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Abstract

Since leukemic stem cells (LSCs) or cancer stem cells (CSCs) were found in acute myeloid leukemia (AML) in 1997,
extensive studies have been contributed to identification and characterization of such cell populations in various
tissues. LSCs are now generally recognized as a heterogeneous cell population that possesses the capacities of self-
renewal, proliferation and differentiation. It has been shown that LSCs are regulated by critical surface antigens,
microenvironment, intrinsic signaling pathways, and novel molecules such as some ncRNAs. To date, significant
progress has been made in understanding of LSCs, leading to the development of numerous LSCs-targeted
therapies. Moreover, various novel therapeutic agents targeting LSCs are undergoing clinical trials. Here, we review
current knowledge of LSCs, and discuss the potential therapies and their challenges that are being tested in clinical
trials for evaluation of their effects on leukemias.
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Background
The existence of CSCs was firstly evidenced in AML [1],
and has been now extended to a broad spectrum of solid
tumors [2–8]. In 1994, Dick and colleagues [1] showed
that only the leukemic cells expressing the same markers
as normal adult hematopoietic stem cells (CD34+CD38−)
could initiate hematopoietic malignancy, and termed
these cells as leukemia-initiating cells, leukemic stem
cells (LSCs), or cancer stem cells (CSCs) [1, 9, 10]. Im-
portantly, such cell population possesses the capacities
for self-renewal, proliferation and differentiation. In-
creasing evidence has demonstrated that LSCs are clinic-
ally relevant, indicating that therapies targeting LSCs in
AML would improve survival outcomes [11].
Conventional anticancer strategy is a combination of

surgery, chemotherapy and radiotherapy with allogeneic
stem cell transplantation for eligible candidates [12–14].
However, elderly patients cannot tolerate such intense
regimens, and patients usually face the risk of recur-
rence, metastasis and drug resistance. It is thought that
these therapies predominantly target at a bulk tumor
populations but leave CSCs behind. Importantly, these

CSCs, with highly expressed ATP-binding cassette
(ABC) transporters, have been shown to protect them-
selves from the attacks from chemotherapeutic agents
[15–17]. Hence, the inefficient therapy of cancers is
mainly attributed to the failure of elimination of the ma-
lignant CSCs. It is well recognized that development of
CSC-selective therapies is important for treating CSCs-
containing cancers [18]. In this review, we discuss the
current understanding of LSCs. Also, we summarize
various therapeutic agents targeting LSCs that are being
studied in clinical trials.

Genetic and epigenetic heterogeneities of LSCs
Leukemias are now viewed as aberrant hematopoietic
processes initiated by rare LSCs, which arise from the
transformation of hematopoietic stem cells (HSCs) or
committed progenitor cells [19]. During the course of
malignant transformation, LSCs acquire the capacity of
self-renewal, proliferation and differentiation through
continuous genetic and epigenetic alteration and clonal
diversification. Thus, understanding how genetic and
epigenetic heterogeneities develop in different leukemias
has become an important area for cancer research. Al-
though CSCs have been found in both leukemia and
solid tumors, not all of CSCs in the solid tumors follow
the heterogeneity model of LSC.
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Increasing investigations using deep genome sequen-
cing have identified many recurrent mutated genes crit-
ically implicated in the pathogenesis of human AML
[20–27]. In 2013, the Cancer Genome Atlas Research
Network analyzed the genome of 200 AML patients, and
thoroughly defined the recurrent mutations in AML
[28]. About 30 genes were identified to be mutated in
more than 2% of patients. Remarkably, many of these
mutated genes encode proteins that normally function at
the epigenetic level, including modifications of DNA
cytosine residues and post-translational modifications of
histones. In addition, other studies have shown that
clonal composition of AMLs appears to be changed
quite markedly at both the genetic and epigenetic levels
after therapy in relapsed disease [29–31].
Interestingly, it has been found that there is a sequen-

