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Abstract

Background: The initiation and progression of malignant tumors is driven by distinct subsets of tumor-initiating or
cancer stem-like cells (CSCs) which develop therapy/apoptosis resistance and self-renewal capacity. In order to be
able to eradicate these CSCs with novel classes of anti-cancer therapeutics, a better understanding of their biology
and clinically-relevant traits is mandatory.

Main body: Several requirements and functions of a CSC niche physiology are combined with current concepts for
CSC generation such as development in a hierarchical tumor model, by stochastic processes, or via a retrodifferentiation
program. Moreover, progressive adaptation of endothelial cells and recruited immune and stromal cells to the tumor site
substantially contribute to generate a tumor growth-permissive environment resembling a CSC niche. Particular
emphasis is put on the pivotal role of multipotent mesenchymal stroma/stem cells (MSCs) in supporting CSC
development by various kinds of interaction and cell fusion to form hybrid tumor cells.

Conclusion: A better knowledge of CSC niche physiology may increase the chances that cancer stemness-depleting
interventions ultimately result in arrest of tumor growth and metastasis.
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Background
Various models are available for the generation of tumor
initiating cells which subsequently give rise to neoplasias
and malignant cancers including a hierarchical [1, 2]
and a stochastic hypothesis [3, 4], a retrodifferentiation
program [5–7] or MSC-tumor cell fusion to describe
tumor initiation, heterogeneity, plasticity and progres-
sion [7–10].

Tumor models
The hierarchical model
Tumor initiation of the hierarchical model starts within
a normal stem cell niche (SCN) which regulates prolifer-
ation, apoptosis resistance and maintains stemness
whereby a normal stem cell evades regulation resulting
in an aberrant/tumorigenic stem-like cell, also known as

cancer stem-like cell (CSC) [11, 12]. Besides the escape
from regulation of normal stem cells, precursor or pro-
genitor cells might evade stem cell niche regulation lead-
ing to cancer progenitor cells (CPC). Nonetheless, both
CSCs and CPCs can develop within the stem cell niche
to initiate tumor growth and give rise to impaired differ-
entiated cell types with limited proliferative capacity. Ac-
cordingly, different CPCs can generate different subtypes
of tumors [8, 13]. CSCs are characterized by their poten-
tial of self-renewal allowing them to drive tumor growth
by generation of progeny with limited lifetime and pro-
liferative capacity and by evasion of clonal exhaustion
[14, 15]. Consequently, the hierarchical model delin-
eates a non-tumorigenic cancer cell population with a
distinct subset of CSCs featuring tumorigenic potential,
regulating tumorigenesis and constituting the tumor as
a heterogeneous population with distinct cell subsets in
a particular tissue or organ [8, 16]. Since CSCs are as-
sumed to be the cells of tumor origin, they are also desig-
nated as tumor-initiating cells (TICs) and may represent
different populations in primary and metastatic tumors or
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with respect to the type of tumor. TICs have been identi-
fied in various primary tumors including human acute
myeloid leukemia [2], breast cancer [1], human brain tu-
mors [17], pancreatic cancer [18], ovarian cancer [19], hu-
man melanomas [20], prostate cancer [21], lung cancer
[22], and human glioblastoma [23] among others. In
addition, metastatic tumor tissue e.g. of breast [24, 25] or
colon [26] also harbors TICs.
Examples of the hierarchical model have been shown

in solid tumors such as breast cancer and in non-solid
tumors such as acute myeloid leukemia [1, 2]. For in-
stance, during in vivo application in immunodeficient
mice only a subset of breast cancer cells developed
tumorigenicity and could be separated from the non-
tumorigenic population [1].

The stochastic model
The stochastic model represents a second feasibility to
circumstantiate tumor initiation. In comparison to the
hierarchical model, every tumor cell within the stochas-
tic model is biologically homogenous with an equal
probability to initiate, maintain and promote tumor
growth whereby functionalities depend on both, extrin-
sic factors originating from the tumor microenviron-
ment and intrinsic factors such as signaling pathways
and levels of transcription factors [8, 27]. Tumorigen-
esis occurs from normal differentiated somatic cells
that stochastically/randomly acquire oncogenic muta-
tions resulting in hyperplasia, genomic instability, aber-
rant proliferation and expansion [3, 28].
Examples of the stochastic model can also be found in

solid and non-solid tumors such as colorectal cancer, lung
adenocarcinoma and lymphoblastic leukemias [29–32].
Whereas the stochastic model primarily addresses

genetic heterogeneity without consideration of potential
phenotypic variations within the genetically homogenous
tumor cell population [8], the hierarchical model also
represents a valuable model for a tumor relapse in those
cancer patients where not all cancer cells and CSCs were
successfully targeted during therapeutic approaches.
Indeed, mouse xenografts of metastatic colon cancer
demonstrated cancer origin and metastatic progression
with features of both, the hierarchical model and the
stochastic model for CSCs [26]. Therefore, these two
models may provide supplementary information in view
of a tumor cell switch between both models. A possible
connection between the two models is represented by
retrodifferentiation processes [7] to enable interconver-
sion and correlation between the hierarchical and sto-
chastic model (see 1.3). Thus, it is conceivable that
tumor cells that arose according to the stochastic model
retrodifferentiate into stem-like cells.
Consequently, both models of tumor initiation result

in aberrant/tumorigenic stem-like cells which further

promote tumor development and progression. However,
little is known about the mechanism and the existence
of a cancer stem cell niche (CSCN) for CSC generation
and maintenance of tumor growth.

