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Abstract

Liver cancer is an often fatal malignant tumor with a high recurrence rate and chemoresistance. The major malignant
phenotypes of cancer, including recurrence, metastasis, and chemoresistance, are related to the presence of cancer
stem cells (CSCs). In the past few decades, CSCs have been identified and characterized in many tumors including liver
cancer. Accumulated evidence has revealed many aspects of the biological behavior of liver CSCs and the mechanism
of their regulation. Based on these findings, a number of studies have investigated eradication of liver CSCs. This review
focuses on the recent advances in our understanding of the biology of liver CSCs and the development of strategies
for their treatment.
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Background
Liver cancer is one of the most common cancers world-
wide and has a high mortality rate [1, 2]. Among pri-
mary liver cancers, hepatocellular carcinoma (HCC) is
the major histological subtype and accounts for 70–85%
of total liver cancer cases [1]. When diagnosed at an
early stage, patients generally undergo surgical resection
or liver transplantation according to their hepatic reserve.
However, liver cancer is often difficult to treat surgically
because many cases are diagnosed at an advanced stage,
even at the time of initial diagnosis. Even after surgical
treatment, liver cancer recurs frequently and metastasizes.
Although chemotherapy, including molecular targeting
therapy, is a treatment option for patients with advanced
liver cancer, its therapeutic effects are limited, resulting in
poor overall survival. The development of cancer recur-
rence, metastasis, and chemo- and radioresistance in a
solid tumor is attributed to the presence of cancer stem
cells (CSCs) [3]. In liver cancer, accumulating evidence
has demonstrated the existence of a small subset of
cancer cells with stem cell properties (self-renewal and
differentiation) and several CSC markers have been
identified, including CD133, CD90, CD44, oval cell
marker OV6, EpCAM, CD13, CD24, DLK1, α2δ1,

ICAM-1, CD47, Lgr5, and keratin19 [4–16]. At present,
liver CSCs are considered an important targeting subset
for the successful treatment of liver cancer. In this re-
view, we summarize the current understanding of the
biology of liver CSCs and recent advances in their clinical
diagnosis and treatment.

The hierarchical CSC concept and the origin of liver CSCs
Phenotypic and functional tumor heterogeneity, which is
observed in many tumors including liver cancer [17–19],
can arise through stochastic genetic [17] or epigenetic
[20] changes, or in response to extrinsic environmental
differences [21], or from the hierarchical organization of
CSCs [22, 23]. In the hierarchical CSC concept, which
was first proposed in the 1970s [24], CSCs are present in
the biological hierarchy of cancer and have the capacity
of self-renewal, multi-lineage potency, and extensive
proliferation, resulting in the presence of heterogeneous
cells within a tumor. Even though the existence of liver
CSCs has been explored by the identification of several
surface markers in freshly resected HCC specimens
using antibodies and/or flow cytometry-based cell sepa-
ration methods, their origin remains to be determined
[25, 26].
The transformation of liver stem/progenitor cells has

been considered one possible origin of liver CSCs. Indeed,
CSCs share similar features with normal stem cells, for
example, self-renewal and pluripotency, and liver CSCs
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are identified and classified using normal liver stem/
progenitor cell markers, such as EpCAM [27], Lgr5
[28], CD133 [29], and CD24 [30]. Many types of liver
cancer develop as a result of a long-lasting inflammation/
regeneration process that is induced by chronic viral
infection (e.g., hepatitis B virus [HBV]/hepatitis C virus
[HCV]), alcohol, or non-alcoholic fatty liver disease. In
this process, the expansion of stem/progenitor cells, ac-
cumulation of genetic and/or epigenetic changes, and
alteration of the microenvironment occur continuously,
resulting in the initiation and/or promotion of liver
cancer [31]. Furthermore, this process might facilitate
the transformation of hepatic stem/progenitor cells into
liver CSCs [32–34].
However, liver CSCs do not necessarily originate from

only transformed normal stem/progenitor cells, Various
cell types, including mature hepatocytes and biliary cells,
can be a source of hepatocytes by initializing stem cells
during liver regeneration [35]. This initializing process
implies another possible origin of CSCs; namely, differ-
entiated cells might be transformed into CSCs due to
genetic/epigenetic alteration during cell initialization in
the liver injury/regeneration process. Holczbauer et al.
investigated the ability of distinct differentiated hepatic
lineage cells to acquire CSC properties by stable co-
transduction of oncogenic H-Ras/SV40LT into murine
hepatic progenitor cells, hepatoblasts, and adult hepa-
tocytes. They found that all transduced hepatic lineage
cells can be reprogrammed into CSCs by genetic/epi-
genetic alterations [36].