tial order for the acquisition of these mutations during
leukemogenesis. For example, some researchers ob-
served that somatic mutations in epigenetic modifiers
that regulate cytosine methylation, such as DNMT3A
(DNA methyltransferase 3 alpha), IDH1/2 (isocitrate
dehydrogenase 1/2) and TET2 (tet methylcytosine dioxy-
genase 2), occur early in pre-leukemic HSCs [32–34].
However, other somatic mutations in signaling pathways
that drive proliferation, such as NPM1 (nucleophosmin 1),
FLT3-ITD (internal tandem duplication of the gene FLT3)
and KRAS/NRAS (Kirsten rat sarcoma viral oncogene
homolog/neuroblastoma rat sarcoma viral oncogene
homolog), are later events in AML transformation [35].
These results suggest that disruption of epigenetic pat-
terning is likely an early and prominent event during
leukemogenesis.
In order to characterize the expression profile of LSCs

in chronic myeloid leukemia (CML), Gerber and col-
leagues performed genome-wide transcriptome analysis
of CML LSCs using exon microarrays [36]. They identi-
fied 97 genes that are differentially expressed between
CML LSCs and normal HSCs. Further analysis revealed
dysregulation of proliferation, differentiation and signal-
ing pathways in CML LSCs. These data may provide po-
tential therapeutic targets unique to CML LSCs.

Surface molecules and microenvironment of LSCs
and their clinical implications
Cell surface molecules of LSCs
The AML LSCs were the first reported and best char-
acterized type of CSCs, and they specifically display
CD34+CD38− cell surface markers [1, 9, 10]. However,
subsequent studies showed that the surface markers of
AML LSCs are considerably heterogeneous [37–47]. For
example, AML LSCs were found not only in Lin−/CD38−

fractions but also in CD34−, Lin+, CD38+, and CD45RA+

fractions [45]. It was also found that true AML LSCs
in the CD34+/CD38− fractions, originally described by

Bonnet and Dick, were very rare and comprised a
hierarchy of cells with different self-renewal potential
[46]. In addition, some surface markers of AML LSCs
(CD34+, CD38−, CD71−, and HLA-DR−) are shared with
normal HSCs, and others (Lin+, CD38+, CD45RA+) are as-
sociated with normal committed progenitors [38, 45].
These findings stirred up a debate about whether AML
LSCs are derived from the normal HSCs or from the com-
mitted progenitor cells. On the other hand, the surface
markers of LSCs are heterogeneous, which makes hard for
classification of LSCs and even LSCs-targeted treatment
in clinics.
Recently, great progress has been made in understand-

ing of LSC surface markers and their clinical applica-
tions, especially in AML cases. Firstly, a number of
critical surface markers unique to AML LSCs have been
identified. For example, it has been revealed that CD90
and CD117 are deficient in AML LSCs [39], while
CD123 [42, 48], TIM3 [44, 49], CD47 [50, 51], CD96
[52], CLL-1 [53, 54], and IL-1 receptor accessory protein
(IL1RAP) [55] are highly expressed in AML LSCs. Tar-
geting these surface markers is a promising strategy for
eradicating AML LSCs. Previous studies have shown
that CD123 (IL-3 receptor α chain) was preferentially
expressed in the CD34+/CD38− AML cells, as compared
with normal HSC samples. Pretreatment of AML cells
with anti-CD123 monoclonal antibody 7G3 resulted in
decreased engraftment when they were injected into a
xenograft model [42, 48]. To date, phase I clinical trials
(NCT00401739 and NCT01632852) of using monoclo-
nal antibody targeting CD123 (CSL360 and improved
CSL362) [48] have been tested in CD123+ AML patients.
Moreover, other monoclonal antibodies targeting
CD47 [56, 57], CD96 [52, 58], TIM3 [44, 49] and CLL-1
[54, 59] have also been investigated in pre-clinical models
for their ability to eliminate primary AML LSCs. It is
worth mentioning that Gemtuzumab Ozogamicin, an
anti-CD33 antibody, is the first monoclonal antibody ap-
proved by the Food and Drug Administration (FDA) of
the USA in 2000 for the treatment of AML, although it
may not specifically target LSCs [60].
Secondly, increasing novel therapies are continuously

