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Abstract

Background: Both epidemiological and experimental studies suggest that excessive alcohol exposure increases the
risk for breast cancer and enhances metastasis/recurrence. We have previously demonstrated that alcohol enhanced
the migration/invasion of breast cancer cells and cancer cells overexpressing ErbB2/HER2 were more sensitive to
alcohol exposure. However, the underlying mechanisms remain unclear. This study was designed to investigate the
mechanisms underlying alcohol-enhanced aggressiveness of breast cancer. Cancer stem cells (CSCs) play a critical
role in cancer metastasis and recurrence.

Methods: We evaluated the effect of chronic alcohol exposure on mammary tumor development/metastasis in
MMTV-neu transgenic mice and investigated the cell signaling in response to alcohol exposure in breast cancer
cells overexpressing ErbB2/HER2.

Results and discussion: Chronic alcohol exposure increased breast cancer stem cell-like CSC population and
enhanced the lung and colon metastasis in MMTV-neu transgenic mice. Alcohol exposure caused a drastic increase
in CSC population and mammosphere formation in breast cancer cells overexpressing ErbB2/HER2. Alcohol
exposure stimulated the phosphorylation of p38γ MAPK (p-p38γ) which was co-localized with phosphorylated
ErbB2 and CSCs in the mammary tumor tissues. In vitro results confirmed that alcohol activated ErbB2/HER2 and
selectively increased p-p38γ MAPK as well as the interaction between p38γ MAPK and its substrate, SAP97.
However, alcohol did not affect the expression/phosphorylation of p38α/β MAPKs. In breast cancer cell lines, high
expression of ErbB2 and p-p38γ MAPK was generally correlated with more CSC population. Blocking ErbB2 signaling
abolished heregulin β1- and alcohol-stimulated p-p38γ MAPK and its association with SAP97. More importantly, p38γ
MAPK siRNA significantly inhibited an alcohol-induced increase in CSC population, mammosphere formation and
migration/invasion of breast cancer cells overexpressing ErbB2.

Conclusions: p38γ MAPK is downstream of ErbB2 and plays an important role in alcohol-enhanced aggressiveness
of breast cancer. Therefore, in addition to ErbB2/HER2, p38γ MAPK may be a potential target for the treatment of
alcohol-enhanced cancer aggressiveness.
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Background
Breast cancer is the most commonly diagnosed cancer
and the second leading cause of cancer death among
women in the United States [1]. Although the exact eti-
ology for breast cancer is unclear, it is believed both gen-
etics and environmental factors play an important role,
and more likely it is the interplay of genetics and envir-
onmental factors that contribute to the carcinogenesis
and progression of breast cancer. Alcohol abuse is one
of the environmental factors that contribute to the eti-
ology of breast cancer. Epidemiological studies indicate
that alcohol consumption significantly increases the risk
for breast cancer in a concentration- and duration-
dependent manner [2–4]. In addition to the promotion
of breast cancer carcinogenesis, alcohol may also en-
hance the growth of existing breast tumors and increases
the aggressiveness of breast cancer cells to invade and
metastasize [5–7]. The epidemiological findings are
supported by experimental studies using various model
systems which show that alcohol promotes mammary
tumorigenesis/metastasis in animals, stimulates migra-
tion/invasion of breast tumor cells and enhances the ex-
pression of markers for epithelial-mesenchymal transition
in cell culture systems [8–22]. However, the molecular
mechanisms underlying alcohol promotion of breast can-
cer development and progression remain unclear.
Our previous studies have provided the evidence in

which the interplay of alcohol exposure and genetic
amplification caused enhanced aggressiveness of breast
cancer cells. Overexpression of ErbB2 receptor is found
in 20 ~ 30 % of breast cancer patients and is associated
with poor prognosis and relapse [23, 24]. We showed
that in culture systems breast cancer cells overexpressing
ErbB2 were much more sensitive to alcohol-induced mi-
gration/invasion compared to those cells with low ex-
pression of ErbB2 [8, 12, 15]. However, several questions
remain unanswered. For example, does an alcohol-
induced increase in migration/invasion in ErbB2 overex-
pressing cells result in enhanced metastasis in animal
models? What is the down-stream signaling of ErbB2 re-
sponsible for alcohol-enhanced aggressiveness of mam-
mary tumors? Since, there is increasing evidence showing
that cancer stem cells (CSC) play an important role in
cancer aggressiveness [25–27], are CSCs involved in
alcohol-induced tumor promotion? p38γ MAPK is one of
four members of the p38 MAPK family [28]. Recent stud-
ies indicate that p38γ MAPK is implicated in breast can-
cer progression and aggressiveness [29]. We hypothesize
that alcohol may enhance the aggressiveness of breast
cancer cells by stimulating the ErbB2/p38γ MAPK path-
way and activating CSCs. With both in vitro and in vivo
approaches, we show that alcohol increases CSC population
in ErbB2 overexpressing breast cancer cells; alcohol en-
hances the lung and colon metastasis and CSC population

in MMTV-neu transgenic mice. p38γ MAPK is down-
stream of ErbB2 and ErbB2/p38γ signaling pathway and it
plays an important role in alcohol-induced aggressiveness
of breast cancer cells.

