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Abstract

There is a growing trend towards exploring the use of a minimally invasive “liquid biopsy” to identify biomarkers in
a number of cancers, including urologic malignancies. Multiple aspects can be assessed in circulating cell-free DNA,
including cell-free DNA levels, integrity, methylation and mutations. Other prospective liquid biopsy markers include
circulating tumor cells, circulating RNAs (miRNA, lncRNAs and mRNAs), cell-free proteins, peptides and exosomes have
also emerged as non-invasive cancer biomarkers. These circulating molecules can be detected in various biological
fluids, including blood, urine, saliva and seminal plasma. Liquid biopsies hold great promise for personalized medicine
due to their ability to provide multiple non-invasive global snapshots of the primary and metastatic tumors. Molecular
profiling of circulating molecules has been a stepping-stone to the successful introduction of several non-invasive
multi-marker tests into the clinic. In this review, we provide an overview of the current state of cell-free DNA-based
kidney, prostate and bladder cancer biomarker research and discuss the potential utility other circulating molecules. We
will also discuss the challenges and limitations facing non-invasive cancer biomarker discovery and the benefits of this
growing area of translational research.
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Background
The concept of “precision medicine” or individualizing
the treatment plan according to the biologic behaviour
of the tumor is considered a new epoch in cancer
management [1]. The clinical applications of precision
medicine are broad, encompassing screening, diagnosis,
prognosis, prediction of treatment response and resist-
ance, early detection of recurrence/metastasis and biologic
cancer stratification. The goal of precision medicine is to
eliminate the “one size fits all” model of patient manage-
ment, which is centered on average response to care, by
shifting the emphasis to tailored treatment according to
disease biology and predicted treatment response [2].
Liquid biopsy is a non-invasive tool for biomarker

discovery that is gaining significant attention. The

development of a non-invasive “liquid biopsy” represents
a significant innovation in the field of precision medi-
cine. It is capable of replacing, or at least augmenting
the use of invasive biopsy which has limited success and
associated complications [3, 4]. Liquid biopsies, owing to
their minimally invasive nature, are associated with sig-
nificantly less morbidity and can be scheduled more
frequently to provide a personalized snapshot of disease
at successive time points. This is particularly valuable
during treatment through providing temporal measure-
ments of tumor burden and early evidence of recurrence
or resistance [5]. Moreover, liquid biopsy may better
reflect the genetic profile of all tumor subclones present
in a patient, unlike tissue biopsies which are obtained
from only one tumor region [6]. A number of molecules
can be isolated from liquid biopsy, as illustrated in Fig. 1.
In this review, we provide a detailed discussion on the
potential clinical utility of cell-free (cfDNA). We also
provide an overview of other circulating molecules,
including circulating tumor cells (CTCs), RNAs (miRNAs,
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lncRNAs, mRNAs), cell-free proteins, peptides and
exosomes as cancer biomarkers.
Although circulating cell-free DNA (cfDNA) was first

identified in 1948, it has only recently been investigated as
a “liquid biopsy” for cancer biomarker detection [7]. Tu-
mors release DNA fragments into circulation that contain
tumor-specific alterations including point mutations, copy
number variation and DNA methylation (Fig. 1). Although
at lower concentrations, cfDNA can also be detected in
healthy individuals. Circulating tumor DNA (ctDNA) is
highly fragmented, measuring between 180 and 200 base
pairs. As a biomarker, ctDNA is easily accessible and reli-
able. However, ctDNA is rapidly cleared from circulation
following surgery or systemic therapy owing to its short
half-life, ranging from 16 min to 13 h [8]. Analysis of
ctDNA requires highly sensitive techniques. Classic
methods for cfDNA assessment include PCR-based

approaches. More recently, digital PCR has emerged as a
sensitive tool for detection of point mutations in cfDNA.
Targeted and whole genome sequencing technologies are
also increasingly being applied to cfDNA analysis. Advan-
tages and limitations of a select number of platforms used
to assess cfDNA is summarized in Table 1.

Advantages and limitations of cell-free DNA
There are several advantages to assessing cfDNA.
Sampling is minimally invasive and inexpensive when
compared with tissue biopsy [9]. In addition, cfDNA
testing can be easily and frequently repeated to monitor
changes that occur during treatment, serving as an early
indicator of recurrence, resistance, or metastasis [10].
CfDNA most likely reflects the genetic profile of all
tumor subclones, unlike tissue biopsy, which does not
account for tumor heterogeneity. In patients with renal

Fig. 1 Circulating molecules in liquid biopsy. There are a number of molecules that can be measured in body fluids including cell-free DNA,
circulating tumor cells (CTCs), different circulating RNA classes (miRNAs, lncRNAs, mRNAs), cell-free proteins and exosomes. Cell-free DNA escapes
into circulation from the primary tumor or metastatic loci through necrosis or apoptosis of tumor cells. Circulating cell-free DNA can then be used
as a liquid biopsy to measure DNA levels, integrity, methylation, mutational status and copy number aberration