developed to specifically target these surface antigens of
LSCs and are undergoing in clinical trials in AML cases.
Besides monoclonal antibodies mentioned above [61,
62], these new therapies include both bi-specific and tri-
specific antibody fragments [63, 64], immunotoxins [65],
chimeric antigen receptor modified T-cells (CAR T-cells)
[66], and nano-particles containing surface markers-
targeted medication [67]. Notably, DT388IL3 (SL-401) is a
recombinant immunotoxin that is created by fusing diph-
theria toxin with a ligand targeting IL-3 receptor. At
present, DT388IL3 (SL-401) undergoes phase I/II trials
(NCT02113982 and NCT02270463) in AML [65] (Table 1).
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Microenvironment associated with LSCs
Under normal conditions, HSCs rely on the interactions
with the bone marrow (BM) niche, which is critical for
their proper function and maintenance [68]. The remod-
eling of the BM niche is commonly observed in blood
malignancies. There is evidence that growth of leukemic
cells disrupts the BM niches of normal hematopoietic
progenitor cells and creates a microenvironment hospit-
able for them [69]. Within such microenvironment,
LSCs are able to communicate with BM stromal cells
through cytokines, chemokines and intracellular signals
initiated by cellular adhesion [70, 71]. Importantly, these
signals influence the ability of LSCs to self-renew, main-
tain their quiescence, and prevent apoptosis. In addition,
the BM niche provides two distinct microenvironmental
zones (the osteoblastic niche and vascular niche) that
likely regulate the cycling of LSCs [71–73]. Thus, block-
ing the interactions between LSCs and their microenvir-
onment represents a promising strategy to disrupt LSC
homeostasis and restore normal hematopoiesis.
One of such strategies is to dislodge LSCs from their

protective BM niche and thus sensitize the LSCs to con-
ventional chemotherapies. It has been demonstrated that
LSCs migrate into and remain within the BM niche
through the interaction between C-X-C chemokine re-
ceptor type 4 (CXCR4) and stromal cell derived factor-1
(SDF-1α), also known as C-X-C motif chemokine 12
(CXCL12) [74]. Recently, manipulating the CXCL12-
CXCR4 axis using Plerixafor (AMD3100) in relapsed
AML has been reported as a safe strategy in phase I/II
clinical trials (NCT00990054 and NCT00822770) [75–78].
Additionally, ligation of the adhesion molecules CD44
[79] and vascular cell adhesion molecule 1 (VCAM-1)
[80] with their monoclonal antibodies has already been

tested in the clinic. Other strategies like altering BM niche
remodeling and inflammatory microenvironment, such as
targeting pro-inflammatory cytokines tumor necrosis fac-
tor alpha (TNFα), IL-1, and IL-6, might be very promising
but mainly at pre-clinical stages [81].

Intracellular molecules and signaling of LSCs
Critical signaling pathways involved in regulation of LSCs
LSCs are characterized by limitless self-renewal, prolifer-
ation and differentiation. A set of critical genes impact
these functional properties through a wide range of cel-
lular pathways and processes, which have been described
in detail by many groups [13, 19, 71, 82]. Signaling path-
ways such as Wnt/β-catenin [83–89] and Hedgehog
[90–92] play important role in regulating self-renewal of
LSCs. These signaling pathways are also critically re-
quired for the development of normal HSCs [93]. In
addition, it is thought that LSCs can evade apoptosis by
up-regulating NF-κB (nuclear factor kappa-light-chain-
enhancer of activated B cells) [94, 95] or by down-
regulating Fas/CD95 [96]. Here, we review some key sig-
naling pathways involved in the regulation of survival
and self-renewal of LSCs.
The well-known Wnt/β-catenin signaling pathway