Methods
Materials
ALDEFLUOR kits and MammoCult™ Human Medium Kit
were purchased from Stemcell Technologies (Vancouver,
Canada). Ultra low cluster plates were obtained from
Corning Incorporated (Corning, NY). Anti-phospho-Her2/
ErbB2 (Tyr1248) and ErbB2 polyclonal antibodies were
purchased from Cell Signaling Technology Inc. (Beverly,
MA). Polyclonal anti-phospho-p38 gamma (p-p38γ)
(Thr180/Tyr182) antibody was produced by us in collab-
oration with 21st Century Biochemicals (Marlboro, MA).
FITC conjugated anti-mouse/human CD44 and PE conju-
gated CD24 antibodies were purchased from BioLegend
(San Diego, CA). Protein A/G beads were obtained from
Santa Cruz Biotechnology (San Diego, CA). Polyclonal
anti-phospho-p38 MAPK (Thr180/Tyr182) antibody and
anti-phospho-Her2/ErbB2 (Tyr1248) (monoclonal) were
purchased from Life Technologies (Carlsbad, CA) and Cell
Signaling Technology Inc. (Beverly, MA), respectively.
Anti-Neu/Her2/ErbB2 (monoclonal), p38α, p38γ and
SAP97 antibodies were purchased from Santa Cruz Bio-
technology (San Diego, CA). Anti-GAPDH antibody was
obtained from Research Diagnostics, Inc. (Concord, MA).
Anti-phosphoserine/threonine antibody was obtained from
Abcam Inc. (Cambridge, MA). p38γ shRNA and control
shRNA were purchased from Santa Cruz Biotechnology
(San Diego, CA). Matrigel Invasion Chambers were pur-
chased from BD Biosciences (Bedford, MA). Transwell
was obtained from Costar Corp. (Acton, MA). Antibiotic-
Antimycotic (Anti-Anti) and cell culture mediums were
obtained from Gibco (Life Technologies). All other chemi-
cals were obtained from Sigma-Aldrich (St. Louis, MO).

Cell culture and alcohol exposure method
MCF7 cells were grown in DMEM medium containing
10 % fetal bovine serum (FBS) and 1 % Antibiotic-
Antimycotic (Additional file 1: Figure S1) . MCF7-ErbB2
cells were cultured in full DMEM medium with hydrocor-
tisone (1 μg/ml) and insulin (10 μg/ml). Hs578T cells were
cultured in full DMEM medium with insulin. BT474 cells
were cultured in full RPMI medium with insulin. SKBR3
cells were cultured in full IMEM medium. Physiologically
relevant concentrations of alcohol (100, or 200 mg/dl) were
used in this study [30]. A method utilizing sealed con-
tainers was employed to maintain alcohol concentrations
in the culture medium. The containers were placed in a
humidified environment and maintained at 37 °C with 5 %
CO2. With this method, alcohol concentrations in the
culture medium can be accurately maintained [31]. All
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cell lines were grown at 37 °C with 5 % CO2. For heregulin
β1 or Tyrphostin AG 825 (AG825) treatment, cells were
serum starved overnight, pretreated with or without
DMSO or AG825 (10 or 50 μM) for 2 h, followed by here-
gulin β1 (50 ng/ml) or alcohol exposure for the indicated
times.

Generation of phosphospecific antibody against p38γ MAPK
Affinity-purified antibodies specifically against the dual-
phosphorylation motif, Thr-Gly-Tyr [32], located in the
activation loop [Thr(p) 180/Tyr(p) 182] on p38γ MAPK
were generated at 21st Century Biochemicals (Marlboro,
MA). Rabbits were immunized with the phosphorylated
p38γ peptide Acetyl-SEM[pT]G[pY]VVT-Ahx-C-amide
and serum was affinity purified. Immuoprecipitation assay
was applied to verify the specificity of the antibodies. We
have verified that this antibody is specific for p- p38γ
MAPK and does not cross-react with p38α/β MAPK (data
not shown).

Generation of cells stably expressing p38γ shRNA
Short hairpin RNA (shRNA) of p38γ (p38γsh) or scram-
bled control shRNA (consh) (Santa Cruz Biotechnology)
was transfected into MCF7-ErbB2 or BT474 cells using
a Neon Transfection machine (Life Technologies). Posi-
tive colonies were selected in standard cell culture media
containing 4 μg/ml puromycin. Cell lysates were col-
lected and analyzed by immunoblotting for the verifica-
tion of the silencing of p38γ MAPK.

ALDEFLUOR assay (Stem-like cell population assay)
The cancer stem-like cells (CSCs) were identified by meas-
uring aldehyde dehydrogenase (ALDH) activity [26, 33].
The ALDEFLUOR assay (Stemcell Technologies) was per-
formed according to the manufacturer’s protocol and the
high ALDH enzymatic activity in cells were tested by
using a flow cytometer as described previously [26, 33].
Briefly, after exposure to alcohol (0, 100 or 200 mg/dl) for
the indicated time, 106 cells were incubated in ALDE-
FLUOR assay buffer containing ALDH substrate (1 μmol/l
per 1 × 106 cells) for 40 min at 37 °C. Meanwhile, an ali-
quot of cells was treated under identical conditions with a
specific ALDH inhibitor [50 mmol/l, diethylaminobenzal-
dehyde (DEAB)] as a negative control. CSCs were iden-
tified using a FACSCalibur (Becton Dickinson) flow
cytometer and analyzed using the WINMDI software. The
results were expressed relative to control groups.