Retrodifferentiation
Whereas tumor tissue harbors a variety of different cell pop-
ulations including tumor cells in different states of develop-
ment, one possibility of CSC development includes the
hypothesis to be derived from neoplastic transformation
during development or self-renewal of normal tissue-
specific stem cells and to be primarily associated with solid
tumors [33]. Alternatively, CSCs can develop by a retrodif-
ferentiation process of differentiated tumor or tumor-
associated cells to acquire self-renewal capacity and to main-
tain tumorigenicity [34, 35]. Retrodifferentiation is charac-
terized by a reversion of all differentiated properties back to
a stem-like phenotype including rejuvenation [36]. Conse-
quently, retrodifferentiation extends the unidirectional view
of cellular hierarchy to multi-directional possibilities of de-
velopment, whereby retrodifferentiated and rejuvenated
stem-like tumor cells exhibit the potential of self-renewal.
Certain solid and non-solid in vitro tumor models were
developed to study retrodifferentiation [7, 37]. Thus, in-
duction of differentiation in a pheochromocytoma tumor
cell line by nerve growth factor (NGF) was associated with
a complete growth arrest and development of a sympa-
thetic neuron-like phenotype by extension of neuritic
processes similar to NGF-differentiated chromaffin
cells. Molecular signaling events of this tumor cell dif-
ferentiation involved NGF receptor-mediated phos-
phorylation of gp140trk and downstream signaling via
the transcription factors c-Fos and EGR-1 for the in-
duction of neuronal genes including transin, VGF-8 and
voltage-gated sodium channels among others [38, 39].
Interruption of the receptor-activated signaling cascade
e.g. by NGF removal reverted subsequent gene induc-
tion and the acquired neuronal functions and was ac-
companied by degeneration of the neurites. In parallel
to necroptosis in some cells, the rest of the differenti-
ated population reverted back to the pheochromocy-
toma tumor phenotype and regained proliferative
capacity during this retrodifferentiation program [40].
Moreover, in a human myeloid leukemia model, phor-

bol ester-induced differentiation of U937 leukemia cells
resulted in acquired adherence of cell cycle-arrested
and differentiated monocyte/macrophage-like cells for
several weeks. A decreasing threshold of phorbol ester
or interference with the downstream signaling cascade
of phorbol ester-activated protein kinase C interrupted
transactivating processes via AP-1 (predominantly Jun/Fos)
and NFκB and induced retrodifferentiation [41, 42]. This
also promoted some apoptosis and necroptosis by de-
creasing the activity of poly-ADP-ribose polymerase-1
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(PARP-1) which is important for DNA damage repair
and PARP-1-mediated proteasomal degradation of oxi-
dized and aberrant proteins [43–45]. Concomitant with
the accumulation of these damage products and in-
creasing formation of damage-associated molecular pat-
terns (DAMPs), a subsequent retrodifferentiation
process was induced in a majority of cells, whereby the
differentiated cells lost all acquired macrophage-like
properties and returned to a suspension growing
leukemic phenotype with regained self-renewing cap-
acity. These retrodifferentiated human cells are indis-
tinguishable from undifferentiated leukemia cells and

can repeatedly undergo such a phorbol ester-induced
differentiation/retrodifferentiation cycle.
Together, these findings suggest that certain stimuli

which may include damage products and DAMPs within
a tumor cell population can establish a CSCN and con-
tribute to a retrodifferentiation process to rejuvenate
tumor cells to a more stem-like phenotype with enhanced
self-renewal capacity (Fig. 1, Fig. 2a-c). Moreover, acquisi-
tion of tumor cell stemness via retrodifferentiation de-
pends on a sensitive balance of timely available metabolite
gradients and thresholds to enable the various steps of a
retrograde development towards a CSC.

Fig. 1 Hypothetical model for a CSCN compartment for CSC development. Due to oxygen and nutrient deprivation in a centralized localization
of the tumor, starving tumor cells shift energy metabolism to enhanced anaerobic glycolysis with lactate accumulation and release whereby some tumor
cells exhibit autophagy or undergo necroptosis by production of DAMPs. Interaction of DAMPs with adjacent tumor cells at oxygen-deprived hypoxic
conditions and lactate-mediated low pH can induce retrodifferentiation and CSC development. Recruitment and activation of immune cells by DAMPs
and the cytokine-mediated inflammatory environment is altered by immune-modulatory activities of cytokines-, chemokines- and exosomes-releasing
MSC also accumulating at the inflammatory sites of the tumor. Release of mediators and exosomes by both, tumor cells and MSC can also mutually alter
functionality of both cell types and induce CSC generation. Furthermore, MSC directly interact with tumor cells by various different mechanisms whereby
close interactions at certain conditions result in entosis or hybrid cell formation via MSC – tumor cell fusion. Both mechanisms develop different kinds of
hybrid cells which exhibit divergent functionalities during further tumor development. Subsequent selection processes of hybrid cells after MSC – tumor
cell fusion contribute to CSC development. CSCs in perivascular regions can be kept in a dormant/quiescent state before cytokine/growth
factor stimulation can activate re-entry into the proliferative cell cycle and self-renewal
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MSC – tumor cell hybrids by entosis or fusion
A sensitive balance of timely available internal and exter-
nal stimuli within a CSCN may also enable other modes
of CSC development such as MSC-tumor cell fusion or
entosis. Both types of interaction involve MSC as a po-
tential cellular partner resulting in distinct functional
hybrids. Although generally considered rare events, for-
mation of hybrid cells via entosis or via fusion follow
completely different mechanisms [46]. Entosis represents
a form of cell-in-cell internalization mediated by the Rho-
ROCK-actin/myosin pathway after loss of cell-matrix
adhesion with subsequent release, cell division, or degrad-
ation of the target cell in the newly formed hybrid [47–49]
which may contribute to the regulation of CSCs [46, 50].
Alternatively, tumor cell fusion depends on sensitive and
balanced conditions such as hypoxic environment, low pH
and appropriate membrane compatibility and the resulting
tumor hybrid cells share genomic parts of both fusion
partners while undergoing further post-fusion changes. In
most hybrid cells, subsequent cell division is hampered by
uncoordinated regulatory interactions of the two nuclei
from the fused cells eventually resulting in cell death.
Following a selection process with a loss of various chro-
mosomes, however, some MSC-tumor cell fusion hybrids