plays fundamental role in maintaining CSC populations.
The activation of Wnt/β-catenin pathway leads to the
translocation of β-catenin into the nucleus, where it
induces the expression of target genes such as c-Myc,
c-Jun and cyclin D1 [97–101]. Various experiments
have demonstrated that Wnt/β-catenin signaling path-
way acts as a key regulator in controlling prolifera-
tion, survival, and differentiation of hematopoietic
cells [99, 102]. Aberrant activation of Wnt/β-catenin sig-
naling pathway has also been found in both AML [87–89]

Table 1 Anti-LSCs agents that are undergoing in AML clinical trials

Targets Name of agents Property of agents Stage of clinical trials Clinical trial identifier References

Cell surface antigens

CD123 CSL360 Monoclonal antibody Phase I NCT00401739 [42, 48]

CSL362 Monoclonal antibody Phase I NCT01632852 [48]

DT388IL-3 (SL-401) Immunotoxin Phase I/II NCT02113982,NCT02270463 [65]

Signaling pathways

PI3K CAL-101 (Idelalisib) Inhibitor of PI3K Phase I NCT00710528 [114]

AKT Perifosine Inhibitor of AKT Phase I NCT00301938 [184, 185]

MK-2206 Inhibitor of AKT Phase II NCT01253447 [186, 187]

mTOR Everolimus(RAD001) Inhibitor of mTOR Phase II NCT00762632 [188]

Temsirolimus Inhibitor of mTOR Phase II NCT00775593 [189, 190]

NF-κB Bortezomib Inhibitor of IκB Phase I/II NCT00651781,NCT00742625 [191, 192]

Wnt CWP232291 Inhibitor of β-catenin Phase I NCT01398462 /

Microenvironment

CXCR4 Plerixafor(AMD3100) Antagonist of CXCR4 Phase I/II NCT00990054,NCT00822770 [75–77, 193]
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and CML [83, 84]. Subsequent studies have shown that
Wnt/β-catenin signaling pathway is required for efficient
self-renewal of LSCs, indicating that it is an attractive
therapeutic strategy to target Wnt/β-catenin signaling
in AML and CML [84, 85]. In addition, it has been
documented that Wnt signaling pathway and the
polycomb-group protein BMI1 (B lymphoma Mo-MLV
insertion region 1 homolog) are involved in the expansion
of LSCs [103–105].
Janus kinase (JAK)/signal transducer and activator of

transcription (STAT) and phosphatidylinositide 3-kinase
(PI3K)/protein kinase B (AKT) are two crucial signaling
pathways that have been implicated in LSC survival and
multiple cancer formation. It is well established that ma-
lignant transformation of many cell types, especially
hematopoietic cells, involves the dysregulation of JAK/
STAT and/or PI3K/AKT that regulate cellular prolifera-
tion and survival. For example, there is considerable
evidence showing that aberrations in these signaling
pathways are associated with numerous leukemias. In
CML, JAK/STAT/PIM (proviral insertion in murine) and
PI3K/AKT/mTOR (mammalian/mechanistic target of
rapamycin) pathways are constitutively activated by Bcr-
Abl, a non-receptor tyrosine kinase, resulting in uncon-
trolled cellular proliferation [12, 106–108]. Bcr-Abl can
also cause tyrosine phosphorylation of suppressors of
cytokine signaling 1 and 3 (SOCS-1 and SOCS-3), two
potent suppressors of JAK/STAT signaling, and thereby
diminish their inhibitory effects on JAK/STAT activation
[109]. Interestingly, PI3K mutation and AKT1 (E17K)
mutation has been identified in a variety of tumors.
AKT1 (E17K) mutant, a constitutively activated form of
AKT1, can significantly promote tumorigenesis [110]. In
addition, it was observed that other members of the
PI3K/AKT/mTOR pathway, such as PTEN (phosphatase
and tensin homolog) and mTOR, function in the main-
tenance of LSCs [111]. Recently, we have shown that
there exists a crosstalk between JAK/STAT/PIM and
PI3K/AKT/mTOR pathways that converge on eukaryotic
translation initiation factor 4B (eIF4B) to regulate the
survival of Abl transformants [112, 113].
In brief, increasing evidence has suggested that mul-

