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Abstract

Background: Diffuse large B-cell lymphoma (DLBCL) is an aggressive and complex disease characterized by wide
clinical, phenotypic and molecular heterogeneities. The expression pattern and clinical implication of long non-coding
RNAs (lncRNAs) between germinal center B-cell-like (GCB) and activated B-cell-like (ABC) subtypes in DLBCL remain
unclear. This study aims to determine whether lncRNA can serve as predictive biomarkers for subtype classification and
prognosis in DLBCL.

Methods: Genome-wide comparative analysis of lncRNA expression profiles were performed in a large number of
DLBCL patients from Gene Expression Omnibus (GEO), including GSE31312 cohort (N = 426), GSE10846 (N = 350)
cohort and GSE4475 cohort (N = 129). Novel lncRNA biomarkers associated with clinically molecular subtype and
prognosis were identified in the discovery cohort using differential expression analyses and weighted voting algorithm.
The predictive value of the lncRNA signature was then assessed in two independent cohorts. The functional implication
of lncRNA signature was also analyzed by integrative analysis of lncRNA and mRNA.

Results: Seventeen of the 156 differentially expressed lncRNAs between GCB and ABC subtypes were identified
as candidate biomarkers and integrated into form a lncRNA-based signature (termed SubSigLnc-17) which was
able to discriminate between GCB and ABC subtypes with AUC of 0.974, specificity of 89.6% and sensitivity of
92.5%. Furthermore, subgroups of patients characterized by the SubSigLnc-17 demonstrated significantly different clinical
outcome. The reproducible predictive power of SubSigLnc-17 in subtype classification and prognosis was successfully
validated in the internal validation cohort and another two independent patient cohorts. Integrative analysis of
lncRNA-mRNA suggested that these candidate lncRNA biomarkers were mainly related to immune-associated
processes, such as T cell activation, leukocyte activation, lymphocyte activation and Chemokine signaling
pathway.

Conclusions: Our study uncovered differentiated lncRNA expression pattern between GCB and ABC DLBCL and
identified a 17-lncRNA signature for subtype classification and prognosis prediction. With further prospective
validation, our study will improve the understanding of underlying molecular heterogeneities in DLBCL and provide
candidate lncRNA biomarkers in DLBCL classification and prognosis.
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Background
Diffuse large B-cell lymphoma (DLBCL) occurs most com-
monly in all subtypes of non-Hodgkin lymphoma (NHL),
representing more than one-third of all diagnosed NHL
cases and making it the most prevalent form of NHL
among adults worldwide [1, 2]. Evidence from biological
and clinical studies demonstrated that DLBCL is an aggres-
sive and complex disease characterized by wide clinical,
phenotypic and molecular heterogeneities [3–5]. Although
the survival rate has improved dramatically and could reach
50%~ 60%, heterogeneity properties of DLBCL contributed
to different clinical outcome for DLBCL patients with
current standard therapy (Rituximab combined with trad-
itional chemotherapy of cyclophosphamide-doxorubicin-
vincristine-prednisone (R-CHOP)) [6]. With the emergence
of high-throughput technologies, two major molecular
subtypes first were identified by microarray-based gene ex-
pression profiling on the basis of gene expression pattern:
germinal center B-cell-like (GCB) and activated B-cell-like
(ABC) [7]. The distinct prognostic implications of these
molecular subtypes have also been observed: patients with
GCB DLBCL exhibited more favorable clinical outcome
with 5-year progression-free survival (PFS) of 73% than
those with ABC DLBCL with 5-year PFS of 48% following
R-CHOP therapy [6]. Several groups have identified mRNA
or miRNA-focus prognostic and/or molecular subtype
signatures [3, 8–13]. For example, Wright et al. identified a
27-gene predictor to diagnose clinical distinct subtype of
DLBCL [3]. Cai et al. built an expression-based signature
incorporating up to 35 genes for both subtype classification
and survival prediction [8]. These genes represented diverse
biological roles involved in focal adhesion, cell cycle and
Wnt signaling pathway.
Long non-coding RNAs (lncRNAs) are a recently dis-

covered major class of non-coding RNAs (ncRNAs) with
more than 200 nucleotides in length [14]. A large number
of studies have suggested that lncRNAs function as key
regulatory player in a broad range of biological processes,
including cell differentiation, development [15]. The
dysregulation of lncRNAs has been strongly associated
with tumorigenesis, tumor progression and metastasis,
highlighting the emerging roles of lncRNAs as diagnostic
and prognostic biomarkers as well as potential therapeutic
targets in a variety of cancer types [16, 17]. There is
growing evidence that cancer subtype could be character-
ized by differentiated lncRNA expression pattern, suggest-
ing the potential of lncRNAs as potent biomarkers in
cancer subtype. Several studies have observed subtype-
specific lncRNA expression pattern between lung adeno-
carcinoma and squamous cell carcinoma [18, 19]. In breast
cancer, the correlation between lncRNA expression and
tumor subtype has also been investigated and some
subtype-specific lncRNAs were identified [19–21]. For ex-
ample, a well-known lncRNA HOTAIR was up-regulated