Table 1 Platforms used to analyze cell-free DNA in circulation

Method Platform Applications Advantages Limitations Reference

PCR-based Nested real-time PCR • Known point mutations
• Methylated genes

• Ease of use
• Low cost

• Low sensitivity
• Detect limited genomic
loci

[129–131]

Mutant allele-specific
PCR

Mass spectrometry

Digital PCR Droplet digital PCR • Known point mutations
• Methylation

• Very high sensitivity
• Quantitative

• Detect limited genomic
loci

[132, 133]

Microfluidic digital PCR

Targeted Sequencing Safe-SeqS • Selected SNVa, SCNAb

and rearrangements
• High sensitivity
• Low cost

• Less comprehensive than
next gen sequencing

[134–136]

Tam-Seq

CAPP-Seq

Whole genome
sequencing

karyotyping • Genome wide SNV, SCNA
and rearrangements

• Detect all genomic
loci

• Expensive
• Time consuming

[137–139]

PAREc

aSingle nucleotide variant, bSomatic copy number alteration, cPersonalized analysis of rearranged ends
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cell carcinoma (RCC), bladder and prostate cancers,
cfDNA is detectable in over 50% of plasma/serum sam-
ples and in over 70% of urine samples [11]. Limitations
of cfDNA testing include its relatively short half-life. As a
result, sampling times are critical. Also, special precau-
tions should be taken for sample reservation. In addition,
tumor-specific mutations can represent as low as 0.01% of
total cfDNA [9, 12], which can make the detection of rare
variants challenging.

Clinical applications of cell-free DNA
As summarized in Table 2, cfDNA has a broad range of
diagnostic, prognostic and predictive applications. By
examining several unique characteristics, including
circulating cfDNA levels, integrity, methylation and
mutational status, researchers have shown that cfDNA
has great potential clinical utility for kidney, bladder and
prostate cancers.

Measuring cell-free DNA levels
Several studies have compared cfDNA levels in cancer
relative to healthy individuals and those with benign
conditions, showing promising diagnostic and prognostic
applications.
One study found that plasma cfDNA levels were lower

in sorafenib-treated RCC patients with remission relative
to those who progressed. Higher cfDNA levels during the
course of treatment also indicated poor prognosis [13].
Another study found that plasma cfDNA levels were ele-
vated in metastatic RCC relative to localized disease and
could predict postoperative recurrence with 91% sensitiv-
ity and 100% specificity [14]. In bladder cancer, urine
cfDNA levels were found to be significantly elevated rela-
tive to controls [15]. Plasma cfDNA levels were elevated
in prostate cancer relative to benign prostatic hyperplasia
(BPH) [16], indicating that cfDNA levels can serve as a
diagnostic marker for prostate cancer. A consistent study
reported that plasma cfDNA levels were higher in

prostate cancer patients relative to control subjects
with 80% sensitivity and 82% specificity [17].
A similar trend among studies is that cfDNA levels

tend to be elevated in cancer patients relative to
controls. In addition, a majority of studies report a
stepwise increase in cfDNA levels from localized disease
to disease progression and metastasis.

Cell-free DNA integrity
CfDNA is derived from both apoptotic and necrotic cells
in cancer patients whereas it predominately originates
from apoptotic cells in healthy individuals. cfDNA from
apoptotic cells is highly fragmented, whereas DNA from
necrotic cancer cells results in longer DNA fragments
[18]. CfDNA integrity is a measure of the extent of
cfDNA fragmentation and is usually calculated as the
ratio of long-to-short cfDNA fragments derived from
necrotic and apoptotic cells (necrotic/apoptotic), re-
spectively [19].
CfDNA integrity was found to be elevated in the

serum of patients with RCC relative to controls. It was
also higher in patients with higher stage (T3) and larger
tumor size (>4cm) [20].
A study found that urine cfDNA integrity was elevated

in bladder cancer patients relative to healthy individuals
and can be used as a marker for early diagnosis [21].
However, reports of decreased cfDNA integrity in
bladder cancer patients relative to controls has casted
doubts about its diagnostic utility.
cfDNA was also reported to be released by apoptotic

and non-apoptotic cell death before and 3 months after
prostate cancer diagnosis, whereas it was released only
by non-apoptotic cell death 6 months after diagnosis
cfDNA [22]. This indicates that cfDNA can be used to
follow the evolution of disease especially since repeat
liquid biopsy is feasible. Urine cfDNA integrity was
elevated in prostate cancer patients relative to healthy

Table 2 Diagnostic, prognostic and predictive applications of cell-free DNA

Clinical application Cancer type Sample type Type of cfDNA analysis Reference

Predict treatment response • RCC
• Bladder
• Prostate

• Plasma
• Serum

• cfDNAa level
• Methylation
• Mutations

[13, 29, 37–40]