can re-establish a coordinated cell cycle progression by
exhibiting CSC properties such as self-renewal capacity
[51] (Fig. 1). Consequently, MSC-tumor cell entosis in
contrast to fusion-derived hybrids between MSC and
tumor cells develop different kinds of hybrid cell popula-
tions which most likely display divergent functionalities
during further tumor development. Fusion of MSC with
cells from different tumors including breast, ovarian,
gastric and lung cancer has been demonstrated in vitro
and in vivo [9, 52–54]. Moreover, human breast cancer
can also fuse with normal breast epithelial cells [55]. Ap-
pearance of aneuploidy or polyploidy in human tumor
cells with >46 chromosomes may result from aberrant/
asymmetric cell division or previous cell fusion. Indeed,
fusion of stem cells with other populations including
terminally differentiated cells or somatic cancer cells
has been discussed for recombination of DNA after nu-
clear fusion and reprogramming with potential contri-
bution to tumor initiation suggesting the formation of
CSCs [51, 56, 57].

Conditions and requirements for the CSCN
The normal SCN harbors stem cells and is responsible
for regulating stem cell maintenance, in particular the

Fig. 2 Formation of putative in vitro CSCN-like structures of primary human breast cancer-derived epithelial cells (HBCECs). Long-term cultivation
of primary HBCEC416 (passage 2) for 47 days (a) and HBCEC383 (passage 1) for 241 days (b) [105] was associated with development of a central
area with small proliferative active cells surrounded by a circle of larger growth-reduced and senescent cells demonstrating partial vesicle
accumulation and release (arrows). Together with gradients of various soluble factors, these biological material-containing stimulatory vesicles
may contribute to development of small-sized breast cancer stem-like cells and self-renewal. This is also substantiated by a significant expression of IL8
(PCR primer sense: 5′-AAAAAGCCACCGGAGCACT-3′; antisense: 5′-TTTCTGTGTTGGCGCAGTGT-3′; amplification product: 279 bp) in the corresponding
HBCECs as compared to normal juvenile HMECs in P13 or growth-arrested and aged HMECs in P15 [74, 75] with β-actin as a control (c).
Further supportive evidence is provided in breast and pancreatic cancer cells with IL8 expression by CSCs [102, 104, 106]
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balance between self-renewal and differentiation. More-
over, the normal SCN represents a dynamic and com-
plex compartment whereby additional components
including endothelial, immune and stromal cells, extra-
cellular matrix, cell adhesion molecules, soluble factors
and microvesicles/exosomes contribute to an environ-
ment necessary for enabling both, self-renewal and the
capability to differentiate [58]. Based on similarities
between normal stem cells and CSCs such as the poten-
tial to self-renew, there is increasing evidence that CSCs
also reside in similar niches, the CSCN, at the tumor site
[11, 12, 59]. To better understand tumorigenesis and the
concept of CSCs, appropriate models are helpful to elu-
cidate conditions and requirements in a CSCN (Fig. 1).
Previous work described that stem cells reside in fixed

compartments together with other cells determining
stem cell behavior and regulating stem cell maintenance
[60]. Thus, the CSCN may be regarded as defined com-
partment in which structural elements, soluble factors
and cell-to-cell interactions with adjacent cell types of
predominantly stromal origin contribute to cancer stem
cell maintenance (Fig. 1).
One major prerequisite for tumor growth is the supply

with nutrients and oxygen via blood vessels indicating
the necessity of a CSCN localizing in the vicinity of
vascular structures. Indeed, brain tumor stem cells have
been reported to reside at perivascular regions [12]. In
various stem cell niches, vascular cells have been attribu-
ted an important role in stem cell maintenance, e.g. in
the bone marrow [61], adult hippocampus [62], the in-
testine and skin [63].
Besides neo-vascularization within the tumor micro-

environment, the extracellular matrix (ECM) provides
an important structural scaffold comprising fibrous
proteins such as collagens, elastin, laminins, and fibro-
nectin, globular proteins including the IgG superfamily
integrins and cellular proteases, for instance MMPs,
cathepsins and kallikreins for ECM remodeling [64].
During tumorigenesis, the ECM appears commonly
dysregulated and disorganized [65, 66]. However, in-
creasing evidence suggests, that ECM compounds are
essential for stem cell niches. Stem cells have been
shown to be closely associated with laminins surrounded
by endothelial cells whereby progenitor cells were
demonstrated to express the laminin receptor α6β1 in-
tegrin [67]. Inhibition of binding to laminin prevented
adhesion to vascular endothelial cells thereby affecting
proliferation. This is in concert with recent findings
suggesting that adhesion to adjacent cells and extracel-
lular matrix components contributes to the regulation
of stem cell maintenance [68]. In the perivascular glio-
blastoma stem cell niche, laminin derived from non-stem
tumor cells and tumor-associated endothelial cells affected
tumor growth and CSC self-renewal capacity [69].