in the HER2-enriched subgroup [20]. Our previous work
has indicated the prognostic roles of lncRNAs in DLBCL
patients [22]. Furthermore, recent studies demonstrated
that lncRNA expression patterns can characterize distinct
stages of B-cell development and activation [23, 24]. How-
ever, the expression pattern and clinical implication of
lncRNAs between GCB and ABC DLBCL remain unclear.
In this study, we performed genome-wide compara-

tive analysis of lncRNA expression profiles and
investigated differentiated lncRNA expression pattern
between GCB and ABC DLBCL. By applying the
weighted voting algorithm, we identified a panel of 17
lncRNA biomarkers that are able to discriminate
GCB and ABC subtypes with high performance. Fur-
thermore, GCB-like and ABC-like subgroups defined
by the lncRNA signature have a significantly different
clinical outcome. The reproducible predictive power
of 17-lncRNA signature was validated in other two
independent DLBCL cohorts. In addition, an integra-
tive analysis of lncRNA and mRNA was performed to
infer functional roles of lncRNA biomarkers.

Methods
Patients’ samples
Gene expression microarray data and clinical informa-
tion for DLBCL were downloaded from the Gene Ex-
pression Omnibus (GEO) database. Affymetrix gene
expression profiles were performed using Affymetrix
Human Genome U133 Plus 2.0 (HG-U133 Plus_2.0) for
2 cohorts of patients (GSE31312 and GSE10846) and
using Affymetrix Human Genome U133A Array (HG-
U133A) for 1 cohort of patients (GSE4475). After
removing patients with no clinical or subtype informa-
tion, a total of 905 DLBCL patients were included in our
study (Table 1), comprising 426 patients from Visco’s
study (the accession number is GSE31312) [10], 350
patients from Lenz’s study (the accession number is
GSE10846) [25] and 129 patients from Hummel’s study
(the accession number is GSE4475) [26].

Acquisition and analysis of lncRNA expression profiles
Raw CEL files of three independent patient cohorts were
downloaded from the GEO database. The raw array data
were uniformly pre-processed and normalized using the
robust multi-array average (RMA) algorithm [27]. After
background correction, quantile normalization and log2-
transformation, the z-score transformation was applied
for scaling expression intensities of each probe [28].
The probe annotation sequences of HG-U133

Plus_2.0 and HG-U133A were obtained from the
Affymetrix website (http://www.affymetrix.com/estore/).
Then probe sequences were re-mapped to the human
genome (GRCh38) and lncRNA genes derived from
GENCODE (release 21) using SeqMap tool [29]. Those
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probes that were uniquely mapped to the human
genome and lncRNA genes with no mismatch were
retained for further analysis. Finally, 3215 (covering
2330 lncRNAs for HG-U133 Plus_2.0) and 855 (cover-
ing 663 lncRNAs for HG-U133A) lncRNA-specific
probes were obtained by cross-referencing the chromo-
somal position of probes and the chromosomal position
of lncRNA genes according to previous studies [30–32].
For those lncRNAs with multiple probes, the expres-
sion values of lncRNAs were produced by using the
mean value of multiple probes.

Statistical analysis for subtype classification and
prognosis prediction
Analysis of lncRNA expression profiles
The unpaired two-tailed Student’s t-test was used to de-
termine the statistically significant difference in lncRNA
expression between ABC and GCB subgroups. The
method of false discovery rate (FDR) defined by Benjamini
and Hochberg [33] was used for multiple testing correction.
Those lncRNAs with t-test p-value <0.01 and FDR < 0.15
were identified as differentially expressed lncRNAs between
ABC and GCB subgroups. Unsupervised hierarchical clus-
tering of both DLBCL patients and lncRNAs was per-
formed with R software using the euclidean distance and
complete linkage method.

Formulation of lncRNA-based molecular signature
To construct a lncRNA-based molecular signature for sub-
type classification and prognosis prediction, we developed a
supervised subgroup predictive classifier using the weighted
voting algorithm as previously described [34] based on the
weighted votes of a set of informative lncRNAs. The
weighted votes was defined as WLVL, where WL is a weight-
ing factor that measures how well this lncRNA is correlated
with the subgroup classification and was calculated as
wL = (μABC − μGCB)/(σABC − σGCB), and VL represents the
deviation of the expression level of this lncRNA in the
sample from the decision boundaries between the subgroup
means and was calculated as vL ¼ eL− μABC þ μGCBð Þ=2j j .
Finally, for a given test sample, the weighted votes of in-
formative lncRNAs for each subgroup was summed to
form a final total votes VABC and VGCB, and this given sam-
ple was assigned to the winning subgroup with the higher
final total votes.