Predict recurrence • RCC
• Bladder
• Prostate

• Plasma
• Urine

• Mutations
• Methylation
• cfDNA %

[14, 30, 32]

Prognosis • RCC
• Bladder
• Prostate

• Plasma
• Serum

• ctDNAb level
• DNA integrity
• Methylation

[20, 23, 35, 36]

Diagnosis • RCC
• Bladder
• Prostate

• Urine
• Plasma
• Serum

• Alteration in DNA level
• cfDNA integrity
• Methylation
• Mutations

[15–18, 20, 21, 24–28]
[31, 33, 34]

aCell-free DNA, bCirculating tumor DNA
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individuals with 79% sensitivity and 84% specificity [18].
In a contradictory study, prostate cancer patients were
found to have a lower cfDNA integrity in serum relative
to BPH patients and healthy controls [23].
Although a majority of studies have observed a

cancer-associated elevation in cfDNA integrity suggest-
ive of necrotic cell death, other groups have reported the
presence of more fragmented cfDNA and hence lower
cfDNA integrity in cancer. The presence of more
fragmented cfDNA in bladder and prostate cancer may
be a result of cancer-induced apoptosis of peripheral
noncancerous tissues. A study found that cfDNA frag-
mentation displayed a stepwise increase with increasing
histological grade [23], again suggesting that high grade
tumors may disrupt peripheral tissues resulting in in-
creased apoptosis.

Cell-free DNA methylation
An important epigenetic change in cancer is methylation
changes of tumor-related genes, which can significantly
affect the initiation and progression of the disease.
Methylation status can be assessed in circulating cfDNA
fragments.
An earlier study analyzed methylation of six tumor

suppressor genes in urine and concluded that promoter
hypermethylation has diagnostic value and is a common
and early event in organ-confined kidney cancer [24].
CpG island hypermethylation of serum cfDNA was more
frequently observed in patients with RCC relative to
controls and was able to diagnose RCC with 63% sensi-
tivity and 87% specificity [25].
Methylation levels of POU4F2 and PCDH17 in urine

were reported to be able to differentiate bladder cancer
from patients with other urological conditions and healthy
volunteers with 90% sensitivity and 94% specificity [26].
Methylation status of TWIST1 and NID2 in urine could
differentiate bladder cancer patients from controls with a
combined sensitivity of 90% and combined specificity of
93% [27].
Tumor related genes RASSF1, GSTP1 and RARB2

were found to be hypermethylated in serum of prostate
cancer patients compared to healthy male donors [28].
Plasma level of methylated GSTP1 DNA was shown to
be reduced following chemotherapy [29], indicating that
methylated GSTP1 is a potential predictive marker for
chemotherapy response. Elevated plasma cfDNA methy-
lation of SRD5A2 and CYP11A1 was seen in prostate
cancer patients with biochemical recurrence following
radical prostatectomy [30], indicating that aberrant
cfDNA methylation can serve as an early predictor for
disease recurrence.
Although promising results were obtained from the

above studies, it has to be noted that many of these find-
ings still await validation in larger independent cohorts.

Cell-free DNA mutations
Cancer initiation and progression are triggered by the
acquisition of somatic DNA mutations and chromo-
somal aberrations. The finding that tumor-derived DNA
is released into circulation and that mutations in cfDNA
can be detected in various biological fluids has prompted
investigations into their use as non-invasive cancer
biomarkers.
An early study was able to identify chromosome 3p

microsatellite alterations in plasma DNA from patients
with ccRCC relative to healthy controls [31], indicating
potential diagnostic value.
Microsatellite alterations have also been detected in

the circulating DNA of bladder cancer patients.
Urinary TERT promoter mutations were found to cor-
relate with bladder cancer recurrence [32]. KRAS2
mutation was found to be detectable in plasma ahead
of bladder cancer clinical diagnosis [33], indicating
that cfDNA mutations can serve as early diagnostic
markers.
A panel of chromosomal variations detected in serum

could discriminate prostate cancer from controls with a
diagnostic accuracy of 83%. This signature was also able
to differentiate benign prostatic hypertrophy and prosta-
titis from prostate cancer with and accuracy of 90% [34].
Focal somatic copy number alteration (SCNA) status
was assessed in plasma cfDNA at multiple time points
during progression of metastatic prostate cancer. Newly
occurring focal amplifications (AR and MYC) were re-
ported in 40% of patients with metastatic progression,
indicating that newly occurring focal amplifications may
be useful prognostic biomarkers in a subset of patients
[35]. High-level copy number gains in the AR locus were
detected in the plasma of castration resistant prostate
cancer (CRPC) patients but not in castration sensitive
prostate cancer (CSPC) patients, suggesting that AR
copy number gain can serve as a prognostic marker [36].
Plasma androgen receptor (AR) mutations were detected
in enzalutamide-resistant and abiraterone-resistant
patients with metastatic CRPC [37, 38]. Copy number
variation of serum CYP17A1 and AR genes was
assessed in metastatic CRPC patients who received
docetaxel-based chemotherapy followed by abiraterone
treatment. The authors found that patients with AR
and CYP17A1 copy number gain had shorter progres-
sion free survival (PFS) and overall survival (OS)
compared to metastatic CRPC patients with no gain.
This suggests that AR and CYP17A1 copy number
gain may be useful markers for abiraterone resistance
[39]. A consistent study found that plasma AR copy
number gain was associated with abiraterone resist-
ance in metastatic CRPC patients [40].
Although the diagnostic accuracy of specific cfDNA