Flow cytometry (CD24/CD44 Assay)
The expression of cell surface markers (CD44 and CD24)
on MCF7 or MCF7-ErbB2 cells was analyzed by flow cyto-
metric assay. Briefly, cells with or without ethanol treat-
ments were suspended in PBS containing 2 % BSA (106

cells/100 ul). Combinations of FITC-CD44 and PE-CD24

or their respective isotype controls were added to the cell
suspension at the concentrations recommended by the
manufacturer, and then incubated at 4 °C in the dark for
30 min. The labeled cells were washed with PBS and then
analyzed on a FACSCalibur (Becton Dickinson) flow cyt-
ometer and the WINMDI software.

Assaying mammosphere formation
Mammosphere culture was performed as described pre-
viously [34, 35]. Briefly, after alcohol treatment, cells
were plated as single cell suspension in ultra-low attach-
ment 24-well plates (Corning) at 1000 cells/well. Cells
were grown in serum-free MammoCult™ Human Medium
(Stemcell Technologies) for 10 days. The images of mam-
mospheres were captured using a Zeiss Axiovert 40C
photomicroscope. The number of mammospheres in each
well that were 60 μm or larger in size were counted ac-
cording to the manufacturer’s protocol (MammoCult™
Human Medium, Stemcell Technologies) and expressed
relative to control groups.

Immunoblotting and immunoprecipitation
Cells or frozen tumor tissues were lysed in modified
RIPA buffer (150 mM NaCl, 50 mM Tris, 1 % NP-40,
0.25 % sodium deoxycholate) containing 1 mM sodium
vanadate, 1 mM phenylmethanesulfonyl fluoride (PMSF),
5 μg/ml of aprotinin, and 2 μg/ml of leupeptin. The pro-
cedure for immunoblotting has been previously described
[22]. Briefly, protein samples were clarified by centrifuga-
tion at 14,000 rpm for 10 min at 4 °C and were resolved
by sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE). The separated proteins were trans-
ferred to nitrocellulose membranes. The membranes were
probed with indicated primary antibodies, followed by the
appropriate horseradish peroxidase-conjugated secondary
antibodies, and developed by enhanced chemilumines-
cence. The intensity of specific proteins was quantified
using Carestream Molecular Image Software.
For immunoprecipitation, equal amount of proteins

(about 500–800 μg) were incubated with anti-p38γ,
p38α/β or SAP97 antibodies, respectively, overnight at
4 °C, followed by treatment with Protein A/G beads
conjugated to agarose for 4 h at 4 °C. Immunoprecip-
itates were collected by centrifugation at 5,000 g for
5 min at 4 °C. Samples were washed 5X with RIPA buffer,
1X with cold-TBS, and boiled in sample buffer (187.5 mM
Tri-HCl, pH 6.8, 6 % SDS, 30 % glycerol, 150 mM DTT
and 0.03 % bromophenol blue). Proteins were resolved in
SDS-PAGE and analyzed by immunoblotting.

Assaying cell migration and invasion
Cell migration was analyzed using a Transwell Migration
System (Costar). Cell invasion was assayed using Matri-
gel Invasion Chambers (BD Biosciences). Briefly, after
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alcohol exposure for 10 days, equal amount of cells were
placed on the upper compartment of the Transwell
chambers or invasion chambers in serum free medium.
Culture medium containing 10 % FBS was added into
the lower compartment of invasion/migration chambers
and served as chemoattractants for the cells. The cham-
bers were cultured at 37 °C in 5 % CO2 in the presence/
absence of alcohol (100 mg/dl) for 12 h. Cells were fixed
in 4 % paraformaldehyde and stained with 0.5 % crystal
violet in 2 % ethanol. Membranes were washed and the
cells that remained on the top of the invasion/transwell
inserts were removed (non-migrated cells). The dye was
eluted with 10 % acetic acid and the absorbance was
measured at 595 nm using a microtiter platereader
(Beckman coulter).

Alcohol exposure in MMTV-neu transgenic mice
FVB MMTV-neu transgenic mice were obtained from
Jackson Laboratory (Bar Harbor, MA). All procedures
were performed in accordance with the guidelines set by
the National Institutes of Health (NIH) Guide for the
Care and Use of Laboratory Animals and were approved
by the Institutional Animal Care and Use Committee.
FVB MMTV-neu transgenic mice develop spontaneous
mammary tumors in 8–10 months (5). Mice (12 weeks
old without tumors) were separated into two groups. For
the alcohol-exposed group (n = 11), mice were fed with
an alcohol liquid diet (Bio-Serv, Flemington, NJ) contain-
ing 6.7 % v/v ethanol. Mice in the control groups (n = 12)
received the liquid diet without ethanol but with equal cal-
oric supplementation. Tumorigenesis and size of tumor
was monitored weekly. Mice with tumors exceeding
20 mm maximum diameter were euthanized and metasta-
sis was analyzed as previously described [18]. Blood was
collected in the early morning from the mouse tails and
alcohol concentration was analyzed by Alcohol Analyser
AM1 (Analox Instruments, MA). Mammary tumor tissues
were fixed and processed for immunostaining or frozen in
−80 °C for immunoblotting analysis.