Moreover, CSCs may originate from non-CSCs by the
activation of “dedifferentiation” [31]. In fact, some evi-
dence of the dedifferentiation of mature cells into CSCs
has been accumulated in solid cancer [37, 38]. Recently,
Liu et al. reported that the chromatin remodeling factor
CHD1L promotes the dedifferentiation of HCC and con-
fers stem cell-like properties on these cells by opening
chromatin [39].
These findings imply that stem/progenitor cells, mature

parenchymal cells, and differentiated liver cancer could be
the origin of liver CSCs via “transformation,” “cell ini-
tialization,” and “dedifferentiation,” respectively (Fig. 1).
Intrahepatic cholangiocarcinoma (ICC) is the second

most frequent histological subtype in liver cancer and is
also a treatment refractory malignancy with a high mor-
tality. Originally, ICC has been thought to derive from
malignant transformation of mature cholangiocytes com-
posing intrahepatic bile ducts. Interestingly, however, two
independent groups demonstrated using cell fate lineage
tracing in mice that ICC arises from hepatocytes, rather
than cholangiocytes or hepatic stem/progenitors, through
Notch/Akt-mediated conversion of hepatocytes into
biliary lineage cells [40, 41]. This finding might provide
some insights considering “cell reprogramming” related
to hepatic stem cell lineage and carcinogenesis.

Cell surface markers and their function in liver CSCs
Since the first evidence of CSCs in acute myeloid
leukemia [42], the existence of CSCs and the identifica-
tion of CSC cell surface markers have been investigated

Fig. 1 The origin of liver CSC
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in many tumors, including liver cancer, by the analysis of
immunogenic, tumorigenic, or functional characteristics
[23]. Currently, a number of cell surface proteins have
been identified as liver CSC markers (Table 1).

CD133
CD133, which is a primitive marker of hematopoietic stem
cells, neuronal stem cells, and liver stem/progenitor cells
[29], was identified as a liver CSC marker in 2007 [4].
Despite the fact that CD133-positive cells represent a
small population of the total number of cells in human
tumor tissue [43], CD133 is clinically significant because
patients with high CD133 expression have poor overall
survival and higher recurrence rates compared with pa-
tients with low CD133 expression [44]. Functionally,
CD133 plays a role in the maintenance of CSC properties
by regulating neurotensin, interleukin (IL)-8, CXCL1, and
MAPK signaling [45].

CD90
Following the identification of CD133, CD90 was identi-
fied and characterized as a marker of liver CSCs. Yang et
al. found that CD90+ HCC cells, but not CD90− cells,
display tumorigenic and metastatic potential [5, 6]. Both
cell line-derived CD90+ cells and liver cancer patient
tissue-/blood-derived CD45− CD90+ cells generate
tumor nodules in immunodeficient mice, and serial
transplantation of xenografts derived from CD90+ cells
produces tumor nodules in a second and subsequently
third batch of immunodeficient mice [6]. These results

also suggested the existence of circulating CSCs in the
blood. An obvious role of CD90 in liver CSCs has not
been reported.

CD44
CD44 has been used widely to characterize CSCs in
combination with other cell surface markers in several
solid tumors. Representatively, a CD44+ CD24−/low cell
population was isolated in human breast cancer as the
first CSC found in a solid tumor [46]. In terms of HCC,
CD44 gives distinct cell features to the CD133+ or CD90+
CSC population. Zhu et al. indicated that CD133+ CD44+
tumor cells possess more stem cell properties, including
extensive proliferation, self-renewal, and the ability to give
rise to differentiated progeny, and can initiate tumor
growth in NOD/SCID mice at very low cell numbers,
compared with CD133+ CD44− tumor cells [47]. In
addition, Yang et al. showed that CD90+ CD44+ cells
demonstrate a more aggressive phenotype than CD90+
CD44− cells and form metastatic lesions in the lung of
immunodeficient mice [5]. Two functions of CD44 in
CSC maintenance have been reported: CD44 regulates
TGFβ-mediated epithelial-mesenchymal transition (EMT)
[48]; and a CD44 variant regulates redox status by sta-
bilizing xCT to protect CSCs against reactive oxygen
species (ROS) [49].