Identification of lncRNA biomarkers associated with
clinically molecular subtype and prognosis
To obtain an optimal lncRNA molecular signature for
subtype classification and prognosis prediction, the
above-mentioned supervised predictive classifier was
constructed with different numbers of differentially
expressed lncRNAs using 5-fold cross-validation strat-
egy and 100 randomized permutations. The average
number of misclassified patients of 100 randomized
permutations for predictive classifier constructed by a
specific number of lncRNAs (n = 1, 2, 3, ……, 156) as

follows: averageerrorN ¼ Σ
100

i¼1
Σ
5

j¼1
error

� �
=100 . The num-

ber of lncRNAs with a balance between classification
accuracy and number was chosen as the optimal num-
ber k. The frequencies of lncRNAs in 500 candidate
lncRNA ranking list according to their signal-to-noise
ratio were ranked and top k of the ranked lncRNAs
was identified as lncRNAs biomarkers which were

Table 1 Clinical and pathological characteristics of patients with
DLBCL in our study

Characteristics Discovery
cohort

Internal
validation
cohort

GSE31312
cohort

GSE10846
cohort

GSE4475
cohort

No. of patients 213 213 426 350 129

Age, year

>60 121 123 244 196 72

≤60 92 90 182 154 57

Gender

Female 101 82 183 152 54

Male 112 131 243 184 74

Unknown 14 1

Stage

I/II 97 106 203 160 36

III/IV 116 107 223 184 48

Unknown 6 45

No. of extranodal sites

<2 167 170 337 299

≥2 46 43 89 26

Unknown 25

LDH

0 72 61 133 140

1 120 133 253 156

Unknown 21 19 40 54

ECOG

<2 168 171 339 256

≥2 45 42 87 74

Unknown 20

Subtype

GCB 106 121 227 183 74

ABC 107 92 199 167 55

Unclassified

Survival status

Dead 80 74 154 143 51

Alive 133 139 272 207 42

Unknown 36
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used to derive an optimal lncRNA molecular signature
using the weighted voting algorithm for subtype classi-
fication and prognosis prediction.

Survival analysis
The difference in overall survival and progression-free
survival between the predicted subgroups of patients
was plotted using the Kaplan-Meier curves method and
was tested by the log-rank test. Univariate and multivari-
ate Cox regression analysis were performed to evaluate
the association between the lncRNA-based molecular
signature and survival with and without other clinical
variables in each dataset. Hazard ratios (HR) and 95%
confidence intervals (CI) were calculated by Cox propor-
tional hazards regression model. All these statistical
analyses were conducted using the R package and
Bioconductor.

Functional enrichment analysis
The functional enrichment analysis of Gene Ontology
(GO) and Kyoto encyclopedia of genes and genomes
(KEGG) was conducted using DAVID Bioinformatics
Tool (https://david.ncifcrf.gov/, version 6.7) [35] to iden-
tify significantly enriched biological themes including
GO terms and KEGG pathways. GO functional terms
limited in the “Biological Process” (GOTERM-BP-FAT)
and KEGG pathways with FDR <0.05 were considered
significant.

Results
Identification of lncRNA biomarkers associated with
clinically molecular subtype
Here, 426 DLBCL patients from the GSE31312 cohort,
which is the largest patient dataset, were randomly
assigned to a discovery cohort (n = 213) and an internal
validation cohort (n = 213). We first compared the
lncRNAs expression profiles and determined altered
lncRNA expression associated with clinically molecular
subtype in the discovery cohort. In total, 156 lncRNAs
were differentially expressed between the two major
clinically molecular subtypes of DLBCL (ABC and GCB)
using the unpaired two-tailed Student’s t-test with p-
value <0.01 and FDR < 0.15 (Additional file 1: Table S1).
Among the differentially expressed lncRNAs, 56 lncRNAs
were up-regulated in the ABC subgroup and 100 lncRNAs
were up-regulated in the GCB subgroup. These differen-
tially expressed lncRNAs were considered as candidate
lncRNAs biomarkers associated with clinically molecular
subtype.
To identify optimal lncRNA biomarkers associated with

clinically molecular subtype, we selected specific number of
differentially expressed lncRNAs (number = 1, 2, 3, …, 156)
to develop the supervised subtype predictive classifier using
the weighted voting algorithm for distinguishing ABC and

GCB DLBCL samples. The average number of misclassified
samples in the 5-fold cross-validation analysis with 100 per-
mutations was calculated and the accuracy of subgroup
classifier was plotted (Fig. 1a) when increasing numbers of
differentially expressed lncRNAs in the subgroup classifier.
We found that 17 lncRNAs could yield a balance between
classification accuracy and the number of lncRNAs. When
choosing more than 17 lncRNAs, there is a decrease or
very slight increase in prediction accuracy (Fig. 1a). There-
fore, top 17 of the ranked lncRNAs according to their
signal-to-noise ratio were identified as optimal lncRNA bio-
markers (Table 2).
To investigate the expression pattern of 17 optimal