Moreover, laminin-111 in a three-dimensional cell culture
system induced quiescence of breast epithelial cells by
depletion of nuclear-associated actin [70, 71] (Fig. 1).
Whereas the level of nuclear actin contributes to balance
cell growth at least in breast tissue, the presence of laminin
within the ECM likely would also display an important
structural component of a CSCN.
When viewing a CSCN as a coordinated network of

locally interacting cells (endothelial (precursor) cells, ad-
ipocytes, immune cells (T cells, Natural killer (NK) cells,
dendritic cells (DC), macrophages) and mesenchymal
cells (fibroblasts, vasculature-associated pericytes, MSC))
together with dynamic thresholds and gradients of sol-
uble factors (exosomes and microvesicles, chemokines,
cytokines, growth factors, hormones, metabolites) in a
specific ECM environment (laminin, fibronectin, colla-
gen, proteoglycans, etc.), then interference with this
balanced homeostasis is predicted to alter CSC develop-
ment (Fig. 1). Thus, ECM degradation and remodeling
during tumor growth to enable tumor cell migration in-
volves a plethora of cellular proteases including MMPs,
cathepsins and kallikreins [72] which are also expressed
by CSCs. For instance, glioblastoma CSCs express
MMP-13 to enhance migration whereas knockdown of
MMP-13 reduced migratory and invasive capacity of
these CSCs [73]. Other matrix proteinases including
MMP-1, MMP-7, and MMP-9 play important roles in
normal and tumorigenic breast tissue remodeling and
development [74–76]. Thus, following laminin-111 deg-
radation by MMP-9 in the ECM, the tissue architecture
of breast cells becomes lost and cell proliferation is en-
hanced [77]. Cathepsins also contribute to ECM deg-
radation, whereby an additional function of cathepsins
includes the maintenance of CSC self-renewal [78].
Down-modulation of cathepsin B (concomitant with
the urokinase receptor (uPAR, CD87)) results in de-
creased expression of stem cell markers such as Sox2
and Nestin and reduces the glioma stem-like pool.
Human tissue kallikreins also belong to the family of

serine proteinases that are involved in degradation of
ECM components such as fibronectin, laminin and colla-
gen [79, 80]. In ovarian cancer, overexpression of human
kallikreins 4, 5, 6 and 7 accelerated tumor aggressiveness
and invasiveness [81]. However, kallikreins might also act
as ligands for proteinase-activated receptors (PARs), a
class of G protein-coupled receptors that are activated by
proteolytic cleavage [82]. PAR2 is activated by various
kallikreins and can promote invasiveness and metastatic
pathways in tumor cells either on its own [83] or by a
crosstalk via TGF-β signaling, thereby enhancing the pro-
migratory [84] and possibly pro-metastatic effects of this
growth factor. More importantly, human kallikrein 3 also
known as prostate-specific antigen (PSA) and used as
prognostic tumor marker in prostate cancer diagnosis was
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more than 7-fold upregulated in CD133-positive pros-
tate CSCs compared to other (CD133-negative) pros-
tate cancer cells [85] supporting the concept within a
CSCN that CSCs acquire increased migratory and
metastatic potential.
Apart from distinct ECM components and appropriate

restructure by distinct proteases that are required for a
CSCN to promote CSC development, self-renewal and
migration, adjacent cell types are also associated with a
CSCN establishment via direct and indirect communica-
tion processes with tumor-derived cells to enable CSC
development.

Potential role of MSC in the maintenance of
CSC/the CSCN
An important cell population during tumorigenesis is rep-
resented by MSC. These multipotent stromal cells are lo-
cated predominantly at perivascular niches of nearly all
human tissues and organs and display a plethora of func-
tions including tissue repair, immunomodulation and stem
cell homeostasis [86–89]. Subpopulations exhibiting differ-
ent properties within MSC cultures demonstrated a hetero-
geneous stem cell entity [90]. During tumorigenesis, MSC
are recruited to the inflammatory microenvironment of the
tumor site [91]. Various studies have demonstrated inter-
actions between MSC and cancer cells with support of
CSC maintenance including breast, ovarian, lung and
colon cancers [9, 52, 92–94]. In vivo studies revealed the
impact of bone marrow-derived MSC on breast cancer
stem-like cells by an accumulation of MSC and cytokine
release within the breast tumor microenvironment which
was associated with an increased number of CSCs [95].
Apart from the expression of specific surface markers,
MSC are characterized by their ability to differentiate
along the chondrogenic, osteogenic and adipogenic line-
ages [96] whereby also cross-germline differentiation cap-
acity of MSC with cellular properties other than from
mesodermal origin are discussed. At tumor sites, MSC
can differentiate into cancer-associated fibroblasts (CAFs)
which in turn favor tumor development [97, 98].
Co-culture experiments revealed the contribution of CAFs
as feeder cells to supply stemness factors since CAFs from
non-small cell lung carcinoma (NSCLC) patients pro-
moted lung cancer stem-like cell growth. Conversely, re-
moval of CAFs from the co-culture led to a down-
modulation of stem cell markers such as Oct3/4 and
Nanog followed by a partial differentiation of lung CSCs
[99]. Moreover, sarcomas were hypothesized to originate
from MSC by development of a CSC phenotype [50]. Fur-
thermore, in vitro and in vivo glioma stem cells were cap-
able to generate pericytes indicating an active role of
CSCs to remodel their CSCN for additional vasculature
and nutrient support [100]. In addition to MSC, CAFs
and pericytes, immune cells have also been suggested to

play a major role in CSCN maintenance, e.g. tumor-
associated macrophages (TAMs) facilitated survival and
growth of breast CSCs in vivo [101].
Regulation of CSC generation also involves a diverse