EpCAM
EpCAM, a type 1 transmembrane glycoprotein com-
posed of a large N-terminal extracellular domain (EpEx)

Table 1 Identified liver CSC markers and their functions

Marker Author (year) Function in liver CSCs Reference

CD133 S. Ma [4] Regulation of neurotensin/IL-8/CXCL1 signaling [4, 43]

CD90 Z. Yang [5] Not reported [5, 6]

CD44 Z. Yang [6] Regulation of TGF-beta-mediated EMT,
Reduction of ROS through xCT stabilization

[6, 47, 48]

OV6 W. Yang [7] Not reported [7]

EpCAM T. Yamashita [8] Activation of Wnt signaling,
Induction of Wnt-regulated CSC-like
gene signature

[8, 52, 53]

CD13 N. Haraguchi [9] Cell protection from apoptosis via the ROS
scavenger pathway

[9]

CD24 T. K. Lee [10] STAT3-mediated NANOG regulation [10]

DLK1 X. Xu [11] Not reported [11]

α2δ1 W. Zhao [12] Calcium influx regulation function through
L- and N-type voltage-gated calcium channels

[12]

ICAM1 S. Liu [13] Not reported [13]

CD47 T. K. Lee [14] Regulation of CSC properties by cathepsin
S/protease-activated receptor 2 paracrine loop

[14]

Lgr5 Z. J. Lei [15] Not reported [15]

Keratin19 T. Kawai [16] Not reported [16]

Nio et al. Molecular Cancer  (2017) 16:4 Page 3 of 12



linked to a short C-terminal fragment (EpICD) by a
single-transmembrane domain, has been recognized as
one of the most representative and successful markers
used in isolating liver stem cells [35]. EpCAM was iden-
tified initially as an early biomarker for HCC [50]. It was
further classified as a poor prognostic subtype in com-
bination with AFP in HCC [51]. On the basis of trans-
criptome analysis on a cohort of primary HCC samples,
EpCAM+ HCC displayed a distinct molecular signature
with features of hepatic progenitor cells, including the
presence of known stem/progenitor markers, whereas
EpCAM− HCC expressed genes with features of ma-
ture hepatocytes [51]. In addition, EpCAM+ HCC
showed hepatic cancer stem cell-like traits, including
self-renewal and differentiation, and were highly inva-
sive and tumorigenic [8]. We further demonstrated that
in comparison with CD90+ HCC, EpCAM+ HCC is
highly associated with poorly differentiated morpho-
logy, high serum AFP levels, and a low incidence of dis-
tant organ metastasis [52]. This classification approach
using EpCAM and CD90 might provide for a distinct
clinical outcome and therapeutic approach in HCC
patients. Mechanistically, EpCAM is one of the Wnt/β-
catenin signaling target genes in HCC [53], and the
activation of Wnt/β-catenin signaling enriches the
EpCAM+ cell population [8]. Simultaneously, EpCAM
also activates the Wnt/β-catenin signaling by regulating
intramembrane proteolysis (RIP)-mediated EpICD release
[54]. Most recently, Mani et al. reported that EpCAM-
regulated RIP induces the activation of canonical Wnt
signaling as well as the expression of a Wnt-regulated
CSC-like gene signature in the presence of HBV infection
[55]. These data suggest that EpCAM is strongly related
to the maintenance of stem cell properties through the
activation of Wnt/β-catenin signaling.

Other markers
OV6, which was originally classified as a marker of
hepatic progenitor cells, was also identified in a sub-
population of cells with a high ability to form tumors in
vivo and with substantial resistance to standard chemo-
therapy [7]. OV6+ cells also exhibited strong invasive
and metastatic potential both in vitro and in vivo [56].
CD13 was identified as a novel cell surface marker for
CSCs by Haraguchi et al.[9]. They found that CD13+
HCC cells were CSCs enriched in a side population of
cells from several HCC cell lines, predominated in the G0
phase of the cell cycle, and initiated tumor formation.
Mechanistically, they found that CD13 protects cells from
apoptosis via the ROS scavenger pathway. CD24, a mucin-
like cell surface glycoprotein, was found to be a functional
liver CSC marker that drives CSC genesis through
STAT3-mediated NANOG regulation [10]. Xu et al. re-
ported that DLK1+ HCC cells have characteristics similar