Immunofluorescent staining
Immunofluorescent (IF) staining was performed as de-
scribed [36]. Briefly, tumor tissues were removed and
fixed with 4 % paraformaldehyde and then transferred to
30 % sucrose. Tissues were sectioned at 5 μm thickness
with a Cryostat Microtone (Thermo Scientific). Tissue
sections were rinsed in PBS, blocked by 1 % BSA for 1 h,
and then incubated with indicated primary antibodies
(1:300) (FITC-CD44, p-p38γ, pErbB2) overnight at 4 °C.
After washing with PBS, sections were incubated with
appropriate fluorescent conjugated secondary antibodies
for 1 h at room temperature. Images were photo-
graphed using an inverted Olympus 1X81 microscope.

The fluorescent intensity was analyzed by ImageJ soft-
ware and calculated relative to the control groups.

Statistics
Differences among treatment groups were analyzed using
analysis of variance (ANOVA). Differences in which p was
less than 0.05 were considered statistically significant. In
cases where significant differences were detected, specific
post-hoc comparisons between treatment groups were ex-
amined with Student-Newman-Keuls tests. The preva-
lence of metastasis between control and ethanol-treated
groups was determined by the Fisher exact test.

Results
Alcohol increases cancer stem like cell (CSC) population in
breast cancer cells overexpressing ErbB2
We previously demonstrated that breast cancer cells over-
expressing ErbB2 are much more sensitive to alcohol-
induced migration/invasion compared to those cells with
a low level of ErbB2 [8, 12, 15]. In this study, we sought to
determine whether alcohol affects CSC and the potential
role of ErbB2 in the regulation of CSC. We first examined
the effect of alcohol on MCF7 breast cancer cells and
MCF7 cells overexpressing ErbB2 (MCF7-ErbB2). MCF7
or MCF7-ErbB2 cells were treated with alcohol (0, 100 or
200 mg/dl) for 10 or 20 days, and CSC population was de-
termined by aldehyde dehydrogenase (ALDH) activity
which was measured with an ALDEFLUOR assay. This
assay has been successfully used to determine CSC popu-
lation in breast cancer cells [26, 33]. In non-alcohol-
treated control cells, MCF7-ErbB2 cells had more basal
CSC population than MCF7 cells (Fig. 1a and Additional
file 2: Figure S2). Alcohol exposure significantly increased
CSC population in both MCF7 and MCF7-ErbB2 cells;
however, alcohol-induced increase of CSC in MCF7-ErbB2
cells was much more than that of MCF7 cells. Alcohol in-
creased CSC population in MCF7-ErbB2 cells in a concen-
tration and duration-dependent manner (Fig. 1b). However,
short term exposure to alcohol (12 ~ 48 h) did not signifi-
cantly alter CSC population (data not shown). One of the
characteristics for mammary CSCs is to form mammo-
spheres in an ultra-low attaching culture condition. As
shown in Fig. 1c and d, alcohol significantly increased
mammosphere formation in both MCF7-ErbB2 cells and
BT474 cells; BT474 cells are another breast cancer cell line
with a high expression of ErbB2. However, alcohol did not
affect mammosphere formation in MCF7 cells.
The alcohol-increased CSCs in MCF7 and MCF7-

ErbB2 cells were confirmed by measuring the cell sur-
face markers of CD44+/CD24-/low. The expression of
CD44+/CD24-/low has been extensively used as markers
for breast cancer stem cells. We examined the expres-
sion of CD44+/CD24-/low in MCF7 and MCF7-ErbB2
cells by flow cytometric assay (Fig. 1e and f). The results
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revealed much more CD44+/CD24-/low positive cells, in-
dicating a high ratio of cancer stem cells in MCF7-
ErbB2 cell which was also observed in the ALDH assay.
We also compared the ratio of CD44+/CD24-/low cells in
MCF7 and MCF7-ErbB2 treated with or without etha-
nol. Ethanol exposure enhanced the expression of
CD44+/CD24-/low in both cells, but to a greater extent
in MCF7-ErbB2 cells (Fig. 1f ).

Alcohol exposure enhances metastasis and increases CSC
in MMTV Neu transgenic mice
FVB MMTV Neu transgenic mice expressing high levels
of neu (ErbB2 in human) develop spontaneous mam-
mary tumors in about 8–10 months (5). These mice
were exposed to alcohol by feeding with a liquid diet
containing 0 or 6.7 % ethanol. This paradigm of alcohol
exposure resulted in a blood alcohol concentration
(BAC) of nearly 100 mg/dl which is equivalent to the
level of human intoxication (Fig. 2a). We measured the
metastasis when the maximum diameter of the tumor
reached 20 mm. The percentage of mice showing lung
metastasis in control and alcohol-fed mice was 16.7 and
81.8 %, respectively; while colon metastasis was 0 and
45.4 %, respectively (Fig. 2b). Recent evidence indicates
that CSC population is a driving force for cancer malig-
nance/metastasis. We therefore examined the effect of
alcohol on CSCs in MMTV Neu transgenic mice. Breast
CSCs are characterized as the CD44+/CD24- population
[15, 17, 18]. We showed that alcohol exposure increased
CD44+ cells, implying an increase in CSCs (Fig. 2c and d).