lncRNA biomarkers associated with clinically molecular
subtype, we clustered 213 DLBCL samples in the discovery
cohort according to the expression levels of 17 optimal
lncRNA biomarkers by hierarchical clustering analysis. As
shown in Fig. 1b, 213 DLBCL samples in the discovery co-
hort were separated into two distinctive patient subgroups
which were highly correlated with clinically molecular sub-
type (p < 0.001, Chi-square test; Fig. 1b). The left branch
(Cluster 1) contained the majority of ABC-DLBCL patients
(79/107; 73.8%) and the right branch (Cluster 2) contained
close to all of GCB-DLBCL patients (101/106; 95.3%).
These two distinctive patient subgroups were both well
characterized by the expression patterns of 17 lncRNA bio-
markers in which 6 lncRNAs were up-regulated and 11
lncRNAs were down-regulated in patients included in Clus-
ter 1 relative to those included in Cluster 2 (Fig. 1c). The
above results demonstrated that these 17 lncRNA bio-
markers might have a predictive power in the subtype clas-
sification of DLBCL patients.

A lncRNA-based molecular signature for subtype classification
and prognosis prediction in DLBCL patients
Since these 17 lncRNA biomarkers exhibited better ability
in subtype classification, we integrated these 17 lncRNA
biomarkers to derive a lncRNA-based molecular signature
(hereafter inferred as SubSigLnc-17) and constructed a su-
pervised subgroup predictive classifier using the weighted
voting algorithm based on the expression patterns of
SubSigLnc-17 for predicting molecular subtype and out-
come. The SubSigLnc-17 was able to assign a DLBCL pa-
tient in the discovery cohort into ABC or GCB subgroups
when the probability of this patient belonging to the ABC
or GCB subgroups is greater than 50%. As a result, the
SubSigLnc-17 performed very well on the discovery co-
hort and achieved a very high AUC of 0.974 with a specifi-
city of 89.6% and a sensitivity of 92.5% (Fig. 2a and b). The
SubSigLnc-17 correctly classified 99 out of 107 ABC
DLBCL patients and 95 out of 106 GCB DLBCL patients
with an accuracy of 91.1% (Fig. 2b). Moreover, the Kaplan-
Meier analysis for overall survival and progression-free
survival demonstrated significant differences between the
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Table 2 Candidate lncRNAs biomarkers associated with clinically molecular subtype and prognosis of DLBCL