to those of CSCs and showed higher levels of chemoresis-
tance, colony formation, spheroid colony formation, and
in vivo tumorigenicity than DLK1− cells [11]. Zhao et al.
reported that α2δ1 is a functional liver CSC marker identi-
fied using a monoclonal antibody against recurrent HCC,
1B50-1, which binds to the calcium channel α2δ1 subunit.
The role of α2δ1 isoform 5 in liver CSCs is related to its
regulation of calcium influx through L- and N-type
voltage-gated calcium channels [12]. ICAM1, which was
reported as a marker of CSCs and circulating tumor cells
in humans and mice, is regulated by the stem cell trans-
cription factor NANOG [13]. Lee et al. found that CD47
is expressed in liver CSCs, which contributes to tumor
initiation, self-renewal, and metastasis, and significantly
affects the clinical outcome of patients. In addition, they
found that CD47+ HCC cells regulate liver CSCs through
the cathepsin S/protease-activated receptor 2 paracrine
loop [14]. Lgr5, which is also known as a marker of liver
cells following damage [35], was reported to be a potential
CSC marker showing high tumorigenicity and resistance
to chemotherapeutic agents [15]. Most recently, keratin19,
also known as CK19, was verified as a CSC marker of
HCC associated with EMT and TGFβ/SMAD signaling
[16]. Using a functional approach, Muramatsu et al. iden-
tified liver CSCs by visualization system of proteasome
activity and ROS level. They demonstrated that HCC sub-
population with low proteasome activity/low ROS level
shows liver CSC properties and tumorigenicity in vivo.
They further indicated that these liver CSCs facilitate the
migration of macrophages to organize their niche, and in-
duces metastasis by the recruitment of macrophage [57].

Regulation of liver CSCs
The liver CSC niche
CSCs are universally believed to reside in niches, which
are specialized microenvironments that regulate adult
stem cell fate by providing cues in the form of both cell-
cell contacts and secreted factors. These niches maintain
the principal properties of CSCs, preserve their pheno-
typic plasticity, protect them from the immune system,
and facilitate their metastatic potential [58]. Although
the liver CSC niche has not been elucidated, some evi-
dence has suggested the potential regulation of liver CSCs
by their niche. Fan et al. demonstrated that tumor-
associated macrophage (TAM)-secreted TGFβ1 promotes
CSC-like properties through EMT induction [59]. Wan
et al. also reported that TAM-secreted IL-6 promotes
the expansion of CD44+ liver CSCs and tumorigenesis
[60]. Moreover, non-CSC-secreted IL-17E activates the
JAK/STAT3 and NF-κB pathways in CSCs to promote
their proliferation and self-renewal in HCC [61]. Lau
et al. showed that cancer-associated-fibroblast-derived
HGF regulates liver CSCs via the activation of FRA1 in
an Erk1/2-dependent manner [62]. Lai et al. also
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reported that lipopolysaccharide maintains the ability of
CSCs to undergo tumorigenesis, migration, invasion,
and develop chemoresistance through signaling of the
NF-κB/HIF1α pathway [63]. These data suggest that the
liver CSC niche could be a potential therapeutic target for
liver CSCs.

Molecular signaling of liver CSCs
The Wnt/β-catenin signaling pathway plays an import-
ant role in prenatal liver development, postnatal hepatic
growth, adult liver homeostasis, and liver metabolism as
well as liver cancer [64]. Wnt/β-catenin activation is one
of the important aberrant pathways identified in HCC.
A comprehensive genome sequencing study revealed
Wnt pathway-related alterations in 66% of HCCs [65].
Importantly, the activation of Wnt/β-catenin signaling
has been reported in CD133 + [4], EpCAM+[8], OV6 + [7],
and Lgr5 + [15] CSCs. As described above, EpCAM is a
direct transcriptional target of Wnt/β-catenin signaling,
and tumorigenic [53] and highly invasive EpCAM+ AFP+
HCC is regulated by Wnt/β-catenin signaling [8].
The TGFβ family plays crucial and complex physio-

logical roles in liver cancer, which include a multitude of
distinct functions, such as maintaining stem cell homeo-
stasis, promoting fibrosis, immune modulating, as a
tumor suppressor, and paradoxically, as a tumor pro-
moter [66]. Therefore, the role of TGFβ signaling during
HCC development remains controversial. The well-
known role of TGFβ signaling as a tumor promoter in
liver cancer is via EMT, in which epithelial cells acquire
some stem cell characteristics through the activation of
the SMAD3/4 pathway. Again, Fan et al. demonstrated
that TAM-secreted TGFβ1 promotes CSC-like proper-
ties through EMT induction [59]. In addition, a few re-
ports suggested that TGFβ can regulate the induction of
liver CSCs. You et al. found that TGFβ1 regulates
CD133+ CSCs by inhibiting the expression of the DNA
methyltransferases DNMT1 and DNMT3β [67]. Con-
versely, the standard isoform of CD44, which is a CSC
marker, regulates the TGFβ-mediated mesenchymal
phenotype [48]. TGFβ is also reciprocally regulated by
the TLR4/NANOG oncogenic pathway in CD133+ liver
CSCs [68]. IL-6/STAT3 signaling may also maintain the
population of liver CSCs in collaboration with TGFβ
signaling [34, 69, 70].
The Notch signaling pathway plays a role in stem cell