Alcohol activates ErbB2/p38γ MAPK signaling pathway
We next determined whether alcohol activated ErbB2 in
MMTV Neu mice and what were the downstream sig-
nals of ErbB2. p38γ MAPK has been implicated in the
aggressiveness of breast cancer cells [29]. Alcohol in-
creased the phosphorylation of ErbB2 and p38γ MAPK
which was revealed by the immunofluorescent staining
of fixed tumor tissues (Fig. 2e and f). Alcohol-induced

pErbB2 and p-p38γ were co-localized in CD44+ cells,
suggesting that ErbB2/p38γ signaling was involved in
alcohol promotion of CSCs. This was confirmed by
immunoblotting analysis on mammary tissue samples
(Fig. 2g and h). It appeared that alcohol treatment also
increased the expression of ErbB2. To further evaluate
the effect of alcohol on ErbB2/p38γ MAPK signaling
pathway, we treated MCF7-ErbB2 cells with alcohol (0,
100 or 200 mg/dl) for 10 days, and then examined the
phosphorylation of ErbB2 (Tyr1248) and p38γ MAPK
(Thr180/Tyr182). Alcohol activated ErbB2 and p38γ
MAPK in MCF7-ErbB2 cells (Fig. 3a), but not other iso-
forms of p38 MAPK (Fig. 3b). The synapse-associated
protein (SAP97), also known as disks large homolog 1
(DLG1) is a physiological substrate for the p38γ MAPK
[37, 38]. We showed that alcohol promoted the inter-
action between p38γ MAPK and SAP97, and also in-
creased the phosphorylation of SAP97 (Fig. 3c).

The expression ErbB2 and p38γ MAPK is positively
correlated to CSC population in breast cancer cell lines
We showed that alcohol increased CSC population and
activated ErbB2/p38γ MAPK pathway. We sought to de-
termine whether more CSC population correlated to a
high activity of ErbB2/p38γ MAPK in breast cancer cell
lines. As shown in Fig. 4a and b, MCF7-ErbB2 cells
expressed more p38γ MAPK, particularly phosphory-
lated p38γ MAPK and had significantly more CSC popu-
lation compared to MCF7 cells. We further compared
six other breast cancer cell lines for the expression of
ErbB2/p38γ MAPK and CSC population (Fig. 4c and d).
Generally, high expression of ErbB2 and phosphorylated
p38γ MAPK was correlated with more CSC population.

p38γ MAPK is down-stream of ErbB2
The relationship between ErbB2 and p38γ has never
been explored. To better understand ErbB2/p38γ MAPK
signaling pathway, we treated MCF7-ErbB2 cells with
heregulin β1 to activate ErbB2, and then determine the

(See figure on previous page.)
Fig. 1 Effect of alcohol on cancer stem-like cell (CSC) population. a MCF7 or MCF7-ErbB2 cells were exposed to alcohol (0 or 100 mg/dl) for
10 days, and then were processed for ALDEFLUOR assay, followed by flow cytometry for the detection of CSCs as described in the Materials
and Methods. CSC population was calculated as percentage of total cells population. Each data point was mean ± SEM of three independent
experiments. *denotes significant difference from respective control groups. #denotes significant difference from alcohol-treated MCF7 cells.
b MCF-ErbB2 cells were exposed to alcohol (0, 100 or 200 mg/dl) for 10 or 20 days and then CSC population was determined as described above.
*denotes significant difference from respective control groups. #denotes significant difference from respective 10 day-alcohol-exposed groups.
δ denotes significant difference from 100 mg/dl alcohol-exposed groups during the 20 day exposure period. c and d MCF7, MCF7-ErbB2 or
BT474 cells were exposed to alcohol (0 or 100 mg/dl) for 10 days, then 1000 cells were cultured on ultra-low attachment plates for assaying
mammosphere formation as described in the Materials and Methods. The cell morphology was captured by a Zeiss Axiovert 40C photomicroscope.
The number of mammospheres was determined. Each data point was the mean ± SEM of three independent experiments. *denotes significant
difference from respective control groups. #denotes significant difference from alcohol-treated MCF7 cells. Bar = 50 μm. e and f Expression of breast
cancer stem cell markers CD44+/CD24− in MCF7 (e) or MCF7-ErbB2 (f) cells treated with or without Ethanol (100 mg/dl) was determined by flow
cytometry. All experiments were repeated at least three times and there were triplicates for each replication. Each data point was the mean ± SD
of three independent experiments
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phosphorylation of p38γ MAPK. MCF7-ErbB2 cells were
treated with heregulin β1 (50 ng/ml) for the indicated
time (0–6 h). Using commercial antibodies for p38γ
MAPK and phosphorylated p38 MAPK, we showed that
heregulin β1 increased the phosphorylation of p38γ
MAPK in MCF7-ErbB2 cells by immunoprecipitation
assay (Fig. 5a). It appeared that the peak activation for
ErbB2 and p38γ was around 30 min and 60 min after
heregulin β1 treatment, respectively. Similar results were
observed in BT474 cells, a breast cancer cell line natur-
ally expressing high levels of ErbB2 (Fig. 5b). But in
BT474 cells, the peak activation for ErbB2 was around
60 min and lasted longer while the peak activation for
p38γ was around 180 min following heregulin β1 treat-
ment. We have generated a phospho-specific antibody