tiple signaling pathways are involved in the development
of LSCs. Profound elucidation of the intricate pathway
network in LSCs is significant in understanding of LSCs
and designing precise treatment of leukemia through
targeting LSCs. Currently, various clinical trials are in
process to test the efficacy of agents targeting intracellu-
lar proteins and pathways associated with LSCs. For ex-
ample, clinical studies of the drug CAL-101, an inhibitor
of PI3K, showed remarkable success in chronic lympho-
cytic leukemia (CLL). It has also been found that CAL-
101 has some effects on tumor microenvironment [114].
Additionally, other inhibitors targeting PI3K/AKT/mTOR,

NF-κB and Wnt signaling in the clinic are listed in
Table 1.

Functional involvement of non-coding RNAs in malignant
hematopoiesis
Non-coding RNAs (ncRNAs), such as microRNAs
(miRNAs) and long non-coding RNAs (lncRNAs), play
critical roles in multiple biological processes [115–119].
Aberrant expression and functioning of these ncRNAs
have been shown to be associated with various cancers
and cancer stem cells [120–125]. Here, we highlight
several miRNAs and lncRNAs as key regulators in
hematopoietic cells and LSCs (Fig. 1).

Regulation of hematopoietic malignancies by miRNAs
miRNAs are 18–22 nucleotides ncRNAs that generally
regulate gene expression by promoting mRNA degrad-
ation or inhibiting mRNA translation [126, 127]. During
the tumorigenesis, some miRNAs act as oncogenes,
whereas others function as tumor suppressors [128–132].
They can regulate cell growth, proliferation, survival,
migration and invasion of cancer cells. Notably, the roles
of well-known miRNAs in normal and malignant
hematopoiesis have been extensively reviewed [133–137].
These miRNAs regulate almost every step of development
and differentiation of both normal hematopoietic cells
and LSCs.
MiR-125 is a highly conserved miRNA. There are

three homologs of miR-125 (hsa-miR-125b-1, hsa-miR-
125b-2 and hsa-miR-125a) in human [136]. Previous in-
vestigations have revealed that highly expressed miR-125
enhances self-renewal and survival of HSCs, and dysreg-
ulation of miR-125 occurs in multiple hematopoietic
malignancies [138–142]. In particular, miR-125 is impli-
cated in hematopoiesis through the p53-involved regula-
tion network [143].
Recently, Lechman and colleagues have shown that

miR-126 preserves AML LSC quiescence and promotes
chemotherapy resistance by targeting the PI3K/AKT/
mTOR signaling pathway [144]. Interestingly, reduction
of miR-126 level impairs LSC maintenance, but it plays
an opposing role in normal HSCs [144]. In addition,
functional involvement of miR-29a has also been found
in AML LSCs [134]. Previous experiments demonstrated
that miR-29a was highly expressed in AML samples.
Furthermore, results exhibited that miR-29a can pro-
mote proliferation of hematopoietic progenitor, and
transform AML by converting myeloid progenitors into
LSCs [134].

