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Abstract

Carcinogenesis

Chromatin remodeling controls gene expression and signaling pathway activation, and aberrant chromatin structure
and gene dysregulation are primary characteristics of human cancer progression. Recent reports have shown that long
non-coding RNAs (IncRNAs) are tightly associated with chromatin remodeling. In this review, we focused on important
chromatin remodelers called the switching defective/sucrose nonfermenting (SWI/SNF) complexes, which use the
energy of ATP hydrolysis to control gene transcription by altering chromatin structure. We summarize a link between
IncRNAs and the SWI/SNF complexes and their role in chromatin remodeling and gene expression regulation in
cancer, thereby providing systematic information and a better understanding of carcinogenesis.
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Background

Cancer is one of the leading causes of death in the world.
Dysregulation of chromatin remodeling and cytoskeleton
organization is tightly associated with the progression of
cancer [1]. Chromatin remodeling is the dynamic modifi-
cation of the chromatin architecture to allow regulatory
transcription machinery proteins access to condensed
genomic DNA and thereby control gene expression [2, 3].
Some specific protein complexes, which can move, eject,
replace or restructure nucleosomes with energy from the
hydrolysis of adenosine triphosphate (ATP), play a pivotal
role in the process of chromatin remodeling by providing
proper nucleosome position and density [4]. Two major
classes of protein complexes control the process of
chromatin remodeling. One class is the covalent his-
tone-modifying complexes, and the other is the ATP-
dependent chromatin remodeling complexes. Chromatin
remodeling is currently a major therapeutic strategy in the
treatment of several cancers.
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In eukaryotes, according to the different ATP enzyme
and protein subunits, the ATP-dependent chromatin re-
modeling complexes can be divided into four classes:
switching defective/sucrose nonfermenting (SWI/SNF),
imitation switch (ISWI), chromodomain helicase DNA
binding (CHD), and inositol requiring 80 (INO8O0) [2].
There are large differences in the mechanisms of the
four classes. The SWI/SNF complexes recognize the nu-
cleosome and naked DNA with a high affinity and can
move the nucleosome by interacting with DNA, result-
ing in a more easily affected DNA region [5]. SWI/SNF
is usually associated with activated chromatin and can
silence gene expression. ISWI recognizes only the nu-
cleosome to silence chromatin with low activity. Some
CHD complexes slide or eject nucleosomes to promote
transcription, and others play repressive roles with his-
tone deacetylases. INO80 can activate transcription and
DNA repair [2].

Long non-coding RNAs (IncRNAs) are a subset of non-
coding RNAs, which exceed 200 nucleotides in length [6-8].
Accumulating evidence has confirmed that IncRNAs con-
tribute to cancer initiation and progression through regulat-
ing gene transcription and post-transcriptional regulation
through chromatin remodeling [9-16]. In this review, we
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described the relationship between IncRNAs and the SW1/
SNF complexes on the mechanism of transcriptional regula-
tion and chromatin modification in cancer. This link will
provide new insights for future studies on cancer.

The structure and composition of the SWI/SNF
complexes

The SWI/SNF complexes, which were first discovered in
yeast, regulate the expression of homothallic switching
endonuclease (HO) and the transforming enzyme sucrose
invertase (SUC2) [17]. Among these complexes, HO is a
mating type switch (SWI) and SUC2 is necessary for su-
crose non-fermentation (SNF) [18, 19]. Therefore, the com-
plexes have come to be known as the SWI/SNF complexes.

The SWI/SNF complexes contain a conserved DNA-
dependent ATPase as their catalytic subunit and distinct
flanking domains, such as helicase-SANT-associated do-
mains (HSA) and bromodomain proteins [3]. The ATPase
domain (core subunit) is composed of two parts: DEXDc
and HELICc. DEXDc, also called SNF2-N, contains an
ATP Mg** binding site and a motor unit called the DEAD
box domain, which converts ATP energy to mechanical
movement [20]. HSA can bind to ARPs and actin [2]. At
the C-terminal, a bromodomain is located, which can
recognize acetylated lysines in histones and contributes to
increasing remodeling efficiency [2] (Fig. 1a).