directed against p38γ MAPK in collaboration with 21st
Century Biochemical (Marlboro, MA). The results from
this antibody were consistent with the data presented in
Fig. 5a, confirming that heregulin β1 activated p38γ
MAPK in MCF7-ErbB2 cells (Fig. 5c). Heregulin β1 also
increased the interaction of p38γ MAPK with its sub-
strate, SAP97, as well as the phosphorylation of SAP97
(Fig. 5d). The inhibition of ErbB2 activation by the
pretreatment of Tyrphostin AG 825 (AG825) blocked
heregulin-induced phosphorylation of ErbB2 and p38γ
MAPK (Fig. 5e and g). In addition, AG825 attenuated
heregulin β1-increased p38γ-SAP97 interaction (Fig. 5f
and h). Together, these results suggested that activation
of ErbB2 induced the phosphorylation of p38γ MAPK
and promoted its interaction with its substrates.
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Fig. 2 Effect of alcohol on cancer metastasis in FVB MMTV Neu mice. a FVB MMTV Neu mice were fed with liquid diet containing ethanol (0
or 6.7 %) for about 12 months, blood alcohol concentration (BAC) was measured as described in Materials and Methods. b After the maximal
diameter of tumors reached 20 mm, mice were sacrificed and analyzed for tumor metastasis as described in the Material and Methods. c and
e The mammary tumor tissues were fixed, sectioned, and processed for immunofluorescent staining with indicated antibodies as described in
the Material and Methods. Bar = 40 μm (c), 25 μm (e). d and f The intensity of CD44 (d), p-p38γ, CD44 or pErbB2 (f) in (c) and (e) were measured
using ImageJ. The relative levels were quantified and normalized to the controls. g and h The mammary tumor tissues were collected and the
expression of phosphorylated ErbB2 (pErbB2) and p38γ MAPK (p-p38γ) was determined by immunoblotting (N = 4). The relative levels of pErbB2
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Inhibition of ErbB2 blocks alcohol-activated p38γ MAPK
To determine whether ErbB2 played a role in alcohol-
induced activation of p38γ MAPK, MCF7-ErbB2 cells
were exposed to alcohol (10–360 min). Meanwhile, we
blocked ErbB2 activation by pretreating MCF7-ErbB2
cells with AG825. As shown in Fig. 6a, AG825 blocked
alcohol-induced phosphorylation of ErbB2 and p38γ
MAPK. However, acute alcohol exposure (10–360 min)

did not affect SAP97 phosphorylation (Fig. 6b). Al-
though acute alcohol exposure activated p38α/β (Fig. 6c),
AG825 failed to block alcohol-induced activation of
p38α/β (Fig. 6c).

p38γ MAPK mediates alcohol-increased mammosphere
formation, CSC population and the migration/invasion of
breast cancer cells
To confirm the involvement of p38γ MAPK in alcohol-
enhanced CSCs and aggressiveness, we knocked down
the expression of p38γ MAPK in MCF7-ErbB2 and
BT474 cells by stably expressing either the control shRNA
(Consh) or shRNA for p38γ MAPK (p38γsh) (Fig. 7a and
b); p38γsh decreased the expression of p38γ MAPK by ap-
proximately 60 %. Knocking down p38γ MAPK abolished
alcohol-induced interaction between p38γ MAPK and
SAP97 (Fig. 3c). As shown in Fig. 7c and d, Knocking
down p38γ MAPK blocked alcohol-induced formation of
mammospheres in both MCF7-ErbB2 and BT474 cells.
Knocking down p38γ MAPK also inhibited alcohol-
increased CSC population (Fig. 7e). It was interesting to
note that knocking down p38γ MAPK decreased basal
mammospheres and CSC population, supporting its role
in these processes. Furthermore, Knocking down p38γ
blocked alcohol-stimulated migration and invasion in
MCF7-ErbB2 cells (Fig. 7f and g). These results suggested
that p38γ MAPK played an important role in alcohol-
promoted aggressiveness of breast cancer cells.

Discussion
We show here that alcohol exposure enhances the ag-
gressiveness of breast cancer cells overexpressing ErbB2,
which is evident by a significant increase in CSC popula-
tion, mammosphere formation, migration/invasion as
well as metastasis in MMTV-neu transgenic mice. Alco-
hol selectively stimulates the phosphorylation of p38γ
MAPK (p-p38γ) which is down-stream of ErbB2. More
importantly, down-regulation of p38γ MAPK by shRNA
significantly inhibits alcohol-induced increases in CSC
population, mammosphere formation and migration/in-
vasion of breast cancer cells overexpressing ErbB2.
We have previously demonstrated that alcohol stimu-