Ensembl id Gene symbol Chromosomal position p-value FDR signal-to-noise ratio

ENSG00000226688.5 ENTPD1-AS1 Chr 10: 95,753,206-96,090,238 (−) 5.34E-10 1.78E-07 0.453

ENSG00000229558.2 SACS-AS1 Chr 13: 23,418,971-23,428,869 (+) 2.2E-07 3.94E-05 0.404

ENSG00000224660.1 SH3BP5-AS1 Chr 3: 15,254,184-15,264,493 (+) 4.93E-12 3.83E-09 0.502

ENSG00000231090.1 RP11-101C11.1 Chr 1: 55,217,861-55,234,177 (+) 3.88E-09 1.13E-06 0.421

ENSG00000224730.1 AC009892.10 Chr 19: 54,635,722-54,638,892 (−) 1.03E-07 2.36E-05 0.38

ENSG00000255443.1 RP1-68D18.4 Chr 11: 35,210,343-35,214,985 (−) 3.48E-07 5.8E-05 0.361

ENSG00000236901.4 MIR600HG Chr 9: 123,109,494-123,115,477 (−) 9.02E-07 1.4E-04 0.359

ENSG00000279130.1 RP11-278 J6.4 Chr 5: 143,406,959-143,407,420 (+) 2.57E-06 3.737E-04 0.341

ENSG00000260303.1 RP11-203B7.2 Chr 4: 146,052,604-146,056,762 (−) 1.33E-07 2.57E-05 0.395

ENSG00000231163.4 CSMD2-AS1 Chr 1: 33,868,953-33,885,458 (+) 2.76E-10 1.29E-07 0.493

ENSG00000245864.2 CTC-467 M3.1 Chr 5: 88,676,218-88,722,831 (+) 1.12E-07 2.36E-05 0.379

ENSG00000223479.3 RP4-788P17.1 Chr 1: 73,635,216-73,715,214 (+) 2.91E-12 3.39E-09 0.514

ENSG00000259976.1 RP11-553 L6.5 Chr 3: 114,314,501-114,316,179 (−) 6.09E-08 1.58E-05 0.386

ENSG00000245694.7 CRNDE Chr 16: 54,918,863-54,929,189 (−) 3.49E-06 4.71E-04 0.328

ENSG00000259354.4 RP11-519G16.3 Chr 15: 45,448,427-45,513,767 (+) 3.7E-10 1.44E-07 0.494

ENSG00000254418.1 RP11-21 L19.1 Chr 11: 14,262,846-14,273,691 (−) 2.96E-11 1.73E-08 0.507

ENSG00000240666.2 MME-AS1 Chr 3: 155,158,370-155,183,285 (−) 4.33E-15 1.01E-11 0.666

Fig. 1 Identification of subtype-specific lncRNA biomarkers in the discovery cohort. a The classification accuracy for top K-lncRNA model using
5-fold cross-validation strategy and 100 randomized permutations. b The unsupervised hierarchical clustering heatmap of 213 patients based
on selected optimal 17 lncRNAs biomarkers. c Expression patterns of selected optimal 17 lncRNAs biomarkers in the GCB and ABC subtypes
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two predicted subgroups by the SubSigLnc-17 (p = 0.036
for overall survival and p = 0.078 for progression-free sur-
vival, respectively, log-rank test; Fig. 2c and d). The 5-year
overall survival of DLBCL patients in the predicted GCB-
like group was 66.8%, whereas the corresponding rate in
the predicted ABC-like group was 52.5%. The hazard ra-
tios of predicted ABC-like group versus GCB-like group
for overall survival was 1.614 in the univariate analysis
(95% CI 1.029 to 2.532, p = 0.037), indicating that the
SubSigLnc-17 has a significant association not only with
molecular subtype but also with prognosis.

Further validation of lncRNA-based molecular signature in
the internal validation cohort and entire GSE31312 cohort
Further validation of the predictive power of SubSigLnc-
17 in subtype classification and prognosis prediction was
carried out using the internal validation cohort and entire
GSE3132 cohort. The result of internal validation cohort
indicated that the SubSigLnc-17 could distinguish ABC
and GCB DLBCL patients with an AUC of 0.97 (Fig. 3a).
The SubSigLnc-17 correctly classified 82 out of 92 ABC
DLBCL patients and 114 out of 121 GCB DLBCL patients
with an accuracy of 92%, a specificity of 94.2% and a sensi-
tivity of 89.1%. In the predicted ABC-like group, the over-
all survival rate was significantly lower than that in the
predicted GCB-like group (p = 0.023, log-rank test; Fig. 3b),

and the 5-year overall survival rates of patients in the pre-
dicted ABC-like group and in the predicted GCB-like
group were 49.3% and 70.9%. Moreover, progression-free
survival was also significantly different between the
predicted two subtype groups (p = 0.008, log-rank test;
Fig. 3c), and patients in the predicted ABC-like group
experienced a lower rate of progression-free survival after
5 years (49.8% vs. 71.8%). The univariate analysis revealed
that the SubSigLnc-17 was still significantly associated
with overall survival in the internal validation cohort
(HR = 1.695, 95% CI 1.072 to 2.682, p = 0.024).
Similar results were observed when the SubSigLnc-17

was tested in the entire GSE31312 cohort, which re-
sulted in an AUC of 97.2% with a specificity of 92.1%
and a sensitivity of 91% (Fig. 3d). Among 426 DLBCL
patients in the entire GSE31312 cohort, 390 patients
(209 out of 227 GCB patients and 181 out of 199 ABC
patients) were assigned to the corresponding subtype
groups by the SubSigLnc-17 with an accuracy of 91.5%.
Moreover, there was a significant difference in overall
survival and progression-free survival between the two
predicted patient subgroups (p = 0.002 for overall sur-
vival and p = 0.001 for progression-free survival, re-
spectively, log-rank test; Fig. 3e and f ). The 5-year
overall survival and progression-free survival rates of
DLBCL patients in the predicted GCB-like group were

Fig. 2 Performance evaluation of SubSigLnc-17 in the subtype classification and prognosis for DLBCL patients in the discovery cohort. a ROC analysis
of the sensitivity and specificity of subtype prediction by the SubSigLnc-17. b Performance comparison in subtype prediction between SubSigLnc-17
and random lncRNAs. c Kaplan-Meier survival curves of overall survival between predicted GCB-like group and ABC-like group by SubSigLnc-17. d
Kaplan-Meier survival curves of progression-free survival between predicted GCB-like group and ABC-like group by SubSigLnc-17
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69.1% and 68.3%, whereas the corresponding rate in the
predicted ABC-like group was 51.1% and 48.3%. The
hazard ratios of predicted ABC-like group versus GCB-
like group for overall survival was 1.638 in the univari-
ate analysis (95% CI 1.19 to 2.254, p = 0.002; Table 3).

Confirmation of predictive power of lncRNA-based
molecular signature using two independent DLBCL
patient cohorts with a different platform
To further test the robustness of the SubSigLnc-17, we
examined the discriminatory power of the SubSigLnc-17
using two completely independent non-overlapped co-
horts of 350 DLBCL patients obtained from Lenz’s study
(the accession number is GSE10846) [25] and 129
patients obtained from Hummel’s study (the accession

number is GSE4475) [26]. The SubSigLnc-17 was again
shown capable of distinguishing ABC and GCB DLBCL
patients in the GSE10846 cohort. The SubSigLnc-17 cor-
rectly classified 91.1% of patients (165 out of 183 GCB
patients and 154 out of 167 ABC patients) into the cor-
responding subtype groups and achieved an AUC of
97.7% with a specificity of 90.2% and a sensitivity of
92.2% (Fig. 4a). Subgroups of patients characterized by
the SubSigLnc-17 demonstrated different outcome.
Overall survival was significantly better in the predicted
GCB-like subgroup as compared with the predicted
ABC-like subgroup, showing 5-year overall survival in
69.2% and 44.1% of patients in the predicted GCB-like
and ABC-like subgroups, respectively (p = 5.04E-07, log-
rank test; Fig. 4b).