Most remodeling enzymes form a multi-subunit com-
plex to perform the remodeling function. The SWI/SNF
complexes are divided into two sub-classes as distin-
guished by different subunits; one sub-class is the BRG/
hBRM associated factors (BAF) complexes, and the other
is the polybromo associated BAF (PBAF) complexes [3].
The two sub-classes of complexes are always composed of
8 to 14 subunits, including several core subunits (ATPase
subunit), the BAF complex containing either Brahma
(BRM) or BRM-related Gene 1 (BRG1), and the PBAF
complex only containing BRG1 [21]. The other core com-
ponents are BAF155 (SMARCCI gene encoded), BAF170
(SMARCC?2) and SNF5/BAF47/INI1 (SMARCBI) in both
the BAF and PBAF complexes. The core subunits are the
most important subunits, possessing the same level of re-
modeling activity as the entire SWI/SNF complex [22, 23].
Core subunits are mostly involved in double-strand break
(DSB) repair and nucleotide excision repair.

In addition to these core subunits, the signature sub-
units of the SWI/SNF complexes, which are associated with
elongation and transcription, are BAF250A/B (ARID1A/B)
in BAF complexes and BAF180 (PBRM1), BAF200 (ARID2)
and BRD7 in PBAF complexes [4, 24]. Moreover, many
accessory subunits are part of the SWI/SNF complexes,
such as BAF57, BAF53A/B, BAF60A/B/C and B-actin. The
function of each subunit is slightly different through con-
served proteins, and unique attendant subunits distinguish
each complex (Fig. 1b and c).
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The SWI/SNF complexes mediates chromatin
remodeling
The hypothesized steps of chromatin remodeling include
the recruitment and localization of the SWI/SNF com-
plexes to target genes followed by the hydrolysis of ATP
to release energy and alter chromatin structure. Early
observations showed that there are three models of the
SWI/SNF complexes recruited and located on chromatin
[25]. The first is the “non-targeting model”, meaning
that the SWI/SNF complexes locate anywhere on chro-
matin in a random manner, requiring only one DNA
binding transcription factor. In this model, chromatin
structure remodeling will occur, but this model seems
inadequate to clarify the function of the SWI/SNF com-
plexes [25]. The second model is “RNA polymerase II
association”, in which the SWI/SNF complexes are asso-
ciated with a specific nucleosome by RNA polymerase II
[26]. The last model is “targeting by activators”, in which
the SWI/SNF complexes are recruited to target genes by
transcriptional activators and transcription factors [27].
There are two related models for the mechanism by
which the SWI/SNF complexes remodel chromatin confor-
mations. The “nucleosome slide model”, where the SWI/
SNF complexes use the energy of ATP-hydrolysis to re-
model histones, which results in changes in the chromatin
structure. The SWI/SNF complexes can work as a DNA
translocase enzyme. When the DNA double strand is
opened, the SWI/SNF complexes can make the nucleo-
some slide along the DNA. In this way, the relative move-
ment of histones and the DNA change the position of the
nucleosome. At the same time, restricted enzyme sites of
DNA are exposed, which results in transcription factors be-
ing bound to corresponding elements [28]. However, the
slide model changes only the position of the nucleosome,
which cannot explain how a large amount of exposed DNA
can be formed in a closely packed region. Therefore, there
may be some other mechanisms for chromatin remodeling.
The other model is the “bulge model”, in which the SW1/
SNF complexes push or pull linker DNA into nucleosome
regions, resulting in the DNA bulge exposure or inhibition
of a section of DNA sequence. No matter the assumptions,
the DNA bulge will change the interaction of the histone
octamer with the DNA, and the relative position of DNA
on a histone will change and cause the sliding of the nu-
cleosome on DNA. Eventually, chromatin remodeling me-
diated by the SWI/SNF complexes will cause activation or
inhibition of the corresponding genes [28].