lated the migration/invasion in breast cancer cells over-
expressing ErbB2 [21, 22]. The current study not only
furthers the study by showing alcohol increasing CSC
population and mammosphere formation, but confirms
it in a more relevant mouse model, MMTV-neu trans-
genic mice. There are a number of techniques/assays for
the characterization of CSCs. So far, a striking feature is
that there is relatively little overlap between the different
CSC markers reported in different tumor types or spe-
cies [39]. ALDEFLUOR assay is based on the ALDH ac-
tivity, while CD24 low/CD44+ assay is based on the
expression of CD24/CD44 on cell surface. Both assays
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Fig. 3 Effect of alcohol on the activation of ErbB2 and p38γ MAPK.
a MCF7-ErbB2 cells were exposed to alcohol (0, 100 or 200 mg/dl)
for 10 days, then cell lysates were collected and the expression of
phosphorylated ErbB2 and p38γ MAPK (pErbB2 and p-p38γ) was
analyzed by immunoblotting. GAPDH served as loading controls.
b Equal amount of proteins were immunoprecipitated (IP) with an
anti-p38α/β antibody, then immunoblotted (IB) using an anti-pan-
phosphorylated p38 MAPK antibody (p-p38). c MCF7-ErbB2 cells
stably expressing control shRNA or shRNA for p38γ MAPK were exposed
to alcohol (0 or 100 mg/dl) for 10 days, then cells lysates were collected.
Equal amount of proteins were immunoprecipitated (IP) with an anti-
SAP97 antibody, then immoblotted (IB) with antibodies directed against
phosphorylated serine/threonine antibody and p38γ MAPK. The
experiment was replicated three times
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are extensively used to determine CSCs. Several stud-
ies compared these two assays and found that the
overlap between ALDEFLUOR and CD24 low/Cd44+
assays was very low [33, 40]. In addition, one previous
study showed that CD24 expression is reversely corre-
lated with the ErbB2 expression which is consistent
with our data [41]. The ratio of CSCs varies greatly
among different cell types [26]. The current study fo-
cuses on alcohol-induced changes in breast CSCs. Our

findings demonstrate that alcohol affects CSC in breast
cancer cells overexpressing ErbB2 much more than
cells with low ErbB2. Together, these results indicate
that high expression of ErbB2 sensitizes breast cancer
cells to alcohol exposure. A future study on human
breast cancer patients is necessary to determine whether
there is indeed an interaction among alcohol drinking,
ErbB2 status and the aggressiveness/progression of
breast cancer.
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We have shown previously that alcohol induced the
phosphorylation of ErbB2 in breast cancer cells over-
expressing ErbB2 (21). However, the down-stream signaling
components that mediate alcohol-enhanced aggressiveness
remain unknown. The current study shows that alcohol
selectively activates p38γ MAPK and blocking ErbB2
activation eliminates alcohol-induced phosphorylation of
p38γ MAPK, indicating that p38γ MAPK is down-stream
of ErbB2 signaling that is activated by alcohol exposure.
p38γ MAPK is relatively understudied compared to

other isoforms in this family. p38γ MAPK is a member
of the p38 MAPK family which has three other mem-
bers, p38α, p38β and p38δ. These kinases share highly
similar protein sequences; p38α and p38β are 75 % iden-
tical, whereas p38γ and p38δ are 62 and 61 % identical
to p38α, respectively. In turn, p38γ and p38δ are ∼ 70 %
identical to each other. The four p38 MAPK isoforms
are widely expressed, although p38β, p38γ and p38δ

expression appear to be higher in specific tissues; for ex-
ample, p38β is abundant in brain, p38γ in skeletal
muscle, and p38δ in endocrine glands [28]. In general,
all p38 MAPKs are strongly activated by a wide variety
of environmental and cellular stresses or by inflamma-
tory cytokines and are poorly activated by serum or
growth factors [28]. The canonical activation of p38
MAPKs occurs via dual phosphorylation of their Thr–
Gly–Tyr motif, in the activation loop, by mitogen-
activated protein kinase kinase (MKK) 3/6 (MKK3 and
MKK6) [28]. Upon activation, the dually phosphorylated
p38 MAPK goes through characteristic global conform-
ational changes that alters the alignment of the two kin-
ase halves (N-terminal and C-terminal domains) of the
folded protein and enhances access to the substrate,
which together increases enzymatic activity. To date,
most studies of the p38 MAPK pathways focused on
function of the p38α and p38β isoform, which is widely
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Fig. 5 Effect of heregulin β1 on the activation of ErbB2, p38γ MAPK and SAP97. a MCF7-ErbB2 cells were treated with heregulin β1 (50 ng/ml) for
the indicated times. The phosphorylation of ErbB2 (pErbB2) was determined by immunoblotting. The phosphorylation of p38γ was analyzed by
immunoprecipitation. Cell lysates were first immunoprecipitated (IP) by an anti-p38γ antibody and then immunoblotted (IB) with an anti-pan-
phosphorylated p38 MAPK. The experiment was replicated three times. b The heregulin β1-induced phosphorylation of ErbB2 and p38γ in BT474
cells was determined. The notations are the same as in panel (a). c The heregulin β1-induced phosphorylation of p38γ MAPK in MCF-ErbB2 cells
was determined by immuoblotting using a phospho-specific antibody directed against p38γ MAPK (p-p38γ). d MCF7-ErbB2 cells were treated
with heregulin β1 for indicated times. Equal amount of proteins were immunoprecipitated (IP) with an anti-SAP97 antibody, then immunoblotted
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(IB) with an anti-SAP97 or anti-p38γ MAPK antibody. The experiment was replicated three times. g and h The relative levels of p-p38γ and SAP97
were quantified, normalized to the loading control, and then expressed relative to time 0 in either DMSO or AG825 groups. Each data point was
the mean ± SEM of three independent experiments. *denotes significant difference from control groups (p < 0.05)
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considered to negatively regulate malignant transform-
ation; nonetheless, few reports address the p38γ and
p38δ isoforms. Although p38γ and p38δ MAPK can
phosphorylate typical p38 MAPK substrates such as the
transcription factors ATF2, Elk-1 or SAP1, they cannot
phosphorylate some substrates of p38α and p38β MAPK
and have their unique substrates [28].
Recent studies indicate that p38γ MAPK may have