Involvement of lncRNAs in leukemogenesis
Over the past decade, increasing numbers of lncRNAs
have been identified and recognized as novel regulators
that are implicated in various cellular processes. LncRNAs
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are generally more than 200 nucleotides in length, and
modulate gene expression through interaction with
DNAs, RNAs and proteins [145–147]. They function at
multiple levels, including gene transcription, post-
transcriptional processing, RNA translation, and epi-
genetic modifications [148]. It has been reported that
some lncRNAs are involved in the regulation of CSCs
[149–152]. For example, the lncRNA, named lncTCF7,
has been identified to promote liver CSC self-renewal
and tumor propagation by activating Wnt signaling
[149]. Moreover, many lncRNAs have been seen to be
associated with normal hematopoietic cells and vari-
ous types of leukemia [118, 153–160] (Fig. 1).
Dysregulation of lncRNA H19 has been observed in

various tumors, including Bcr-Abl-induced leukemia
[161–164]. H19 acts as dual regulators in different can-
cers (either as an oncogene or a tumor suppressor) and
also serves as a precursor for miR-675, known to down-
regulate the tumor suppressor gene RB in human colo-
rectal cancer [165–167]. Importantly, H19 is highly
expressed in long-term HSCs (LT-HSCs). H19-deficiency
results in activation of the insulin-like growth factor 2
(IGF2)-IGF1 receptor pathway, leading to increased
proliferation and decreased long-term self-renewal of
HSCs [168].
Recently, Guo et al. have comprehensively analyzed

the expression of lncRNAs in human CML cells [158].
Notably, a lncRNA termed lncRNA-BGL3 was highly in-
duced in response to silence of Bcr-Abl expression or

inhibition of Bcr-Abl kinase activity in K562 cells and
leukemic cells derived from CML patients. Furthermore,
lncRNA-BGL3 functions as a competitive endogenous
RNA (ceRNA) to cross-regulate PTEN expression, thereby
modulating leukemic cell survival. Thus, lncRNA-BGL3
has been identified as a tumor suppressor in Bcr-Abl-
mediated cellular transformation.
To date, miRNAs and lncRNAs have been confirmed

by increasing evidence as functional mediators in cancer
cells and cancer stem cells. Some cancer-associated
ncRNAs are currently considered as biomarkers for
patient prognosis and potential therapeutic agents for
particular cancers [128, 129, 169–181]. For example,
MRX34, the first miRNA mimic, entered phase I clinical
trials in patients with advanced hepatocellular carcinoma
in 2013 [169]. In AML, Dorrance et al. have observed
that miR-126 enriches in AML LSCs and contributes
to the long-term maintenance and self-renewal of
LSCs. Treatment with novel nano-particles containing
antagomiR-126 results in reduction of LSCs in vivo [181].
Therefore, better understanding of the mechanisms
underlying functional involvement of miRNAs and
lncRNAs in LSC development and leukemogenesis is of
great importance for precise treatment of hematopoietic
malignancies.

Conclusion
Over the past two decades, the function and phenotype
of LSCs have been continuously defined. Furthermore,

Fig. 1 Involvement of miRNAs and lncRNAs in normal and malignant hematopoiesis. miRNAs and lncRNAs regulate almost every step of
development and differentiation of hematopoietic cells during both normal and malignant hematopoiesis. Dysregulation of the ncRNAs (in red
color) is associated with transformation of hematopoietic cells
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numerous studies provide accumulating evidence that
there exist CSCs in a variety of solid tumors [182, 183].
Importantly, these progresses have led to the develop-
ment of many novel therapeutic strategies targeting
CSCs. Here, we have reviewed the current understand-
ing of LSCs both in intrinsic and extrinsic aspects, and
discussed the promising therapeutics that is being
tested in clinical trials. Although identification and
characterization of LSCs have renewed leukemia re-
search and helped develop diverse clinical therapeutic
strategies, some tough challenges for LSCs-based
leukemia therapy still remain. One of the greatest
challenges is early and efficient identification of LSCs
in diverse leukemia patients. Moreover, better under-
standing of LSCs development and differentiation is
critically required for clinical implications of the strategies
targeting such cell populations. Precise mechanisms by
which extracellular and intracellular molecules and their
signaling regulate LSCs also remain to be determined.
Therefore, further efforts are needed to identify more
specific biomarkers of LSCs, determine specific targets
and thereby develop efficient LSCs-based treatment of
leukemia.
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