self-renewal and differentiation. Although the role of the
Notch signaling pathway in liver cancer remains to be
elucidated [71, 72], it is reportedly involved in metastasis
[73] and EMT [74], which is relevant to the acquisition
of a stem-like phenotype [75]. Zhu et al. reported that
C8orf4 negatively regulates the self-renewal of CD13 ±
CD133± liver CSCs via NOTCH2 signaling suppression
[76]. The Hedgehog and HGF signaling pathways are

also reportedly involved in EMT in liver cancer [77, 78].
The transcriptional coactivators TAZ and YAP, which
are downstream effectors of the Hippo pathway, have
oncogenic roles in human cancers. In liver cancer,
Hayashi et al. demonstrated that TAZ and YAP coordi-
nately participate in cancer progression, thereby affecting
tumor growth and cancer stem-like properties [79].
ANXA3/JNK pathway has also been reported to regulate
liver CSCs. Tong et al. indicated that ANXA3 promotes
tumor growth and stem cell-like properties in CD133±
liver CSCs through the activation of JNK pathway, more-
over its neutralization suppresses HCC growth and eradi-
cates CSC subset [80].

Transcription factors
Reprogramming of cancer cells is an attractive concept
for studying the biology of cancer stem cells. Normal
somatic cells can be reprogrammed into induced pluri-
potent stem cells using four defined factors, that is,
Oct4, Sox2, c-Myc, and Klf4 [81, 82]. Accumulating evi-
dence suggests that these factors regulate the develop-
ment and maintenance of liver CSCs. Oct4, which is also
known as POU5F1, mediates the stemness of liver
cancer via a positive feedback loop with the oncogene c-
Jun [83]. c-Myc is a master driver of human cancers,
including liver cancer, and it induces the self-renewal
capacity of liver cancer cells in a p53-dependent manner
[84]. Other transcription factors are also involved in the
maintenance of liver CSCs. The pluripotency transcrip-
tion factor NANOG is a biomarker for CSCs in HCC,
and it could play an important role in the maintenance
of CSC self-renewal through the IGF1R-signaling path-
way [85]. Sox9 also regulates the self-renewal and tumor
progression of liver CSCs through negative regulation of
Numb [86].
In addition, some zinc finger transcription factors

have been reported to regulate liver CSCs features.
Zhu et al. demonstrated that ZIC2, which plays im-
portant roles in the early stage of organogenesis of the
CNS, is highly expressed in liver CSCs and regulates
the maintenance of liver CSC self-renewal through the
recruitment to the NURF complex to trigger OCT4 ac-
tivation [87]. SALL4, a homolog of the Drosophila
homeotic gene spalt, is a zinc finger transcription fac-
tor expressed in embryonic stem cells that regulates
their pluripotency and early embryonic development
[88]. SALL4 is also expressed in fetal liver stem/pro-
genitor cells, but not adult hepatocytes, and it plays a
pivotal role in controlling the lineage commitment of
liver stem/progenitor cells [89]. Recently, we and two
other groups independently reported that SALL4 is a
marker of a progenitor subtype of HCC, which is asso-
ciated with poor prognosis, and a potential therapeutic
target in HCC [90–92]. SALL4 represses its target
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genes, namely, phosphatase and tensin homolog and
SALL1, through the epigenetic repressor NuRD complex,
which contains histone deacetylases (HDACs) [93].
Indeed, high HDAC activity was detected in SALL4+
HCC cell lines, and HDAC inhibitors inhibited the pro-
liferation of SALL4+ HCC cell lines and the expression
of SALL4 gene/protein [92]. These data suggest the
potential of HDAC inhibitors in the treatment of
SALL4+ HCC.

