiles among different cancer types

have also been analyzed: Chen and colleagues compared
the miRNA levels between colorectal and lung cancer
patients [24]. Several miRNAs (e.g., miR-134, miR-146a,
miR-221, miR-222, miR-23a) were significantly deregu-
lated in the sera of both patient groups, suggesting that a
miRNA profile common for several types of cancers may
exist. On the other hand, tumor-specific miRNAs were
also described: Lodes et al. analyzed the serum miRNA
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Table 1 Circulating miRNAs in the serum as diagnostic markers for different tumor entities

Tumor
entity

References Study Design Sample Size Circulating
miRNAs
examined

Technology Normalization Promising circulating miRNAs

B-Cell
Lymphoma

Lawrie et al. [23] Tumor vs. normal,
retrospective study

on prognosis

60 patients vs. 43 healthy controls 3 Quantitative
RT-PCR

miRNA-16 miRNA-155, miRNA-210, and
miRNA-21

Breast
Cancer

Heneghan et al. [73] Tumor vs. normal 83 patients vs. 44 healthy controls 7 Quantitative
RT-PCR

miRNA-16 miRNA-195 and let7a

Zhu et al. [83] Tumor vs. normal 13 patients vs. 8 healthy controls 3 Quantitative
RT-PCR

18 s rRNA miRNA-155

Colon
Cancer

Huang et al. [60] Tumor vs. normal Screening: 20 patients vs. 20 healthy controls
Validation: 80 patients, 37 adenomas and 39

healthy controls

12 Quantitative
RT-PCR

miRNA-16 miRNA-29 and miRNA92a

Ng et al. [57] Tumor vs. normal,
tissue and serum

Screening: 5 plasma samples, associated tumor/
normal tissue 1.validation: 25 patients vs. 20
healthy controls 2. validation 180 samples

95 Quantitative
RT-PCR Array

RNU6B miR-17-3p and miR-92

Gastric
Cancer

Tsujiura et al. [85] Tumor vs. Normal Screening: 8 samples and associated tissue
Validation: 69 patients vs. 30 healthy controls

5 Quantitative
RT-PCR

RNU6B miR-17-5p, miR-21, miR-106a, miR-
106b and let-7a

Leukemia Tanaka et al. [56] Tumor vs. Normal Screening: 2 patients vs. 7 healthy controls
Validation: 61 patients vs. 16 healthy controls

723 microRNA
Microarray
(Agilent

Technologies)

miRNA-638 miRNA-92a

Lung
Cancer

Chen et al. [24] Tumor vs. normal Screening: Pool analysis Validation: 152 patients
vs. 75 healthy controls

Genome-wide
profiling by

Solexa
sequencing

Solexa
sequencing,
Quantitative

RT-PCR

Directly normalized
to total RNA

miRNA-25 and miRNA-223

Hu et al. [74] Study on prognosis
(Overall survival)

Screening: 60 patients Validation: 243 patients Genome-wide
profiling by

Solexa
sequencing

Solexa
sequencing,
Quantitative

RT-PCR

Referenced to
control healthy
serum sample

miR-486, miR-30 d, miR-1 and
miR- 499

Oral
Cancer

Liu et al. [80] Tumor vs. normal 43 patients vs. 21 healthy controls 1 Quantitative
RT-PCR arrays

miRNA-16 miR-31

Ovarian
Cancer

Resnick et al. [67] Tumor vs. normal Screening: 9 patients vs. 4 healthy controls
Validation: 19 patients vs. 11 healthy controls

365 Quantitative
RT-PCR arrays

U44/U48 and
miRNA-142-3p

miRNA-21, miRNA-92, miRNA-93,
miRNA-126, miRNA-29a, miRNA-
155, miRNA-127 and miRNA-99b

Pancreatic
Cancer

Ho et al. [28] Tumor vs. normal Screening: 11 patients vs. 14 healthy controls,
Validation: 11 patients vs. 11 healthy controls

1 Quantitative
RT-PCR arrays

c. elegans spike-in
miRNA-54

miRNA-210

Wang et al. [61] Tumor vs. normal 49 patients vs. 36 healthy controls 4 Quantitative
RT-PCR arrays

miRNA-16 miR-21, miR-210, miR-155, and
miR-196a

Prostate
Cancer

Mitchell et al. [25] Tumor vs. normal Screening: Pool analysis Validation: 25 patients
vs. 25 healthy controls

6 Quantitative
RT-PCR

c. elegans spike-in
cel-miR-39, celmiR-
54, and cel-miR-238

miRNA-141

Brase et al. [72] Low grade vs. high
grade

Screening: 7 high grade vs. 14 low grade
Validation: 116 patients

667 Quantitative
RT-PCR arrays

c. elegans spike-in
cel-miR-39, celmiR-
54, and cel-miR-238

miRNA-141, miRNA-375

Squamous
Cell

Carcinoma

Wong et al. [81] Tumor vs. Normal
tissue screening,

Validation in serum

30 patients vs. 38 healthy controls 1 Quantitative
RT-PCR arrays

miRNA-16 miRNA-184
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profiles in five tumor entities (prostate, colon, ovarian,
breast and lung cancer) using a high-density microarray.
Here, different tumor entities could be distinguished
based on the miRNA profiles in patients sera [68].