Fig. 3 Validation of SubSigLnc-17 in the subtype classification and prognosis for DLBCL patients in the internal validation cohort and entire GSE31312
cohort. ROC analysis of the sensitivity and specificity of subtype prediction by the SubSigLnc-17 in the a internal validation cohort and d entire GSE31312
cohort. Kaplan-Meier survival curves of overall survival between predicted GCB-like group and ABC-like group by SubSigLnc-17 in the b internal validation
cohort and e entire GSE31312 cohort. Kaplan-Meier survival curves of progression-free survival between predicted GCB-like group and ABC-like group by
SubSigLnc-17 in the c internal validation cohort and f entire GSE31312 cohort
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Table 3 Univariate and multivariate Cox regression analysis of overall survival in each dataset

Variables Univariate analysis Multivariate analysis

HR 95% CI of HR P value HR 95% CI of HR P value

GSE31312 cohort (n = 426)

SubSigLnc-17 (ABC vs. GCB) 1.638 1.19-2.254 0.002 1.422 0.997-2.028 0.052

Age (> = 60 vs. <60) 2.01 1.41-2.864 1.12E-04 1.946 1.315-2.881 8.79E-04

Gender (Male vs. Female) 0.959 0.697-1.32 0.798 0.843 0.597-1.189 0.331

Stage (III/IV vs. I/II) 2.314 1.646-3.251 1.35E-06 1.707 1.135-2.567 0.01

LDH (High vs. Normal) 2.035 1.362-3.04 5.19 E-04 1.475 0.973-2.236 0.067

No. of extranodal sites (≥2 vs. < 2) 2.247 1.598-3.16 3.23E-06 1.778 1.213-2.605 0.003

ECOG (≥2 vs. < 2) 2.195 1.556-3.097 7.48E-06 1.584 1.065-2.355 0.023

GSE10846 cohort (n = 350)

SubSigLnc-17 (ABC vs. GCB) 2.364 1.673-3.341 1.10E-06 2.093 1.391-3.149 3.94E-04

Age (> = 60 vs. <60) 2.099 1.464-3.009 5.50E-05 1.988 1.31-3.016 0.001

Gender (Male vs. Female) 1.017 0.724-1.429 0.922 0.993 0.676-1.46 0.972

Stage (III/IV vs. I/II) 1.747 1.239-2.464 0.001 1.147 0.762-1.727 0.51

LDH (High vs. Normal) 2.643 1.791-3.899 9.72E-07 2.038 1.341-3.096 8.59E-04

No. of extranodal sites (≥2 vs. < 2) 1.899 1.087-3.317 0.024 1.183 0.58-2.415 0.644

ECOG (≥2 vs. < 2) 2.968 2.091-4.214 1.19E-09 1.907 1.246-2.918 0.003

Fig. 4 Independent validation of SubSigLnc-17 for prognosis prediction in two additional independent cohorts. Performance evaluation of SubSigLnc-17
in the a GSE10846 cohort and c GSE4475 cohort. Kaplan-Meier survival curves of overall survival between predicted GCB-like group and ABC-like group by
SubSigLnc-17 in the b GSE10846 cohort and d GSE4475 cohort
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Another independent DLBCL patient cohort (GSE4475),
comprising of 129 patients, was based on a different Affy-
metrix microarray platform (HG-U133A). Therefore, we
re-annotated the probes of Affymetrix HG-U133A as
described in Methods and found that only 9 of 17 lncRNAs
in the SubSigLnc-17 were covered on the Affymetrix HG-
U133A array. Therefore, the SubSigLnc-17 only based on
these 9 lncRNAs without re-estimating parameters was
used to classify 129 DLBCL patients of GSE4475 into
distinct patient subgroups. As shown in Fig. 4c, the
SubSigLnc-17 represented by 9 lncRNAs for ABC and
GCB discrimination achieved an AUC of 94.4% with accur-
acy of 86%, specificity of 78.4% and sensitivity of 96.4%, des-
pite the fact that 8 lncRNAs in the SubSigLnc-17 based on
Affymetrix HG-U133 Plus_2.0 is missing in the GSE4475
cohort based on Affymetrix HG-U133A which might re-
duce the predictive performance of the SubSigLnc-17. The
Kaplan-Meier survival curves for the predicted ABC and
GCB subgroups in the independent external GSE4475 also
were marginally significantly different (p = 0.065, log-rank
test; Fig. 4d). DLBCL patients assigned to the ABC
subgroup tended to have shorter overall survival than
those assigned to the GCB subgroup (median survival
22.8 months vs. 39.8 months). The respective absolute dif-
ference in 5-year overall survival rates between the pre-
dicted ABC and GCB subgroups was 20.2% (29.5% vs.
49.7%) for the GSE4475 cohort. In the univariate Cox
regression model, the SubSigLnc-17 again maintained a
significant or marginally significant correlation with over-
all survival in both GSE10846 cohort (HR = 2.364, 95% CI
1.673 to 3.341, p = 1.10E-06) and GSE4475 cohort (HR =
1.686, 95% CI 0.96 to 2.96, p = 0.069) .