some particular implications in breast cancer. For ex-
ample, Meng et al. [42] showed that p38γ MAPK is
overexpressed in highly metastatic human and mouse
breast cancer cell lines and p38γ MAPK expression is
preferentially associated with basal-like and metastatic
phenotypes of breast tumor samples. Clinical evidence
shows that elevated expression of p38γ MAPK is associ-
ated with lower overall survival of patients with breast
cancer [29]. Using a computational mechanical model,
Rosenthal et al. further showed that p38γ MAPK can
regulate the changes of the cytoskeleton and cell shape
of breast cancer cells and control cell motility. This evi-
dence suggests an important role of p38γ MAPK in the
aggressiveness of breast cancer. The current study for
the first time establishes that p38γ MAPK may mediate
alcohol-promoted aggressiveness of breast cancer cells.
Alcohol promotes the interaction between p38γ MAPK

and its substrate, SAP97/DLG, causing SAP97/DLG

phosphorylation (Fig. 3c). Heregulin β1 activates ErbB2/
p38γ MAPK and also promotes p38γ MAPK/SAP97/DLG
interaction (Fig. 5). These results indicate that alcohol
activates the ErbB2/p38γ MAPK/SAP97/DLG pathway.
SAP97/DLG is a scaffold protein and member of the
membrane-associated guanylate kinase (PSD-MAGUK)
family of multi-domain scaffolding proteins which recruits
transmembrane and signaling molecules to localized
plasma membrane sites [43]. SAP97/DLG has been known
for its important role in neuron synapse assembly and
plasticity [44]. SAP97/DLG is also present in epithelial
cells and localized at the lateral membrane between cells
[45]. It has been reported that SAP97/DLG is required for
the polarization of migrating astrocytes [46]. A recent
study showed that SAP97/DLG regulated the migration of
non-small cell lung cancer cells [47]. However, the role of
SAP97/DLG in the aggressiveness of breast cancer cells
has not been established yet. A future study to investigate
the involvement of SAP97/DLG in CSC and migration/in-
vasion of breast cancer cells will provide insight into the
novel function of SAP97/DLG in the context of cancer ag-
gressiveness. It is interesting to note that unlike heregulin
and long-term alcohol exposure, short-term alcohol ex-
posure (up to 6 h) does not enhance p38γ MAPK/SAP97/
DLG interaction. One possibility is that the effect of alco-
hol on ErbB2/p38γ MAPK/SAP97/DLG pathway is not
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strong enough that the changes in SAP97/DLG phosphor-
ylation are beyond the detection of immunoblotting. Sec-
ond possibility is that the time course of alcohol-induced
p38γ MAPK/SAP97/DLG is different from that of heregu-
lin and requires longer exposure to alcohol. Alcohol-
induced activation of ErbB2/p38γ MAPK/SAP97/DLG
pathway may be mediated through the production of
reactive oxygen species (ROS). We have previously
demonstrated that alcohol increases intracellular ROS ac-
cumulation in breast cancer cells and plays a role in
alcohol-induced ErbB2 activation [15, 21]. In addition, the
mitogen-activated protein kinase kinase 6 (MKK6), a
major upstream kinase of p38γ MAPK and its activity is
also regulated by intracellular ROS concentration [48].

Conclusions
Breast cancer cells over-expressing ErbB2 are more
sensitive to alcohol-promoted aggressiveness. Alcohol
preferentially increases CSC population, mammosphere
formation and migration/invasion in breast cancer cells
overexpressing ErbB2. Chronic alcohol exposure enhances
the lung and colon metastasis in MMTV-neu transgenic.
Alcohol selectively activates p38γ MAPK which is down-
stream of ErbB2. This study for the first time demon-
strates ErbB2/p38γ MAPK/SAP97/DLG pathway may
mediate alcohol-stimulated aggresiveness of breast cancer.

Additional files

Additional file 1: Figure S1. Flow cytometry analysis of MCF7 cells
cultured for 10 days in regular DMEM full medium or DMEM medium
with hydrocortisone and insulin. After cultured in either regular DMEM
full medium or DMEM medium with hydrocortisone and insulin for
10 days, MCF7 cells were processed for ALDEFLUOR assay (A and B) and
CD24/CD44 assay (C). (EPS 1583 kb)

Additional file 2: Figure S2. Flow cytometry analysis of MCF7 and
MCF7-ErbB2 cells stained with ALDEFLUOR® (please see Materials and
Methods). Gates (R1) were set according to DEAB control. A: MCF7 cells
were treated with ethanol (0 or 100 mg/dl) for 10 days followed by
ALDEFLUOR assay. B: MCF7-ErbB2 cells were treated with ethanol (0 or
100 mg/dl) for 10 days followed by ALDEFLUOR assay. All experiments
were repeated at least three times and there were triplicates for each
replication. (EPS 1244 kb)
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