range of soluble factors including cytokines, chemokines,
growth factors, hormones, metabolites and further trophic
molecules. Breast cancer stem-like cells which are charac-
terized by low levels of CD24, high levels of CD44, and al-
dehyde dehydrogenase expression [1, 102, 103] have been
suggested to express the IL8-binding chemokine receptor
CXCR1. Neutralization of CXCR1 via a specific blocking
antibody or small-molecule inhibitors decreased CSC pop-
ulations and was accompanied by apoptosis/necroptosis of
the cancer cell population indicating the requirement of
IL8 signaling for CSC survival [104]. In vitro cultivation of
human breast cancer-derived epithelial cells (HBCECs)
[105] can develop CSCN-like structures which was also
accompanied by IL8 expression in contrast to normal hu-
man mammary epithelial cells (HMECs) (Fig. 2a-c).
Whereas HMEC culture eventually ends up in growth ar-
rest and senescence [74, 75] long term cultivation of
HBCEC populations maintains the capability to generate
new proliferative active cancer cells (Fig. 2a and b). A po-
tential IL8 production and corresponding signaling via
CXCR1 has also been attributed to CSCs of pancreatic
cancer [106].
Production and release of CCL5 by MSC has been

suggested to activate corresponding receptors such as
CCR5 on adjacent breast cancer cells thereby promoting
altered breast cancer development and metastasis [107].
Moreover, autocrine CCL5-signaling via its receptors
CCR1 and CCR3 accelerated migration and invasion of
ovarian CSCs while either removal of CCL5 or blockade
of CCR1 and CCR3 prevented their invasive potential
[108]. Further soluble factors which interfere with CSC
maintenance are microRNAs (miRs). For instance, miR-
34 expression resulted in a reduced pancreatic TIC
population [109] and exogenous miR-134 overexpression
decreased human endometrial CSC migration [110].

Direct communication of MSC with tumor cells as part of
a CSCN
According to their recruitment to tumor sites associated
with direct interactions of MSC with tumor cells, multi-
potent MSC may represent a major cellular component
of a CSCN since various studies reported mutual acqui-
sition of properties between both interaction partners
which alter the original cell fate [9, 52].
Gap junctions enable the direct interaction between

two neighboring cells, also known as gap junctional
intercellular communication (GJIC). Thereby, each cell
contributes equally to gap junction formation. Gap junc-
tion channels consist of hemichannels/connexons which
in turn are composed of six connexin protein subunits
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that form a pore through the plasma membrane [111, 112].
In general, ions like Ca2+, small molecules such as micro-
RNAs or second messenger are transported and exchanged
via gap junctions allowing regulation of cell proliferation,
differentiation and homeostasis maintenance [111, 113].
During co-culture with MSC, breast cancer cells acquired
CD90 expression as a mesenchymal stem cell surface
marker. Gap junction inhibitors decreased MSC-mediated
CD90 acquisition of breast cancer cells indicating the in-
volvement of GJIC in the process of cancer cell alteration
[9]. Furthermore, GJIC has been reported in cancer cell
dormancy. MiRs targeting CXCL12 were transferred via
gap junctions from bone marrow stromal to breast cancer
cells resulting in decreased CXCL12 levels and reduced
proliferation thereby promoting cancer cell quiescence
[114]. Moreover, bone marrow MSC-derived exosomes
which include miR-23b can induce quiescence in bone
marrow-associated breast cancer cells [115]. Dormancy/
quiescence of breast cancer cells has also been attributed
to interaction with the microvasculature, particularly endo-
thelial cell-derived thrombospondin-1 whereas escape from
dormancy and regained tumor cell proliferation is associ-
ated with sprouting neovasculature and availability of
appropriate growth factors in the perivascular niche [116]
(Fig. 1).
Whereas GJIC proceeds between two tightly adjacent

cells, nanotubes are characterized by thin, F-actin rich
structures which link interacting cells over longer dis-
tances. These dynamic cytoplasmic protrusions facilitate
communication via exchange of various biological cargo
including small molecules and organelles [117]. Notably,
nanotubes enabled the transfer of mitochondria from
bone marrow-derived MSC to breast cancer cells indu-
cing increased oxidative phosphorylation (OXPHOS),
proliferation and invasion of cancer cells [118]. Thus,
nanotubes represent a crucial interaction tool for can-
cer cells to acquire altered cellular functions facilitat-
ing tumor survival, growth and expansion.
The Notch signaling pathway plays a crucial role in

cellular processes including tissue repair, stem cell main-
tenance and regulation of immune cell functions [119].
There is increasing evidence that Notch signaling pro-
motes pro-tumorigenic functions in solid tumors and is
involved in cancer stem-like cell survival [120–122]. The
Notch signaling cascade starts with ligand binding from
the signal-sending cell to the notch receptor of the
signal-receiving cell followed by cleavage of the recep-
tors intracellular domain by a presenilin-γ-secretase.
The cleavage domain translocates into the nucleus and
activates downstream target genes by facilitating dis-
placement of a transcriptional repressor [123]. Recent
studies have identified MSC as signal-sending cell of
Notch signaling whereas breast cancer cells received sig-
nals. Acquired expression of the MSC marker CD90 by

breast cancer cells during co-culture was reduced by
blocking of Notch signaling [9] suggesting a functional
role of this pathway during cancer cell alteration. Addi-
tionally, CD90 has been proposed as marker for liver
CSCs. In CD90-positive liver CSC featuring chemoresis-
tance, migration, self-renewal, elevated invasiveness and
metastasis, the Notch signaling pathway was activated.
Conversely, inhibition of Notch signaling reduced migra-
tion, invasiveness and expression of stem cell-related
genes further strengthening the importance of Notch
signaling for CSCN maintenance [124].
Trogocytosis has been initially observed between im-