mutations is high, the detection of rare variants can be

Di Meo et al. Molecular Cancer  (2017) 16:80 Page 4 of 14



challenging. This is in part due to the fact that tumor-
specific mutations can represent as low as 0.01% of total
cfDNA. A recent trend has emerged that looks to assess
global chromosomal structural instability instead of indi-
vidual alterations [34]. This may prove diagnostically
useful, especially in patients with rare variants.

Other circulating molecules and their clinical
applications
In addition to cell-free DNA, circulating tumor cells
(CTCs), circulating RNAs (miRNA, lncRNAs and mRNAs),
proteins and peptides as well as exosomes have emerged as
a “liquid biopsy” for non-invasive cancer biomarker
discovery. Table 3 shows a number of promising diagnostic,
prognostic and predictive applications for these molecules.
As illustrated in Fig. 2, these molecules can be detected in a
number of biological fluids.

Circulating tumor cells
Circulating tumor cells (CTCs) in peripheral blood
originate from the primary tumor or metastatic foci.

They are estimated to account for at most one cell in a
hundred million cells that are circulating in the blood
[41]. Thus, identification and characterization of CTCs
requires methods with extremely high analytical sensitiv-
ity and specificity [42]. Despite their rarity, significant
interest has focused on examining the utility of CTCs as
cancer biomarkers. The Food and Drug Administration
(FDA) has approved the CELLSEARCH® CTC Test for
monitoring of patients with metastatic prostate cancer.
This test counts CTCs of epithelial origin (CD45-,
EPCAM+, and cytokeratins 8, 18+, and/or 19+) in whole
blood [43]. CTC counts can serve as an estimate for
disease burden, and changes in CTC counts over the
course of systemic therapy can be indicative of treatment
response [44].
Blood CTC levels were found to be elevated in RCC

patients with advanced stage and were associated with a
more aggressive phenotype [45]. Circulating RCC cells
were able to predict current and future metastases.
Levels of CTCs in peripheral blood were also found to
correlate with lymph node status and presence of metas-
tasis in RCC. Enumeration of CTCs in peripheral blood

Table 3 Diagnostic, prognostic and predictive applications of selected circulating molecules

Molecule Clinical application Cancer type Markers References

CTCsa Diagnostic Bladder cancer Cell count [49]

Prognostic RCC, bladder and prostate cancer Cell count [45, 51]

Predictive (recurrence and
treatment response)

Prostate cancer Cell count [52]

miRNAs Diagnostic RCC, bladder and prostate cancer miR-210, miR-1233, miR-125b, miR-126, let-7e,
let-7c, miR-30c, miR-622, and miR-1285

[63]

Prognostic Bladder and prostate cancer miR-146a-5p [57]

Predictive (treatment response) Prostate cancer miR-21 [68]

lncRNAsb Diagnostic RCC, bladder and prostate cancer PCA3, lncRNA-LET, PVT1, PANDAR, PTENP1,
linc00963, UCA1, lncRNA H19

[73–75, 77]

Prognostic Prostate cancer PCAT18 [79]

Predictive (treatment response) Bladder cancer UCA1 [76]

mRNAsc Diagnostic RCC, bladder and prostate cancer CAIX, UBE2C [83, 85]

Prognostic RCC, bladder and prostate cancer B7-H3, CK20, cBMP6 [84, 86]

Predictive (recurrence and
treatment response)

Prostate cancer AR-V7, PSCA, [89, 90]

Proteins Diagnostic RCC, bladder and prostate cancer AQP1, PLIN2, APOA1, APOA 2, APOB,
APOC2, APOC3, APOE, β-MSMB

[99, 100, 104, 105, 108]

Prognostic RCC and prostate cancer Hsp27, KNG1, APOD, FG, HP, CAV1, CAV2 [98, 109]

Peptides Diagnostic RCC and prostate cancer - [101, 110]

Prognostic Bladder cancer - [106, 107]

Exosomes Diagnostic RCC and prostate cancer miR-126-3p, miR-449a, miR-34b-5p,
miR-34a, miR-148a

[118, 119, 122]

Prognostic Bladder cancer HOTAIR, HOX-AS-2, ANRIL, linc-RoR [120]

Predictive (recurrence and
treatment response)