Independence of prognostic value of lncRNA-based
molecular signature from other clinical factors
To investigate whether the prognostic value of the
SubSigLnc-17 was independent of other clinical factors,
we first performed multivariate Cox regression analyses
using the following factors as categorical variables: the
SubSigLnc-17 (ABC-like vs. GCB-like), age (≥60 vs. <60),
gender (male vs. female), stage (III/IV vs. I/II), lactate
dehydrogenase (LDH) level (high vs. normal), number of
extranodal sites (≥2 vs. < 2) and Eastern cooperative On-
cology Group (ECOG) performance status (≥2 vs. < 2).
The results of multivariate analysis revealed that the
SubSigLnc-17 was consistently associated with the out-
come of patients with DLBCL after adjustment for other
clinical variables in the GSE31312 and GSE10846 cohorts
(HR = 1.422, 95% CI 0.997 to 2.028, p = 0.052 for
GSE31312 cohort and HR = 2.093, 95% CI 1.391 to 3.149,
p = 3.94E-04 for GSE10846; log-rank test) (Table 3). How-
ever, three clinical variables (including age, LDH and
ECOG) were also found to be significantly correlated with
patients’ overall survival. Therefore, we conducted the

stratification analysis for these significant clinical variables
to test whether the SubSigLnc-17 could provide additional
prognostic value within the same clinical factors. For age
alone, 776 DLBCL patients of the combined patient co-
hort (GSE31312 and GSE10846) were stratified into the
younger group with ages below 60 years (n = 336) and the
older group with above ages 60 years (n = 440). With the
SubSigLnc-17, patients in the younger group were divided
into ABC-like group and GCB-like group with signifi-
cantly different survival (p = 2.69E-04, log-rank test)
(Fig. 5a). The similar prognostic power of the SubSigLnc-
17 was found in the older group in which patients with
above ages 60 years were classified as either ABC-like with
poor outcome (median survival 43 months) and GCB-like
with good outcome (median survival 87.3 months)
(Fig. 5b). Stratification analyses were repeated in patients
with normal or high LDH level and revealed a statistically
significant difference in overall survival between ABC-like
and GCB-like groups in the patient subgroup stratified by
LDH level. The predicted GCB-like patients had signifi-
cantly better survival relative to predicted ABC-like pa-
tients in either subgroup of patients with LDH < 1*normal
(not reach median survival vs. 89.9 months, p = 0.002, log-
rank test) (Fig. 5c) or subgroup with LDH > =1*normal
(median survival 109.3 months vs. 35.6 months, p = 6.23E-
04, log-rank test) (Fig. 5d). Finally, the prognostic value of
the SubSigLnc-17 for the patients with good or poor gen-
eral health status was also assessed. 756 patients with
ECOG information was stratified into a good general
health status stratum (with ECOG performance status
score < 2) (n = 595) and a poor general health status
stratum (ECOG performance status score of 2 or greater)
(n = 161). Survival analysis revealed that within each
ECOG stratum, the SubSigLnc-17 was able to distinguish
patients with significantly different survival despite having
the same health status. For instance, among patients with
ECOG performance status score < 2, the SubSigLnc-17
could further classify patients into the ABC-like group
with the overall survival of 73 months and the GCB-like
group with not reached median overall survival (p =
1.23E-06, log-rank test) (Fig. 5e). The similar prognostic
value was observed in the subgroup of patients with
ECOG performance status score of 2 or greater, results of
separate series see Fig. 5f in which GCB-like patients have
better overall survival than ABC-like patients (median
survival 47.2 months vs. 16.8 months, p = 0.004, log-rank
test). These results demonstrated that the SubSigLnc-17
was a significant independent predictor of prognosis and
could provide additional prognostic value beyond conven-
tional clinical factors.

Discussion
DLBCL is mainly composed of GCB and ABC subtypes
with distinct biological features and clinical implication.
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With the development of high-throughput technology,
molecular heterogeneities between GCB and ABC sub-
types have been well characterized at the mRNA and
miRNA levels, and some subtype-specific mRNAs or miR-
NAs have been identified [8–10]. In recent years, the
study of lncRNAs has given renewed impetus to cancer
biology. The dysregulated lncRNA expression has been
implicated in the initiation and progression of cancer [36].
Specifically, lncRNAs showed more tissue-, cell type- and
cancer-specific expression patterns than protein-coding
genes and miRNAs leading to the possibilities in better
deciphering molecular heterogeneity of cancer subtypes
[36, 37]. LncRNA expression profiles have been widely an-
alyzed in several cancer subtypes, including gliomas [38],
lung cancer [18, 19], colorectal cancer [39] and breast can-
cer [19, 20]. However, comprehensive characterization of