mune cells as an active mechanism whereby lympho-
cytes extract surface molecules from antigen-presenting
cells [125]. More recently, trogocytosis has been pro-
posed as interaction mechanism by exchange of mem-
brane patches and associated proteins between adjacent
cells including MSC and cancer cells. Thus, ovarian
tumor cells extracted membrane patches from stromal
cells harboring multidrug resistance proteins thereby de-
veloping chemoresistance to platin and taxans [126].
Likewise, rare tumors of the small cell carcinoma of the
ovary, hypercalcemic type (SCCOHT), demonstrated
progressive chemo- and apoptosis resistance mediated
by MSC [127].
Direct interaction and communication between MSC

and tumor cells including GIJC, nanotube formation,
Notch signaling, and trogocytosis may contribute to the
generation of CSCs together with mutual exchange of
distinct factors which alter properties of the involved cell
populations. For example, cancer cell–derived interleu-
kin1 can stimulate prostaglandin E2 secretion by MSC
operating in an autocrine manner to further induce ex-
pression of cytokines by the MSC which in turn activate
β-catenin signaling in the cancer cells in a paracrine
fashion and formation of CSCs [128].
Together, these different types of direct interactions

emphasize the importance and requirements of tumor-
associated cells such as MSC within a CSCN to relay
cellular properties that alter the original phenotype of
tumor cells towards CSCs.

Indirect communication of MSC with tumor cells
In addition to direct interactions altering CSC phenotype
and function, indirect communication plays a pivotal role
within CSCN. It involves both the release of soluble mole-
cules such as metabolites and hormones and the exchange
of microvesicles and exosomes [64].
In CSCN, metabolites including lactate, glutamine and

keton bodies mutually reprogram metabolism of stromal
stem cells and cancer cells favoring adaption of tumor
cells to dynamic fluctuation of CSCN. Activation of CSCN
homing CAFs by tumor cells leads to metabolic repro-
gramming of CAFs to a glycolytic phenotype meaning
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elevation of glucose uptake and elevation of lactate se-
cretion serving as nutrient for adjacent cancer cells
[129, 130]. On the one hand, lactate secretion increases
acidity of CSCN resulting in higher ECM protease ac-
tivity for migration and metastasis. On the other hand,
lactate is taken up by cancer cells which reprograms
their metabolism from glycolytic to respiratory mode
(OXPHOS) maintaining cancer growth [131]. Indeed,
osteosarcoma cells activate expression of lactate efflux
receptors in MSC concomitant with accelerated expres-
sion of lactate influx receptors and lactate uptake in
cancer cells. This metabolic shift increases ATP pro-
duction and enhances migratory potential of osteosar-
coma cells [132] indicating a necessity of acidification
and metabolic reprogramming for increased tumor
growth and progression. In addition to lactate, MSC
deliver further nutrients such as ketone bodies and
glutamine which can only be metabolized by OXPHOS
fostering cancer growth [131] or arachidonic acid me-
tabolites like prostaglandin E2 which modulates im-
mune cells and protects lymphoblastic leukemia cells
from cell death [133]. Moreover, prostaglandin E2- and
cytokine-producing MSC can create a cancer stem cell
niche together with other recruited cell populations to
enable tumor progression [128].
Furthermore, hormones as soluble agents have been

demonstrated to influence CSCs. For instance, proges-
terone induced the expansion of breast cancer stem-like
cells [134].
Exosomes are characterized as homogeneous, 40 to

100 nm small endocytosed membrane particles which
can be mutually exchanged by tumor cells and adjacent
cell populations in the tumor microenvironment, par-
ticularly macrophages and MSC. These small particles
contain a variety of proteins, lipids, functional RNAs
and regulatory miRs [135, 136]. Although data are con-
troversial concerning exosome function in tumorigen-
esis, there is predominant evidence that exosomes
contribute to tumor growth whereby also tumor cell-
derived exosomes play an important role [137, 138].
Recent work demonstrated the internalization of MSC-
derived exosomes by breast and ovarian cancer cells
resulting in new tumor cell properties and functions by
acquisition of MMP2 and ecto-5′-nucleotidase (CD73, a
MSC surface marker) activity, respectively, enabling
increased potential to reorganize the tumor microenvir-
onment [139]. Furthermore, MSC-derived exosomes
enhanced proliferation and migration of breast cancer
cells suggesting the involvement of Wnt signaling for
elevated migration capacity [140]. In addition, certain
miRs such as miR-222/223 from MSC-released exosomes
promote dormancy/quiescence and drug resistance in a
subset of breast cancer cells [141]. Intercellular communi-
cation between MSC and prostate cancer-derived exosomes

activated the MSCs to differentiate into myofibroblasts
whereby pro-angiogenic, pro-proliferative and pro-invasive
functions were induced to facilitate tumor progression
[142]. Tumor cell-derived exosomes in distinct organs also
display distinct integrin expression patterns that can stimu-
late resident cells (macrophages, endothelial cells, MSC) to
prepare a metastatic niche for tumor cells [143].