LncRNAs interact with the SWI/SNF complexes
regulating chromatin remodeling in cancer

The chromatinic structure can undergo dynamic
changes in the cell. When the chromatic structure is
compact, it will prevent transcription factors and RNA
polymerase recruitment and binding to specific DNA
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Fig. 1 The structure and composition of the SWI/SNF complexes in human. a The structure of the SWI/SNF complexes. The SWI/SNF complexes
contain a DNA-dependent ATPase as its catalytic subunit and distinct flanking domains, such as HSA and bromodomain. b The subfamily of the
SWI/SNF complexes. The SWI/SNF complexes consist of several core subunits (pink), signature subunits (blue) and additional accessory subunits (gray).
The subunit coded gene is marked in purple with italics. Different colors of characters in a complex indicate the function of various subunits. ¢ The
outline of the SWI/SNF complexes. The SWI/SNF complexes are divided into two types: BAF and PBAF. Two types of the SWI/SNF complexes contain
different subunits, which are related to distinct functions
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sequences, leaving genes silenced. While the chromatinic
structure is loose, transcription factors can bind to the
promoter of a specific gene and activate transcription.
The SWI/SNF complexes usually remodel chromatin in
a loose state and are associated with the activation or
suppression of gene expression [29]. SWI/SNF affects
genes expression through chromatin status, such as nu-
cleosome positioning, exchanging or moving [30, 31].
Recent studies showed that IncRNAs regulate chromatin
modification and gene expression through their interac-
tions with the SWI/SNF complexes. According to many
reports, the interaction between IncRNAs and the SW1/
SNF complexes can be divided into two models in can-
cer: the binding model and the recruiting model.

The binding model states that IncRNAs can directly
bind to the subunit of the SWI/SNF complexes and
serve as a guide to anchor the SWI/SNF complexes or
function as a decoy to keep chromatin modifiers away
from specific genomic sites. Moreover, IncRNAs can be
incorporated into the SWI/SNF complexes and function as
a scaffold to assemble the complex for chromatin remodel-
ing [32]. One such IncRNA is called Second Chromosome
Locus Associated with Prostate 1 (SChLAPI), which is
overexpressed in a subset of prostate cancers. The mech-
anism of SChHLAPI is direct binding to hSNF5, which can
antagonize tumor suppressive functions of the SWI/SNF
complexes by decreasing their genomic binding. Therefore,
SChLAPI promotes tumor cell invasion and metastasis by
binding and impairing proper SWI/SNF regulation of gene
expression [33, 34] (Fig. 2). The IncRNA UCAI can bind
to BRG], the core subunit of the SWI/SNF complexes, and
damage the remodeling activity of BRG1, which reduces
the expression of p21 by blocking BRG1 binding to the
p21 promoter and promotes the proliferation of bladder
cancer cells [35]. Nuclear paraspeckle assembly transcript
1 (NEAT1) is a nuclear-restricted IncRNA, which is dysreg-
ulated in various human cancers, including leukemia, blad-
der cancer, lung cancer, breast cancer and gastric cancer
[36—40]. In the process of IncRNA-dependent nuclear body
assembly, NEATI directly interacts with the SWI/SNF core
unit, BRG1 or BRM, to form the paraspeckle structure,
which leads to cell cycle arrest and affects cancer progres-
sion [41, 42]. The IncRNA Evf2 can directly bind to BRG1
through distinct binding sites and repress the activity of
BRG1 ATPase and chromatin remodeling [43]. The
IncRNA HIFIA-ASI binds to BRG1, which contributes to
the regulation of cell proliferation and apoptosis in cancer
[44, 45] (Fig. 2).