RCC and prostate cancer LncARSR, MDR-1, MDR -3, PABP4 [119, 122, 123]

aCirculating tumor cell, bLong non-coding RNA, cMessenger RNA
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in addition to CTC vimentin expression status was
found to be significantly associated with RCC progres-
sion [46].
Several groups have assessed the prognostic value of

the CELLSEARCH® platform in bladder cancer. Circulat-
ing urothelial cancer cells were detected in patients with
metastatic bladder cancer by the CELLSEARCH™ assay
[47, 48], suggesting that this system can serve as a
marker for metastatic bladder cancer. Levels of CTCs
were higher in both serum and urine of urothelial
carcinoma patients relative to controls. Quantification of
CTC based on the high expression of folate receptor α
(FRα) had an 82% sensitivity and 62% specificity for
bladder cancer detection [49]. CTC enumeration in
peripheral blood was also found to be a powerful
predictor of early urothelial carcinoma recurrence and
cancer-specific and overall mortality [50].
CTCs are detected at high frequency in castration-

resistant prostate cancer (CRPC) and are correlated with
clinical outcome [51]. In a phase III clinical study, rising

CTC levels in patients with metastatic CRPC after three
cycles of docetaxel with lenalidomide chemotherapy
could predict poor survival [52]. In another phase III
trail, whole blood CTC count and LDH level was
strongly predictive of overall survival in patients with
metastatic CRPC who were previously treated with doce-
taxel and received abiraterone acetate [53].
CellSearch™ is currently the only CTC assay that has re-

ceived FDA-approval for prognostic evaluation of prostate,
colon, breast and lung cancers in the clinic. Due to prob-
lems associated with sensitivity and specificity, CTCs have
not yet been fully accepted into clinical practice for guid-
ing treatment decisions. More recently, research groups
are moving towards analyzing CTC content (e.g. miRNAs)
for detection of cancer biomarkers [54].

Circulating RNAs
A number of RNA classes, including messenger RNAs
(mRNAs), microRNAs (miRNAs) and long non-coding
RNAs (lncRNAs) have gained recognition as potential

Fig. 2 Circulating molecules can be detected in various biological fluids. Circulating molecules are present in a number of biological fluids, including
urine, serum, plasma, cerebrospinal fluid, seminal plasma and saliva. These can be obtained using a liquid biopsy
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non-invasive cancer biomarkers [55]. Several reports
found altered levels of circulating RNAs in cancer, which
returned to normal following surgery [56, 57], suggesting
a tumor-associated release of RNA molecules.

miRNAs
miRNAs are short non-coding RNAs, 21–23 nucleotides
in length, that regulate gene expression by pairing to the
3′untranslated region (UTR) of their target mRNA [58].
The link between miRNAs and caner has been well
established in literature as they have been shown to play
a key role in tumorigenesis, tumor progression and me-
tastasis [59]. Circulating miRNAs are present in many
biological fluids including blood, urine, saliva, tears, and
cerebrospinal fluid [60, 61], suggesting that they can be
used as non-invasive cancer biomarkers.
Several studies reported elevated serum levels of miR-

210 in RCC relative to controls [62, 63]. Circulating
levels of miR-221 and miR-222 in plasma were reported
to distinguish RCC patients from controls. Moreover,
plasma miR-221 levels also presented at higher levels in
RCC patients with metastasis [64]. Elevated urine miR-
15a levels have been detected in RCC patients and were
nearly undetectable in oncocytoma [65].
Consistent reports found urinary levels of miR-126 to

be elevated in urothelial carcinoma relative to healthy
controls [66]. Urine miR-146a-5p was significantly
higher in bladder cancer and was associated with tumor
grade and depth of invasion [57].
One study identified four miRNAs that were down

regulated and six miRNAs that were upregulated in the
sera of prostate cancer patients [67]. Another group
found that serum miR-21 was elevated in hormone-
refractory prostate cancer (HRPC) patients, especially in
those resistant to docetaxel-based chemotherapy [68].
Overall, miRNAs have shown great promise as cancer

biomarkers. multiple consistent reports have identified
circulating miR-210 as a diagnostic marker in RCC,
miR-126 as a diagnostic marker in bladder cancer and
miR-21 as prognostic markers for prostate cancer.
Although these studies support the use of circulating
miRNAs as biomarkers, they have yet to be clinically
validated. We speculate that a miRNA signature could
overcome this by reducing false-positive and false-
negative results.