Potential role of hypoxia, autophagy and DAMPs
in CSC development
Although knowledge about CSCs originating from a
CSCN is limited, the tumor microenvironment in which
CSCs reside, provides a structural scaffold with various
resident cancer-associated aberrant cell types which con-
tribute to tumor growth and exchange soluble factors by
mutual intercellular communications. Due to progressively
increasing tumor cell growth and impaired vascularization,
some tumor cells within the center of a solid tumor have
limited access to nutrients. An impaired nutrient availability
during expansion of the tumor size leads to hypoxic
and more acidic conditions with starvation of the inner
tumor cells eventually resulting in autophagy and ne-
crosis/necroptosis [144] (see below).
Whereas such hypoxic and acidic milieu results from

the imbalance between tumor cell proliferation and
angiogenesis [145, 146], hypoxia represents one of the
hallmarks of solid tumors influencing tumor develop-
ment and progression [147] (Fig. 1).
Hypoxic signaling occurs via hypoxia inducible factors

HIF-1 and HIF-2 that regulate cellular response to low
oxygen and nutrient deficiency including activation of
specific genes that control metabolism, angiogenesis,
proliferation and differentiation [148]. Activation of
angiogenesis increases tumor vascularization, however,
tumor blood vessels feature abnormal pericyte coverage
and leaky endothelial layers [149] and are thus unable to
supply sufficient oxygen. Consequently, cancer cells
adapt their metabolism to these environmental condi-
tions also with altered energy metabolism. Normal cells
primarily depend on energy storage and consumption
via mitochondrial OXPHOS, however, cancer cells rely
on glycolysis followed by increased lactate production
which is supported by hypoxic conditions [150]. Similar
effects are observed in MSC cultures, whereby hypoxic
conditions were associated with induced HIF-1α expres-
sion and significantly elevated lactate production [151].
There is increasing evidence that cancer cells rely on both,
glycolysis with lactate accumulation and OXPHOS
whereby a shift between these two metabolic pathways in-
dicates rapid adaptability of tumor cells to certain envir-
onmental conditions. Moreover, HIF-1α and HIF-2α
expression were suggested to develop and maintain
CSCs in gliomas [152] and in human neuroblastoma
[153], respectively.
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Together with the significant alterations in cellular
metabolism, hypoxic conditions also mediate the activa-
tion of extracellular matrix proteases such as MT1-
MMP and MMP-2 in mammary tumor cells [154] or
gelatinase in distinct adenocarcinomas [155] which can
restructure the ECM and accordingly, the architecture of
a CSCN.
Furthermore, hypoxia induces epithelial-to-mesenchymal

transition (EMT), a process required for metastasis,
through activation of EMT transcription factors resulting
in e.g. loss of E-cadherin [156, 157]. In general, EMT is
characterized by alterations of epithelial-like cell properties
towards a mesenchymal phenotype including downregula-
tion of E-cadherin for loss of cell polarity, secretion of
proteases for ECM degradation and an increase in mesen-
chymal marker expression for accelerated migration and
invasiveness [158–160]. Cancer cells undergoing EMT
have been demonstrated to acquire mesenchymal cell traits
resulting in mesenchymal-like migration patterns of cancer
cells through tumor microenvironment. This mesenchymal
migration type is characterized by protease-dependency
to facilitate ECM degradation via MMPs, cathepsins
and kallikreins and to enhance movement through the
ECM [72, 161, 162]. An EMT program induced by
TGF-β is associated with the acquisition of stem cell
traits, proliferation arrest and enhanced resistance to
apoptotic stimuli including anti-cancer drugs (chemoresis-
tance). Recent data in pancreatic ductal adenocarcinoma
cells in vitro suggested that TGF-β1 induced the gener-
ation of CSC-like cells with clonogenic potential and that
this process can be efficiently inhibited with the anti-
cancer drug dasatinib (BMS-354825, Spryce) [163].
Following hypoxia and EMT, cancer cells can escape

the primary tumor niche and migrate and disseminate to
distant organs [164, 165].
Besides the contribution of hypoxic conditions to me-

tastasis, low pH/acidic conditions as a result of lactate
release from increased anaerobic glycolysis of tumor
cells may favor metastasis as well. Acidic conditions are
proposed to activate proteases such as cathepsins which
in turn degrade ECM for tumor invasion [166–168].
Also, acidic stress favors the development of CSCs in
gliomas [169].
Hypoxic and more acidic conditions in the inner part

of a tumor are often accompanied by starvation and
reduced tumor cell viability, Enhanced cell death of cen-
trally located tumor cells by progressive nutrient defi-
ciency, starvation and low oxygen levels can involve
three main mechanisms: apoptosis, autophagy and ne-
crosis/necroptosis. Apoptosis is a highly regulated cell
death program that can be triggered by both extrinsic
and intrinsic stimuli after induction in consequence of
inevitable cell stress [170, 171]. However, many cancer
cells and particularly those with a partial EMT phenotype

including CSCs exhibit resistance to apoptosis [172] since
in a hypoxic environment, expression of pro-apoptotic
members of the Bcl-2 family is decreased while protein
levels of anti-apoptotic mediators such as Bcl-xL are in-
creased [173, 174]. This EMT-mediated loss in apop-
tosis sensitivity partially accounts for a chemoresistant
phenotype. Autophagy is a well-regulated catabolic
process that usually exerts pro-survival functions via
lysosome-mediated degradation of intracellular mole-
cules that provides energy needed during starvation or
cellular stress [175]. Accordingly, autophagy plays an
important supportive role in cancer development.
Indeed, autophagy has been shown to promote survival
of disseminating, dormant/quiescent and stem-like
tumor cells and to be upregulated during metastasis
[176]. These stem-like tumor cells can represent a hete-
rogeneous population e.g. by subclones which carry
mutations of known oncogenic potential but do not ex-
hibit any signs of malignancy for long time and are
therefore distinguished as “neoplastic stem cells” [177].
An enhanced contribution of autophagy to CSC activa-
tion has also been demonstrated in breast cancer cells
by increased regulation of CD24low/CD44high breast
cancer stem-like cells [178]. Conversely, inhibition of
autophagy in pancreatic tumor cells was associated with
reduced activity of CSCs [179] further substantiating an im-
portant role of autophagy in regulating CSC functionality.
Necrosis depicts another process of cell death charac-