The recruiting model involves IncRNAs recruited
SWI/SNF complexes or some core subunits to the target
gene, thereby affecting the gene structure and expres-
sion. For instance, the IncRNA IncTCF7 was overex-
pressed in hepatocellular carcinoma and promoted
tumorigenesis of liver cancer stem cells. The mechanism
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is IncTCF7 recruitment of the core subunits of the SWI/
SNF complexes, BRG1, SNF5 and BAF170, to the TCF7
promoter. Furthermore, the SWI/SNF complexes trigger
the TCF7 gene and promote tumor progression [46].
Another example of the recruiting model is RNA Poly-
merase V-generated IncRNA, which can guide the SWI/
SNF complexes to genome specific loci [47]. These
above IncRNAs show that IncRNAs regulate the carcino-
genesis of cancer through interacting with different sub-
units of the SWI/SNF complexes in two different
manners (Table 1 and Fig. 2).

Furthermore, IncRNAs interact with the SWI/SNF
complexes to affect tumorigenesis and development in
different ways. For instance, a Wnt signaling pathway ac-
tivating non-coding RNA [ncTCF7, which recruits SWI/
SNF to the promoter of TCF7, activates the Wnt signal-
ing pathway by upregulating the expression of TCF7,
which then promotes self-renewal of liver tumor stem
cells [46]. LncRNAs can also recruit inflammatory tran-
scription factor assembly into the SWI/SNF complexes.
LincRNA Cox2 promotes the transcription of late in-
flammatory genes in macrophages by regulating SWI/
SNF mediated chromatin remodeling. Under the stimu-
lation of bacterial LPS, lincRNA Cox2 is required for the
transcription of the late inflammatory response genes
that regulate NF-«B. Specifically, lincRNA Cox2 is assem-
bled into the SWI/SNF complexes in cells after LPS stimu-
lation, which causes the lincRNA Cox2-SWI/SNF complex
to modulate the NF-kB subunits assembling into the
SWI/SNF complexes. Therefore, SWI/SNF-related chro-
matin remodeling occurs in macrophages and causes the
transcriptional regulation of the late response genes in the
innate immune cells [48]. The immune system can regu-
late tumor progression and is one of the important mech-
anisms in tumorigenesis; because of this close relationship
between the immune system and tumors, we hypothesize
that there are many other kinds of IncRNAs that could as-
semble to SWI/SNF to recruit transcription factors,
thereby affecting the progression of tumors and showing
some form of inflammation regulation.

Some oncogenes also participate in the regulation of
the SWI/SNF complexes in cancer. MYC, a multifunc-
tional oncogene, plays a critical role in cell proliferation,
differentiation, apoptosis, and genetic instability [49]. It
can interact with different subunits of SWI/SNF. For
example, the core subunit of SWI/SNF SNF5/INI1 inter-
acts with MYC through the MYC basic helix loop helix
(bHLH), leucine zipper (Zip) and the INI1 repeat 1
(Rptl) domains and contributes to the transcription of
MYC target genes [50]. BAF250A, a subunit of the SW1/
SNF complexes, directly inhibits the expression of MYC
in differentiating cells [51]. Methylated BAF155 (the core
subunit of SWI/SNF complexes) can also be recruited to
the MYC target gene GADD45A and promote cancer
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progression [49]. BRG1 is a tumor suppressor in most
cancer types, but it promotes MYC transcription and
maintains oncogenic programming in leukemia cells
[52]. The transcriptional activation of MYC requires the
interaction with the MYC-associated factor X gene
(MAX), to form the MYC-MAX dimer [53]. The SWI/
SNF complexes can also interact with MAX, for instance,
BRG1 directly recruits to the MAX promoter and

regulates the expression of MAX in lung cancer [54].
These studies provide evidence that an interaction be-
tween the SWI/SNF complexes and MYC is essential in
cancer.

KRAS, first discovered in the rat sarcoma virus, plays a
critical role in human cancer [55]. Knockdown of SWI/
SNF subunits BRM, BRG1, hSNF5 and BAF250A de-
crease the activity of KRAS in colon cancer cells [56].