HBV/HCV, alcohol, and high-fat diet
Many cancers occur in liver that has been exposed to
long-lasting inflammation induced by HBV/HCV infec-
tion, alcohol consumption, or non-alcoholic fatty liver
disease [1]. Some evidence has demonstrated that these
initiation factors of liver inflammation and carcinogen-
esis are related to the promotion of liver cancer stem
properties. Arzumanyan et al. demonstrated that HBx
promotes stemness factors and the development of HCC
by activating β-catenin and epigenetic upregulation of
miR-181 [94]. Ng et al. indicated that C-terminal- trun-
cated HBx promotes HCC carcinogenesis through in-
duction of CD133± liver CSCs and its tumor-initiating
capacity by regulating FXR pathway and drug metabol-
ism [95]. HCV infection of transformed human hepato-
cytes leads to a significant increase in the number of
spheroids, the expression of EMT and CSC markers,
and tumor growth in immunodeficient mice [96]. Re-
cently, Chen and Kumar and co-workers reported that
TLR4-NANOG signaling mediates the generation of
liver CSCs and tumorigenesis induced by HCV infec-
tion in combination with alcohol or a high-fat diet
[97, 98].

MicroRNAs and long noncoding RNAs
MicroRNAs (miRNAs) are important key molecular
components in cancer biology, and their dysregulation
in liver cancer is related to CSC regulation. Wang and
colleagues have explored the regulation of liver CSCs.
They found that miR-181 is highly expressed in EpCAM+
AFP+ HCC cells as well as in embryonic livers and iso-
lated hepatic stem cells, and it is functionally critical in
the maintenance of EpCAM+ AFP+ HCC cells by pro-
moting HCC stemness through targeting CDX2, GATA6,
and the Wnt signaling inhibitor NLK [99]. miR-155 was
also identified as a molecular target that could be used
to eradicate the EpCAM+ CSC population in human
HCCs [100]. miR-130b is highly expressed in CD133+
CSCs and regulates CSC self-renewal and tumorigen-
icity via silencing TP53INP1 [101]. miR-216a/217 and
miR-125 promote EMT in HCC by inhibiting PTEN/
SMAD7 and SMAD2/4, respectively [102, 103]. Most
recently, Chai et al. demonstrated that miR-1246 is
overexpressed in CD133± liver CSCs and likely to

represent a diagnostic and prognostic biomarker for
HCC. Additionally, they found that overexpression of
Oct4/miR-1246 signaling axis activates Wnt/β-catenin
signaling in CD133± liver CSCs by suppressing AXIN2
and GSK3β [104].
Long noncoding RNAs (lncRNAs), which are a par-

ticular class of noncoding transcripts without evident
protein coding function that are reportedly involved in
the regulation of stem cell differentiation, are dysregu-
lated in human cancers [105], and are associated with
the regulation of liver CSCs. It was demonstrated that
lncTCF7 is highly expressed in HCC and liver CSCs, and
regulates liver CSC self-renewal and tumor propagation
via the activation of Wnt signaling [106]. Yuan et al. re-
cently indicated that lncRNA-DANCR is overexpressed
in HCC CSCs and correlates with poor prognosis, and it
mediates increasing stemness features by interacting
with β-catenin in a dependent manner by blocking miR-
NAs [107]. Moreover, Zhu et al. reported that lnc-β-
Catm, which promotes the methylation of β-catenin, also
plays a role in the maintenance of CD13 ± CD133± liver
CSC self-renewal via the induction of EZH2-dependent
β-catenin stabilization [108].
Thus, both miRNAs and lncRNAs play an important

role in regulating the properties of liver CSCs and there-
fore could be therapeutic targets.

Epigenetic alterations
Epigenetic alterations, including DNA methylation,
histone modifications, polycomb repressive complex
(PRC), and chromatin remodeling complex function, are
mechanisms that contribute directly to carcinogenesis and
CSC regulation. The relevance of epigenetic alterations in
liver CSC regulation has been illustrated by some studies.
Raggi et al. demonstrated that DNA methyltransferase
DNMT1 inhibition-driven epigenetic reprogramming gen-
erates malignant properties and a pool of liver CSCs by
long-lasting cell context-dependent memory effects [109].
The histone deacetylase SIRT1 was revealed to be ne-
cessary for the maintenance of self-renewal in liver
CSCs and it transcriptionally regulated the SOX2 gene
through DNA methylation-dependent epigenetic alter-
ation [110]. By loss-of function assay using short-
hairpin RNA and pharmacological inhibitor, Chiba
et al. demonstrated that EZH2, a core component of
PRC2, plays a role in the maintenance of liver CSCs,
and therefore its inhibition is a promising therapeutic
approach for eradication of liver CSCs [111]. Moreover,
the chromatin remodeling factor CHD1L was associ-
ated with the malignance of HCC tumors and sustained
an open-chromatin configuration at the promoter re-
gions of two regulator genes of HCC self-renewal and
differentiation [39].
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CSC-targeted therapy
Liver cancer is an aggressive tumor with a poor progno-
sis. The effect of current anticancer treatments, including
chemotherapy, radiotherapy, and immunotherapy, is lim-
ited to the improvement of the outcome of liver cancer
patients. Accumulating evidence suggests that liver CSCs
are responsible for this poor prognosis because they can
survive in a dominant state after treatment due to their
highly resistant nature and stem cell-like abilities (self-
renewal and differentiation). Therefore, the eradication
of CSCs has been identified as a target to improve the
outcome of liver cancer patients.