Long non-coding RNAs
LncRNAs are > 200 nucleotides in length and can regulate
gene expression at the transcriptional, post-transcriptional
or epigenetic levels [69]. Accumulating evidence shows
that lncRNAs are altered in cancer and can promote
tumor formation, progression and metastasis [70]. The ap-
plication of lncRNAs as non-invasive cancer biomarkers
has recently grown interest [71]. Prostate cancer antigen 3

(PCA3) is the most notable example since it is a specific
urine marker for prostate cancer. PCA3 is developed into
an FDA-approved non-invasive urine test, PROGENSA
PCA3, to aid in the decision for repeat biopsy in men 50
years of age or older who have had one or more previous
negative prostate biopsies [72, 73].
A panel of five circulating serum lncRNAs (lncRNA-

LET, PVT1, PANDAR, PTENP1 and linc00963) was able
to differentiate benign renal tumors from ccRCC [74].
Circulating UCA1 levels in urinary sediments were
identified as a potential diagnostic marker for urothelial
carcinoma with 81% sensitivity and 92% specificity [75].
Blood UCA1 levels were elevated in patients with ad-
vanced bladder cancer after cisplatin-based combination
chemotherapy [76]. Taken together, circulating UCA1 is
a promising biomarker for bladder cancer diagnosis and
therapeutic monitoring.
Hypermethylation of the lncRNA H19 in peripheral

blood could distinguish prostate cancer from controls
[77]. Plasma MALAT1 levels were elevated in prostate
cancer. Assessment of MALAT-1 urine levels could
prevent approximately 30–46% of unnecessary biopsies
in patients with serum PSA level of 4–10 ng/mL [78].
Plasma PCAT18 levels were shown to increase incre-
mentally from healthy individuals to those with localized
and metastatic prostate cancer [79].
Overall, although recently discovered, circulating

lncRNAs are a promising new class of non-invasive
cancer biomarkers that have successfully entered into
clinical diagnostics. This may be due to their tissue- and
cancer-specific expression patterns. The highly specific
expression of lncRNAs may also explain why independ-
ent reports support the application of cell-free UCA1
and MALAT1 as diagnostic biomarkers for bladder and
prostate cancers, respectively. However, it is clear that a
more in-depth understanding of their biology is still
required.

Messenger RNAs
Circulating mRNAs were first reported in cancer patients
in the 1990s [80]. Although the vast majority of circulating
mRNAs are degraded by RNases [81], some appear to be
relatively stable in circulation [82], which is likely a result
of complexing with proteins and/or lipid carriers. Due to
their role in intracellular protein translation, circulating
mRNAs likely reflect the status of intracellular processes
and are potential cancer biomarkers.
Percentage of urine CAIX splice variant mRNA was

reported to have high diagnostic performance for kidney,
prostate and bladder cancers (90% sensitivity and 72%
specificity) [83]. Levels of B7-H3 mRNA in peripheral
blood were significantly elevated in metastatic RCC [84].
Urine UBE2C mRNA levels were significantly higher in

bladder cancer patients relative to normal and hematuria
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samples [85]. Urinary CK20 mRNA was found to be a
potential diagnostic marker for urothelial carcinoma. In
addition, CK20 was found to increase gradually with
tumor grade and stage [86]. Urine hTERT mRNA is
another potential marker for the early diagnosis and
prognosis of bladder cancer [87].
In addition to bladder cancer, hTERT mRNA was

identified as a useful diagnostic biomarker in prostate
cancer and has been linked to poor prognosis [88].
Whole blood AR-V7 levels were associated with re-
sponse to abiraterone treatment in metastatic CRPC
[89], indicating that they can serve as predictive markers.
Consistent with this, other groups found that circulating
AR-V7 detection could help guide treatment selection in
castration resistant prostate cancer [90].
Despite the long history of circulating mRNA discovery,

this field has not translated into the clinic, perhaps due to
their lack of stability and inter-individual variability of
mRNAs in circulation [91]. However, some circulating
mRNAs remain promising biomarkers since overlapping
results demonstrate the potential utility of AR-V7 in pros-
tate cancer and hTERT mRNA in bladder and prostate
cancers. The answer here might be to combine circulating
molecules into one multi-marker test to improve the
accuracy of individuals circulating molecules.

Circulating proteins and peptides
Proteomic and peptidomic analyses have marked a new
horizon for non-invasive cancer biomarker discovery
[92, 93]. A number of non-invasive multi-marker tests
are commercially available. The Prostate Health Index
(PHI) is a blood based test that combines total PSA, free
PSA, and [-2] proPSA for prostate cancer detection [94].
The 4KScore is a multi-marker blood test that combines
measurement of four kallikreins including total PSA, free
PSA, intact PSA, and hKLK2 for assessment of signifi-
cant (Gleason > 7) prostate cancer before biopsy [95].
ImmunoCyt™ is urine-based test that detects cytoplasmic
mucins and high-molecular-weight carcinoembryonic
antigen for urothelial carcinoma diagnosis [96]. The Aura
Tek FDP Test™ measures fibrin degradation products
(FDPs) in the urine and can detect bladder cancer recur-
rence [97].
In RCC, elevated serum Hsp27 was found to be associ-

ated with high grade [98]. Urine AQP1 and PLIN2 levels
were able to distinguish clear cell from papillary RCC with
95% sensitivity and 91% specificity [99]. In a clinical trial,
urine AQP1 and PLIN2 were identified as screening
biomarkers for clear cell and papillary RCC [100]. A panel
of 40 urinary peptides were able to discriminate RCC pa-
tients from controls with high sensitivity and specificity
[101]. Another panel of four serum peptides was found to
have 100% sensitivity and 93.3% specificity for RCC
diagnosis [102]. A 12 urine peptide signature was reported

to differentiate malignant from benign renal masses and
controls [103].
Circulating urine levels of APOA1, APOA2, APOB,