Table 1 Summary of IncRNAs interacting with the SWI/SNF complex in cancer

LncRNAs Interaction of INcRNA with SWI/SNF Cancer type Refs

SChLAPT SChLAPT binds to hSNF5/BAF47 and antagonizes the tumor Prostate cancer [33, 34]
suppressive functions of the SWI/SNF complex.

LncTCF7 LncTCF7 recruits BRG1, SNF5 and BAF170 to the TCF promoter and Liver cancer [46]
activates the Wnt signaling pathway.

NEATT NEATT interacts with BRG1 or BRM to form the paraspeckle structure. Various human cancers [41, 42]

UCAT UCAT binds and represses the chromatin remodeling activity of BRGT, Bladder cancer [35]
which promotes bladder cancer cell proliferation.

HIFT1A-AST HIFTA-AST interacts with BRG1, which contributes to regulate cell Lung cancer [44, 45]
proliferation and apoptosis.

Evf2 Evf2 represses the activity of BRG1 ATPase and chromatin remodeling. Unknown [43]
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Table 2 The SWI/SNF complex affects cancer development by regulating oncogene expression

SWI/SNF Interaction of SWI/SNF with oncogene Cancer types/Phenotypes Refs

BRG1 BRG1 promotes myc transcription and maintenance of oncogenic  Leukemia [52]
programming.

BRG1 BRG1 directly recruits to the MAX (myc-associated factor X gene) Lung cancer [54]
promoter and regulates the expression of MAX.

SNF5/INIT SNF5/INIT interacts with c-myc and recruits the SWI/SNF complex, — Apoptosis [50]
which contributes to the transcription of MYC target genes.

BAF250A BAF250A subunit directly inhibits the expression of MYC. Differentiation associated cell cycle arrest  [51]

BAF155 Methylated BAF155 recruited to MYC target gene, GADD45A. Breast cancer progression and metastasis  [49]

BRG1 BRG1 inactivating mutation may cooperate with KRAS mutation Lung Cancer [57]
during carcinogenesis.

BRM, BRG1, hSNF5, BAF250A  The RAS inhibitor RasGAP1 can inhibit the BRM, knockdown Colon cancer cell [56]

SWI/SNF members BRM, BRG1, hSNF5 and BAF250A,
and decrease the active KRAS

BRG1 BRGT1 inactivating mutation cooperates with oncogenic Pancreatic ductal adenocarcinoma [59]
KRAS and promote the progression of pancreatic ductal
adenocarcinoma.

SNF5 SNF5 can bind and activate the tumor repressor INK4A/ARF, Lung tumor [58]
which is in response to oncogene KRAS, indicating that the
function of SWI/SNF link to oncogene KRAS.

The Ras inhibitor RasGAP1 can also inhibit the BRM lists the various subunits of the SWI/SNF complexes as-
gene. BRG1 inactivating mutations may cooperate with  sociated with oncogenes such as MYC and KRAS in dif-
KRAS mutations during carcinogenesis [57]. SNF5 can  ferent cancer types. Understanding these relationships
bind and activate the tumor repressor INK4A/ARF, may provide insights into human genomic disorders, cell
which is in response to the oncogene KRAS [58]. Table 2  migration and cancer metastasis.
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Fig. 3 Model of IncRNAs interact with SWI/SNF. Two subclasses of the SWI/SNF complexes, BAF and PBAF have a diverse composition of the
subunits. These subunits interact with IncRNAs, which bind to or recruit chromatin and make distinctive contributions to regulate chromatin
remodeling and oncogene expression
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Conclusion

In this review, we have summarized different subunits of
the SWI/SNF complexes. These subunits recruit to chro-
matin for chromatin remodeling and transcriptional
control through interactions with IncRNAs (Fig. 3). This
review gave a detailed description of the function of the
SWI/SNF complexes and the relationship between the
SWI/SNF complexes and IncRNAs, which will offer new
insights into the processes of cancer and provide novel
therapeutic approaches to SWI/SNF-mutant cancers.
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