Circulating miRNAs are correlated with tumor
progression
The findings discussed in the previous paragraph were
based on comparisons of the miRNA serum levels
between tumor patients and healthy controls. None of
the described circulating miRNAs for the diagnosis of
epithelial tumors showed correlations to histological
subtypes, different stages or grades of cancer in further
validation studies [56,57,61,67]. This suggests that the
identified circulating miRNAs might be promising bio-
markers for cancer detection but not necessarily appro-
priate for the prediction of the clinical courses of the
diseases. In contrast, in tissue samples, miRNAs seem to
be valuable markers to predict the clinical outcomes of
cancer patients [69-71].
In our own study [72], we analyzed the miRNA pro-

files in sera of patients with highly aggressive compared
to localized prostate cancer. Several circulating miRNAs
were considerably higher abundant in patients with
metastatic disease. Two independent validation studies
indicated that miRNA-141 and miRNA-375 were the
most promising markers correlated with prostate tumor
progression. Recently, circulating miRNAs have also
been reported to be correlated with clinicopathological
variables (nodal and estrogen receptor status) in patients
with breast cancer [73]. However, this study as well as
our own data only demonstrated that circulating miR-
NAs are correlated with histopathological parameters,
and not directly associated with patients’ outcome. To
evaluate the prognostic potential of the identified circu-
lating miRNAs, larger retrospective validation studies
integrating long-term follow-up data are required.
For lung cancer, it was shown that serum miRNAs are

promising prognostic biomarkers: Hu et al. demon-
strated that circulating miRNAs can be used to predict
the clinical outcomes of non-small-cell lung cancer
(NSCLC) patients [74]. In their screening study, the
authors compared the serum miRNA profiles of patients
with long and short survival times using Solexa sequen-
cing and validated the abundance of 13 selected
miRNAs in 243 patients by qPCR. Four miRNAs
(miRNA-486, miRNA-30d, miRNA-1, and miRNA-499)
were confirmed to be associated with patient outcome.
miRNA-1 was already described to be significantly down-
regulated in lung cancer tissue, thereby leading to
decreased cell proliferation, migration and motility.
miRNA-1 is supposed to target the MET oncogene as
well as the gene HDAC4 [75]. Hu et al. also demonstrated
that a combination of selected circulating miRNAs had a

higher sensitivity than single biomarkers: Patients exhi-
biting large amounts of two or more high-risk miRNAs
in the serum had a significantly increased probability of
shorter survival times. Taken together, these results indi-
cate a significant association of circulating miRNAs with
the survival of NSCLC patients and therefore suggest
that miRNAs are useful as prognostic markers.

Technical advances and challenges to analyze
circulating miRNA
Due to the small amount of circulating miRNAs and the
large amount of proteins, miRNA extraction from
serum samples is technically challenging. To this end,
several phenol/chloroform-based extraction protocols
are available. Commercially available extraction kits
without acid phase separation can also be used for the
isolation of miRNA from body fluids.
Circulating miRNAs can be extracted from both

serum as well as plasma samples. Serum has recently
been described to yield lower amounts of circulating
miRNAs compared to plasma [76]. In addition, the use-
fulness of serum samples has been questioned since the
range of miRNAs from different samples can vary [76].
However, due to practical reasons, in the clinical rou-
tine, mainly serum samples are available. To this end, a
good correlation was observed when the individual
miRNA levels were compared between serum and
plasma samples from the same patient donors [25].
Thus, both sample types seem to be suitable for the
analysis of cell-free miRNAs.
One of the main problems associated with circulating

miRNA extraction and comparison of sample collectives
is the quantification of the miRNA. The low abundance
of miRNA in serum can hardly be determined using
spectrophotometers. A robust and sensitive method for
the analysis of serum miRNAs is their relative quantifi-
cation by a stem-loop reverse transcription PCR
(RT-PCR), which has been widely used for the sensitive
detection of low abundant circulating miRNAs [77] with
high reproducibility. New technologies for serum-based
miRNA analysis are emerging: For example, Lusi et al.
designed a PCR- and label-free, sensitive detection
method [78] based on an electrochemical sensor. After
the hybrid formation of the miRNA with an inosine sub-
stitute, the oxidation of guanine generates an electrical
signal, which can be quantified [78]. Microarray-based
expression analysis is challenging since a large amount
of RNA is needed for the analyses. Lodes et al. reported
similar limits of detection for the analysis of circulating
miRNAs for microarrays when compared to qPCR-
based methods [68]. Deep sequencing technologies have
resulted in a steep increase of the rate of newly described
microRNAs [79]. Since 2007, almost all newly recovered
microRNAs were derived from deep sequencing analyses.
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The current release (miRBase 16) encompasses over
15.000 microRNA gene loci. The user can search for tis-
sue- and stage specific expression, and compare own data
with microRNA profiles in different diseases. First studies
indicate disease-specific fingerprints in serum [24,74].
Thus, large-scale miRNA sequencing appears to be very
promising with respect to the identification of further
biomarkers.
Due to the described technical and quality variations,