APOC2, APOC3, and APOE were elevated in bladder
cancer relative to healthy controls [104]. Consistently,
Chen et al. identified elevated levels of APOA1 and
APOA2 in the urine of bladder cancer patients with
diagnostic potential [105]. A signature of eight urinary
peptides derived from abundant serum proteins were
found to distinguish patient with non-muscle and
muscle-invasive urothelial carcinoma [106], indicating
that circulating peptides can serve as a marker for
disease progression. Another group identified a signature
of four urinary peptides that could distinguish muscle
invasive from non-muscle invasive bladder cancer [107].
Urinary β-MSMB was lower in patients with prostate

cancer relative to benign prostatic conditions. When
combined with serum PSA, the sensitivity of prostate
cancer detection increased [108]. Plasma CAV1 and
CAV2 levels were higher in patients with CRPC relative
to those with non-castration resistant [109]. A signature
of 12 urinary peptides could differentiate prostate cancer
from benign prostatic conditions. In combination with
age, free and total PSA, this signature had improved
detection [110].
It is clear that despite remaining challenges, proteomics

shows clinical promise. Several independent studies
support the utility of circulating AQ1 and APOA1/APOA2
as non-invasive markers for RCC and bladder cancer, re-
spectively. Moreover, the improved sensitivity, specificity
and the clinical success of multi-marker assays has driven
the shift from a single- to multi-marker view. The
development of an in-depth reference proteome may also
help identify candidate biomarkers that are likely to be
translated into the clinic [111, 112].

Exosomes
Exosomes are actively secreted membrane vesicles,
30–100 nm in size that are present in nearly all body
fluids [113]. Exosomes play a key role in intercellular
communication through transfer of biologically active
molecules and can influence therapeutic response
[114]. They are stable carriers of various molecules
(RNAs, DNA and proteins) [115] and are present at
elevated levels in cancer patients relative to healthy
subjects [116]. As such, there is increasing interest in
the application of exosomes as non-invasive cancer
biomarkers. ExoDx™ Prostate (IntelliScore), is a recently
developed FDA-approved non-invasive urine test that as-
sesses the expression of three exosomal RNAs associated
with high-grade prostate cancer. The test is used alongside
PSA to distinguish high grade (Gleason score ≥GS7) from
low grade cancers [117].
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A recent study reported that exosomal miRNAs could
differentiate benign lesions from ccRCC and healthy
individuals [118]. Recent published data indicates that
exosomal lncRNAs have potential to serve as predictive
biomarkers for guiding treatment. Exosomal lncARSR in
plasma was elevated in RCC patients and could predict
poor response to sunitinib. Moreover, LncARSR levels
were found to decrease following surgical resection and
increase at relapse [119].
The lnRNAs HOTAIR, HOX-AS-2, ANRIL and

linc-RoR were enriched in urinary exosomes from
urothelial cancer patients with high-grade muscle-
invasive disease [120]. The levels of twenty-four
proteins isolated from urinary exosomes were sig-
nificantly altered in bladder cancer. The study also
showed a strong association between exosomal levels
of TACSTD2 and bladder cancer [121].
Exosomal levels of miR-34a, miR-148a were signifi-

cantly reduced in the urine of prostate cancer relative to
BPH [122]. Exosomal serum MDR-1, MDR-3 and PABP4
proteins were enriched in docetaxel-resistant CRPC
patients relative to doxetaxel-sensitive patients [123].
Another study found that serum exosomal P-glycoprotein
were higher in docetaxel-resistant patients than
therapy-naïve patients [124], indicating that exosomal
P-glycoprotein may be a potential marker for doce-
taxel resistance.
Although a promising source of cancer biomarkers,

few exosomal biomarkers have been implemented into
clinical practice. This is partly due to the lack of accur-
ate isolation and detection methods. We speculate that
the development of sensitive capture platforms is likely
to trigger the introduction of novel exosomal biomarkers
into the clinic in the near future.