Cell surface markers
As described above, cell surface markers, such as CD133
and EpCAM, are highly expressed on CSC populations
and regulate stemness in liver CSCs. Hence, cell surface
marker-targeted therapies have been proposed to eradi-
cate liver CSCs specifically. Anti-CD133 antibody-drug
conjugates inhibited CD133+ HCC growth in vitro and
in vivo [112]. An anti-CD44 antibody prevented CD90+
CD44+ CSC-mediated tumor formation both locally and
systemically [5]. RNAi-based EpCAM blockade decreased
the EpCAM+ CSC population and inhibited both the in-
vasion capacity and tumorigenicity of EpCAM+ cells [8].
The CD13 inhibitor ubenimex reduced the tumorigenicity
and self-renewal ability of CSCs and it suppressed CD13+
tumor growth in combination with 5FU in vivo [9].
Furthermore, CD47 blockade suppressed HCC growth
and increased sensitivity to chemotherapy drugs including
sorafenib [14, 113]. These data further suggest that CSC
marker-targeted therapy can provide a forceful synergic
effect to existing chemotherapies.

Anti-self-renewal
Since self-renewal is an important characteristic for
CSC maintenance, targeting self-renewal has also been
proposed for the eradication of liver CSCs. The Wnt/β-
catenin signaling pathway is one of the most important
pathways for self-renewal [53]. Inhibition of the Wnt/β-
catenin signaling pathway by anti-miR-181 inhibitors
suppressed stemness gene expression and tumorigen-
icity of EpCAM+ HCC [99]. In addition, the small
molecular agent FH535, which is a dual inhibitor of
peroxisome proliferator-activated receptor and β-catenin,
also showed an inhibitory effect on the proliferation of
liver CSCs [114]. Lupeol, which is a phytochemical
found in fruit and vegetables, suppressed the self-
renewal ability, chemoresistance, and tumorigenicity of
CD133+ CSCs, and it could sensitize these cells to che-
motherapeutic drugs through the PTEN-Akt-ABCG2
signaling pathway [115].

Differentiation
Inducing the differentiation of CSCs into non-CSCs to
lose their self-renewal property is another possible thera-
peutic approach. Oncostatin M (OSM), an IL-6-related
cytokine, induces the maturation of hepatocytes. We
found that the OSM receptor is expressed in the ma-
jority of EpCAM+ HCC CSCs, and OSM induces the
differentiation of liver CSCs and enhances their che-
mosensitivity to 5-FU [116]. HNF4 is a key transcription
factor for hepatocyte differentiation and the maintenance
of hepatic function. HNF4α induces the differentiation of
hepatoma cells into hepatocytes with a reduction of stem-
ness gene expression and liver CSCs [117]. All-trans
retinoic acid (ATRA), the carboxylic acid form of vitamin
A, has an important role in the regulation of cell prolifera-
tion, differentiation, and migration during development. It
has been studied widely in the prevention and treatment
of many types of cancer. Zhang et al. reported that ATRA
induces the differentiation of EpCAM+ HCC-CSCs,
resulting in improved chemosensitivity to cisplatin [118].
BMP4, which is a signaling molecule that belongs to the
TGFβ superfamily, plays a role in hepatogenesis and
hepatic stem cell differentiation. Zhang et al. adminis-
tered BMP4 to CD133+ HCC CSCs and found that a
high-dose of exogenous BMP4 promotes their differenti-
ation, resulting in the inhibition of CSC properties [119].

Chemoresistance
Chemo- and radioresistance are well-recognized charac-
teristics of CSCs; therefore, the elimination of such resist-
ance of CSCs has been targeted with several treatment
agents, as described above. Lupeol sensitized CSCs to che-
motherapeutic drugs through the PTEN-Akt-ABCG2
signaling pathway [115]. CD47 blockade increased sensi-
tivity to doxorubicin and sorafenib [14, 113]. OSM and
ATRA also enhanced chemosensitivity to 5-FU and cis-
platin, respectively [116, 118]. We recently reported a
novel molecular target that is related to the chemoresis-
tance of EpCAM+ liver CSCs. CHD4, a component of the
NuRD complex, is recruited to UV-mediated DNA dam-
age sites in a PARP-dependent manner [120, 121]. We
found that CHD4 is highly expressed in EpCAM+ CSCs,
and it plays a crucial role in the chemoresistance of these
cells and the maintenance of their stemness. Furthermore,
we demonstrated that targeting CHD4 using both HDAC
and PARP inhibitors significantly suppressed HCC
growth [122]. These results offer new mechanistic in-
sights into the chemoresistance of HCC CSCs and sug-
gest the clinical utility of combination therapy with
HDAC/PARP inhibitors.