terized as random, accidental and unregulated [180].
Nonetheless, regulated, programmed necrosis in tumor
cells has been observed and termed necroptosis for
controlled cell death [181]. Apoptotic, autophagic and
necrotic/necroptotic cells within the tumor microenvir-
onment release damage-associated molecular patterns
(DAMPs) which serve as danger signals and are primarily
recognized by pattern recognition receptors (PRRs) such
as toll-like receptors [182] (Fig. 1). DAMPs are found in
all stressed cells and are delineated as a large group of un-
related mediators including S100 proteins, ATP, heat
shock proteins, hyaluronan, HMGB1 (high mobility group
box 1), and calcireticulin [183]. Particularly the DAMP-
associated protein HMGB1 has been suggested to pro-
mote cancer progression in malignant mesothelioma also
evidenced by elevated serum levels of malignant meso-
thelioma patients which indicates a supportive role of
DAMPs for CSC functions [184].
The release of DAMPs initiates an innate and adaptive

immune response attracting immune cells such as DC,
NK cells, macrophages and regulatory T cells (Tregs)
[182] (Fig. 1). Although inflammation induces anti-
tumor signaling which successfully eliminates the tumor
cells, opposite effects facilitate tumorigenesis due to
failure of an effective immune response and escape of
some tumor cells from immune surveillance which
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results in DAMP-mediated tumor progression [183].
Indeed, glioblastoma cancer progression was associated
with ineffective response of CSCs to DAMPs partially
due to a decreased toll-like receptor expression and
thereby, DAMPs contribute to CSC maintenance [185].
Reduced immune response to tumor cells can also be

mediated by MSC which are recruited to tumor sites
due to the inflammatory microenvironment (Fig. 1).
Overall, MSC interact with a variety of immune cells
and exhibit immune-modulatory functions. They sup-
press the cytotoxicity potential of NK cells or inhibit T
cell activation by altering immune cell functions and
favoring immune suppression [91]. Recent findings
substantiated the anti-proliferative effects of MSC on T
lymphocytes by expression of nitric oxide synthase and
production of nitric oxide metabolites [186]. Moreover,
MSC can regulate immune competence by release of
IL-10 or by producing the enzyme indoleamine-2,3-
dioxygenase (IDO) associated with induction of toler-
ance and a shift from Th1 to Th2 immune response.
Furthermore, Tregs are severely affected by DAMPs
such as adenosine and prostaglandin E2 [187, 188] and
can interact with other immune cells leading to limited
anti-tumor immunity [189].
Macrophages (M1) contribute to tumor destruction

via IFNγ activation followed by production of type 1 cy-
tokines and chemokines. Conversely, activation of M2
macrophages via MSC promotes tumorigenesis by pro-
duction of type 2 cytokines and chemokines strengthe-
ning the dual role of macrophages depending on the
phenotype and activation status. During progressive
adaption to the tumor microenvironment, TAMs repre-
sent a further macrophage phenotype that triggers
tumor development through support of angiogenesis
and ECM remodeling [190]. Consequently, even though
inflammation at tumor sites induces anti-tumor
responses, attracted MSC alter immune cell functions
and favor an immunosuppressive microenvironment
with reduced immune surveillance which contributes to
CSC development and promotion of tumor growth.
Together, the cascade of hypoxic conditions and low nu-

trient supply accompanied by limited apoptosis,
autophagy and necrosis/necroptosis followed by release of
DAMPs evokes an inflammatory microenvironment which
is modulated by interacting MSC. These mechanisms
which are also influenced by protease activities and subse-
quent ECM modulation interfere with the dynamic and
sensitive equilibrium of the CSCN which can critically
alter the amount of CSCs affecting clinical outcomes and
patient prognoses [191].

Conclusions
The presence of a CSC population as part of a heteroge-
neous tumor entity [192] is suggested with following

functions: 1) cancer maintenance by self-renewal capacity;
2) differentiation and development capacity; 3) chemo/
apoptosis resistance; 4) escape from immune surveillance.
CSCs can evolve from normal SCNs, from primary tumors,
from metastases with disseminated tumor cells after EMT,
from cell fusion following subsequent selection, and/or
from a retrodifferentiation process among others. Gen-
eration of CSCs requires a multistep cascade of devel-
opment including genetic and/or epigenetic changes.
CSC maintenance/protection in a dormant/quiescent
state within a specialized microenvironment and activa-
tion by cytokines/growth factors for cell cycle reentry
and tumor growth (relapse) remains a matter of debate
among alternative hypotheses and models of a CSCN.
According to metabolic alterations and functional

interference with the requirements of a carefully bal-
anced factor homeostasis for CSC generation, the sensi-
tive maintenance of a CSCN is likely subject to changes.
Such CSCN structures can be disabled at certain sites of
the tumor and newly established at more favorable
places within the tumor suggesting multiple and simul-
taneous possibilities for CSCNs with appropriate turn-
over. A potential CSCN turnover may depend on the
stability of the environment. For example, CSCNs of
tumor metastases in the bone marrow are more pro-
tected and stabilized in the spongy bone cavities as com-
pared to CSCNs in more metabolically-exposed tissues
such as primary organ-associated tumor tissues or lymph
node metastases. Nevertheless, the dynamic generation
and changes of CSCs within the plasticity of tumor tissues
and the continuously functional alterations/adaptations of
developing and metastasizing tumor cells by loss of
distinct functions and/or acquisition of new properties
represent the real challenge of a successful tumor therapy.
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