Challenges facing liquid biopsy
It is clear that liquid biopsies are a promising revolution
in the field of biomarker research. Although there is
great potential to influence patient care, there are a
number of biological, technical and clinical challenges
that need to be addressed before liquid biomarkers are
adopted into clinical practice. In theory, circulating mol-
ecules should reflect the tumor. However, not all tumor
loci are identical. As such, a key challenge is understand-
ing where these molecules are coming from, whether
they arise from the primary tumor or metastatic lesions.
There is also a need for an incredible amount of assay
sensitivity since these molecules are present at low levels
in biological fluids. Although this can be achieved using
next generation sequencing platforms and droplet digital
PCR (ddPCR), the amount of material collected needs to
be sufficient for analysis. Another challenge is determin-
ing whether the amount of circulating molecules in a
biological fluid is sufficient to detect minute alterations.
If not, rare alterations would be missed. Assessment of
global alterations, such as chromosomal structural in-
stability may help to overcome this. The biological fluid
selected for study should also be relevant to the clinical
question of interest. Some biological fluids are more
complex than others (blood being more complex than
urine) making analysis more challenging.

Future perspective
Circulating cancer biomarker development is a rapidly
growing field. Recent evidence suggests a real clinical
value. Table 4 provides a partial list of commercially
available tests. Although the concept of non-invasive
biomarker detection is not new, recent enthusiasm is
triggered by advances in technology. It is not surprising

Table 4 Partial list of commercially available circulating tumor markers for urologic malignancies

Test name Molecules assessed Cancer type Clinical application Biological fluid
tested

Reference

CELLSEARCH® CTC Test CTCa Prostate Prognostic for patients with
metastatic prostate cancer

Blood [44]

PROGENSA PCA3 Test lncRNA PCA3 Prostate Diagnostic for prostate cancer
patients with previous negative
biopsy (Determine need for repeat biopsy)

Urine [73]

Prostate Health Index (PHI) Protein (total PSA, free PSA,
and [-2] proPSA)

Prostate Diagnostic for prostate cancer patients
with a PSA between 4 and 10 ng/mL

Blood [94]

4KScore Protein (total PSA, free PSA, intact
PSA, and human KLK 2)

Prostate Prognostic (Assess risk for aggressive
prostate cancer)

Blood [95]

ImmunoCyt™ Test Protein (mucins and HMW
carcinoembryonic antigen)

Bladder Diagnostic for G1, G2 and G3 bladder
cancer patients with positive urine cytology

Urine [96]

Aura Tek FDP Test™ Protein (fibrin degradation
product)

Bladder Predictive of bladder cancer recurrence Urine [97]

ExoDx™ Prostate
(IntelliScore)

Exosomal RNA Prostate Prognostic for high-grade prostate cancer
at the time of biopsy and at surgery

Urine [117]

aCirculating tumor cell
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that the introduction of next generation sequencing and
ddPCR have allowed for improved detection and reduced
operating costs and time. The recent introduction of
specialized collection tubes has also contributed to this by
allowing clinical laboratories to preserve and stabilize cir-
culating molecules in blood and plasma. Although there
are examples of FDA-approved circulating markers in the
clinic, the majority of markers are still experimental. In a
recent study, it was clear that a “biomarker panel” had
improved sensitivity and specificity compared to single
markers [125]. We speculate that the shift from a single-
to multi-marker view will be instrumental in pushing the
field forward. In future, it may also be beneficial to com-
bine different levels of molecular alterations (combining
genomic, transcriptomic and proteomic) to improve
diagnostic, prognostic and predictive accuracy [126, 127].
To ensure that the path from discovery to clinical diag-
nostics continues to be successfully paved, the analytic,
diagnostic and regulatory requirements of a clinical assay
need to be understood. Furthermore, active partnerships
with industry and effective communication between
clinicians and scientists are also necessary.

Conclusions
It is clear that we are moving into an era of precision
medicine, where treatment is tailored based on tumor be-
haviour rather than the average response to therapy [128].
Molecular profiling, the global analysis of genomic, tran-
scriptomic and/or proteomic profiles, represents a critical
pre-requisite for the successful development of individual-
ized treatment strategies. Liquid biopsy is a promising
non-invasive tool for molecular profiling, enabling assess-
ment of cfDNA and other circulating molecules in various
biological fluids for biomarker discovery. So far, the most
exciting applications of liquid biopsies seem to be progno-
sis and early assessment of treatment failure.

Key points

� Molecular profiling is becoming the basis for
“precision medicine” or individualized treatment.

� Liquid biopsy is a non-invasive tool that can provide a
global snapshot of the primary and metastatic tumors.

� Circulating cell-free DNA levels, integrity, methylation
and mutational status have promising clinical
applications in the field of urological cancer
biomarker discovery.

� Circulating tumor cells, circulating RNAs (miRNA,
lncRNA and mRNA), cell-free proteins and exosomes
obtained through liquid biopsy are promising
biomarkers and can provide additional insight into
tumor biology.

� A key challenge facing liquid biopsy is understanding
where these circulating molecules are coming from,

whether they arise from the primary tumor or from
the metastatic lesion.

� The shift from a single- to multi-marker view is likely
to ensure that the path from discovery to clinical
diagnostics continues to be successfully paved.
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