the strategy of raw data normalization is a critical issue.
Since endogenous ("housekeeping”) controls do not
exist, variances based on starting material and miRNA
extraction have to be carefully balanced. So far, several
normalization strategies for the analysis of circulating
miRNAs are available (Table 1). Literature-based tissue
housekeeping genes or miRNAs in the serum have been
used for data normalization. For example, miRNA-16
was used as a reference for serum miRNA analysis in
several studies [23,60,61,73,80,81] (Table 1). This
miRNA is consistently expressed in different human tis-
sue entities [82] and is also detectable in serum samples.
However, measurements of miRNA-16 in sera seem to
be inconsistent. While some studies demonstrated a lack
of significant differences between clinically defined enti-
ties [61,73], miRNA-16 was also found to be highly
abundant in the sera of prostate cancer patients [68].
Small non-coding RNAs are also commonly used. How-
ever, these have been reported to show limitations due
to degradation in the blood stream [23,60,83]. Mitchell
and colleagues reported a spike-in normalization
approach to control for technical variances during the
purification process. Three C. elegans miRNAs (without
sequence similarity to known human miRNAs) were
included in the purification procedure and used for data
normalization [25,84].
The mentioned challenges concerning extraction,

quantification and data processing steps in miRNA analy-
sis may lead to considerably variable results and clearly
demonstrate the need for better standardization methods.

Future directions
Circulating miRNAs offer great hope for the diagnosis
and prognosis, and possibly prediction, of cancer. How-
ever, there are still limitations to the technology and the
recent study designs. In-line with the lessons learned
from gene expression profiling, clinical associations of
miRNA presence identified in small sample cohorts
have to be verified in larger and independent studies,
and the efforts to translate the findings into clinical rou-
tine have to be increased. Initial data of miRNA in sev-
eral tumor entities were either based on literature
search or on a limited number of miRNAs (Table 1).
Global screening studies monitoring a large set of
human miRNAs are likely to lead to the discovery of

better markers for specific diseases. In terms of biologi-
cal or cellular functions, there is less known for any of
the discovered serum miRNA. There are still controver-
sial results concerning the relation of miRNA levels
between tissue and corresponding serum: Several
researchers suggested that tumor-associated miRNAs
should be evaluated in the serum and in the tumor tis-
sue [25,57]. This is conceptually in line with the role of
microvesicles in neoplastic progression [44]. However,
in lung cancer, the let-7 family was shown to be asso-
ciated with clinical outcome in tissue samples only, and
was not detected in the serum [74]. Thus, circulating
miRNAs may not always be directly associated with the
changes occurring in tumor tissues but may also reflect
indirect effects. On the other hand, deregulated circulat-
ing miRNAs have been reported to be significantly
reduced in post-operative states [60,73,80,81,85].
Wang et al. concluded from their study that specific

miRNAs are released into the blood stream after drug
induced liver injury leading to a downregulation in the
tissue [52]. In contrast to that, Tanaka et al. speculated
that tumor cells rely on the specific intake of miRNAs
from circulating microvesicles [56]. These contradictive
assumptions clearly demonstrate a need for additional
studies to elucidate the relation and function of tissue
and serum miRNA expression levels. Furthermore, addi-
tional studies focusing on tumor specific microvesicles
may provide insights into the biological roles of circulat-
ing miRNAs.
Finally, it is unknown how soon miRNA changes

appear in the serum, although some first results showed
that miRNAs occur early in the blood stream during
colon cancer development [60] and after drug induced
liver injury [52]. Serum miRNAs-122 and 192 are
detectable prior to the routine detection of liver injury
using an alanine aminotransferase enzyme test [52]. So
far, no study has analyzed the influence of age, health
conditions or dynamical changes of the serum miRNA
profile in different individuals. Therefore, the kinetics of
circulating miRNAs should be analyzed in detail to
unravel if infection diseases or lifestyle changes can lead
to changes in the serum and to correct for these
changes in future studies. Additionally it is unknown, if
medical treatment leads to a change of the serum
miRNA profiles. In-vitro studies revealed that specific
microRNAs impact on drug sensitivity [86]. Thus, it is
possible that personal treatments are reflected by serum
microRNA profiles. This aspect is highly relevant, since
the individual treatment may influence the value of
novel non-invasive miRNA biomarkers.

Conclusions
Although we are just beginning to understand the role
and function of circulating miRNAs in the serum,
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miRNAs in body fluids are currently extensively
explored for their potential as non-invasive diagnostic
tumor markers. Tumor-specific circulating miRNAs may
improve cancer diagnosis and prognosis, since several
promising miRNAs have already been described as non-
invasive biomarkers for different tumor entities. How-
ever, larger sample sets including long-term clinical data
are urgently required for future studies. In contrast, cir-
culating miRNAs for the prediction of drug responses
have not been described so far. Isolation, quantification
and normalization strategies have to be standardized
before any of the novel miRNA biomarkers is applicable
for clinical routine.
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