lncRNA expression in DLBCL subtypes has not been
performed.
As an initial step toward understanding lncRNA-level

molecular disparity in DLBCL subtypes, we obtained and
analyzed lncRNA expression profiles of 905 DLBCL
patients using probe repurposing-based lncRNA-mining
approach. By first separating DLBCL patients of the discov-
ery cohort into either GCB or ABC subtypes based on their
clinical information, we performed a comparative analysis
for lncRNA expression pattern across GCB and ABC
subtypes and uncovered 156 novel differentially expressed
lncRNAs associated with either GCB or ABC subtypes.
Several recent studies have shown that lncRNA were widely
expressed during B-cell development and different
lncRNAs played differential functional roles in distinct
stages of B-cell development [23, 24]. Our finding has

Fig. 5 Prognosis prediction in patients stratified by age, LDH level and ECOG performance status. Kaplan-Meier survival curves of overall survival
between predicted GCB-like group and ABC-like group by SubSigLnc-17 in the a younger group, b older group. c LDH < 1*normal group,
d LDH > =1*normal group, e a good general health status group and f a poor general health status group
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presented evidence that there was differentiated lncRNA
expression pattern between GCB and ABC DLBCL, impli-
cating that these subtype-specific lncRNAs may provide
additional information for DLBCL subtype classification
and prognosis. Therefore, we sought to investigate whether
lncRNA expression can distinguish between GCB and ABC
subtypes. By subjecting differentially expressed lncRNAs
into the weighted voting algorithm, we identified 17
lncRNA biomarkers that are significantly associated with
clinically molecular subtype. Results with unsupervised
hierarchical clustering of 213 DLBCL patients in the dis-
covery cohort confirmed the subtype-specific expression
pattern of 17 lncRNA biomarkers. Considering the con-
venience of clinical use, these 17 lncRNA biomarkers were
used to construct a weighted voting-based lncRNA
molecular signature (termed SubSigLnc-17) which is
able to distinguish between GCB and ABC subtypes
with high performance. Moreover, subgroups of
patients characterized by the SubSigLnc-17 signature
demonstrated significantly different clinical outcome,
indicating that the SubSigLnc-17 signature may
include clinical implication about disease prognosis.
These results suggested that lncRNA expression also
can reflect characteristic of COO and have similar pre-
dictive ability for subtype classification and prognosis
to those of mRNA or miRNA for DLBCL. The highly
predictive power of the SubSigLnc-17 signature in
subtype classification and prognosis for DLBCL was

successfully validated through application in the in-
ternal validation cohort and another independent co-
hort as well as in the Hummel’s cohort with a different
platform. These findings, together with our previous
report that a six-lncRNA signature could also predict
patients’ survival in DLBCL [22], demonstrated the
important implication of lncRNA in DLBCL subtype
classification and clinical outcome.
To gain more insights into the functional roles of the

SubSigLnc-17 in DLBCL, we performed functional enrich-
ment analysis for mRNAs co-expressed with 17 lncRNA
biomarkers to investigate the associated biological processes
and pathways. We firstly calculated the Pearson correlation
coefficient of paired lncRNA and mRNA expression profiles
of 426 patients in the GSE31312 cohort to measure the co-
expressed relationships between 17 lncRNA biomarkers
and mRNAs. Then mRNAs were ranked according to the
Pearson correlation coefficient for each lncRNAs and the
highest ranked mRNAs (top 0.5%) were selected as co-
expressed mRNAs with lncRNA biomarkers. A total of
1206 mRNAs were positively correlated with at least one of
17 lncRNA biomarkers. In the GO analysis, 14 GO terms
of biological process were significantly enriched among
these mRNAs co-expressed with lncRNA biomarkers,
including response to wounding, cell adhesion, T cell
activation, cell cycle, leukocyte activation, immune sys-
tem process and lymphocyte activation (Fig. 6). Fur-
thermore, Focal adhesion and Chemokine signaling

Fig. 6 Results for GO and KEGG enrichment analysis
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pathway also were found to be highly enriched in the
KEGG pathway enrichment analysis. Taken together,
GO and KEGG functional analysis demonstrated that
17 lncRNA biomarkers in SubSigLnc-17 significantly
participated in immune- and cell cycle-associated bio-
logical processes.

Conclusions
In summary, we reported a comprehensive compara-
tive analysis of lncRNA expression pattern between
GCB and ABC DLBCL, and identified several novel
lncRNA biomarkers as indicators of subtype classification
and prognosis in DLBCL. The underlying mechanisms
whereby lncRNA biomarkers exerts their biological roles in
immune-associated biological processes. With further pro-
spective validation, our study will improve the understand-
ing of underlying molecular heterogeneities in DLBCL and
provide candidate lncRNA biomarkers in DLBCL classifica-
tion and prognosis.
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