Future directions
As mentioned above, many aspects of the biology of liver
CSCs have been revealed through great efforts and
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contributions in the past decade. However, various physio-
logical and mechanistic questions of liver CSCs still
remain to be elucidated. In addition, the CSC-based diag-
nosis and treatment of liver cancer both need to be im-
proved in terms of the eradication of CSCs. Liver cancer
contains heterogeneous cancer cells that have multiple
biomarkers, which include cell surface markers, signaling
molecules, and transcription factors. Cancer treatment
has generally been selected on the basis of clinical stage;
therefore, it is desirable to classify cancer in detail by a
combination of various biomarkers in order to provide op-
timal treatment to patients. Recently, newly developed
technologies have provided the ability to reveal single cell
heterogeneity, which has been highlighted in cancer classi-
fication, diagnosis, and treatment [123]. Circulating tumor
cells (CTCs), which are also heterogeneous cells that ei-
ther originate from the primary tumor or from metastatic
lesions, could be used for the detection of cancer progres-
sion in peripheral blood at an early stage and for the
characterization of cancer for individualized therapy. In
liver cancer, Yang et al. reported that CD45− CD90+ cells
are detected in the blood of 90% of liver cancer patients
[6]. Furthermore, Sun et al. found that EpCAM+ CTCs
are detected in 66.67% of HCC patients by CellSearch
analysis and these cells displayed stem cell-like properties.
They also showed that the presence of more than 2 CTCs
in 7.5 mL blood is an independent prognostic factor for
tumor recurrence [124]. These results suggest that
studying CTC heterogeneity might also be an important
approach for the investigation of cancer recurrence,
prognosis, and therapeutic effects.
Treatments for the eradication of CSCs require fur-

ther development to be more direct, more efficient, and
more effective. One of the recent approaches to target
CSCs directly is nanomedicine-based therapy, in which
drug delivery and release are controlled efficiently
[125]. In fact, some nanomedicine-based therapies have
demonstrated efficacy against liver CSCs. Epirubicin-
adsorbed nanodiamonds showed high efficacy in killing
chemoresistant liver CSCs [126]. Poly lactic-co-glycolic
acid-encapsulated disulfiram strongly inhibited liver
CSCs, in vivo HCC growth, and metastasis in combin-
ation with copper [127].
CSC-targeted immunotherapies are also an interesting

treatment strategy for eliminating liver CSCs. Among
them, chimeric antigen receptor T cell (CAR-T) treat-
ment has recently been highlighted and investigated for
its clinical use in many tumors, mainly in hematopoietic
tumors [128, 129]. In terms of HCC, Gao et al. developed a
GPC3-targeted CAR and investigated its efficacy in vivo.
They found that GPC3-targeted CAR-T suppresses HCC
growth [130]. Since CSCs express single or multiple specific
cell surface markers, CSC antigen-targeted CAR-T could be
used for the direct eradication of CSCs. For example,

EpCAM-specific CAR-expressing human peripheral blood
lymphocytes inhibited tumor growth in an EpCAM+ pros-
tate cancer metastasis mouse model [131]. In sum, al-
though liver CSC-targeted CAR-T therapy has not been
reported, it can be considered a promising approach.
While these newly developed therapeutic approaches

are exceedingly attractive, their adverse effects on normal
stem cells should be carefully considered because CSCs
share similar features with normal stem cells, including
activated markers and signaling pathways. The eradication
of normal stem cells as well as CSCs would prove fatal to
liver cancer patients with chronic liver disease; therefore,
the future challenge is to identify specific CSC markers
and develop a specific treatment for liver CSCs.

Conclusions
Since the presence of CSCs has been recognized as one of
the risk factors for a high recurrence rate and chemoresis-
tance of liver cancers, the novel therapeutic approaches
are clearly required to eradicate liver CSCs. On the basis
of the current understanding of the biology of liver CSCs
presented here, further efforts should be made for the
application of the CSCs biology in the clinical setting to
eradicate liver cancers.
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