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Abstract

Although metabolic alterations are one of the hallmarks of cancer, there is a lack of understanding of how metabolic
landscape is reconstituted according to cancer progression and which genetic alterations underlie its heterogeneity within
cancer cells. Here, the configuration of the metabolic landscape according to genetic alteration is examined across 7648
subjects representing 29 cancers. The metabolic landscape and its reconfiguration according to the accumulated mutation
maintained characteristics of their tissue of origin. However, there were some common patterns across cancers in terms of
the association with cancer progression. Carbohydrate and pyrimidine metabolism showed the highest positive correlation
with tumor metabolic burden and they were also common poor prognostic pathways in several cancer types. We
additionally examined whether genetic alterations associated with the heterogeneity of metabolic landscape.
Genetic alterations associated with each metabolic pathway differed between cancers, however, they were a part
of cancer drivers in most cancer types.
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Cancer cells reorganize their metabolism to fulfill their
biosynthetic requirements for tumor growth and prolifera-
tion [1]. Besides activation of aerobic glycolysis, other
metabolic pathways including nucleotide, amino acid, and
lipid metabolism are also activated in cancer cells to pro-
duce biosynthetic building blocks for malignant cellular
proliferation although the degree of metabolic activation
is diverse [2, 3]. Although recent studies have elucidated
the metabolic reprogramming of cancer cells compared
with normal tissues and its biological implications [2, 4],
the configuration of metabolic landscape according to
cancer progression in terms of tumor mutational burden
(TMB) and clinical outcome is yet unclear. Moreover, the
diversity of cancer cell metabolism is hardly explained by
the conventional analogy of genetic alteration model that
tumor metabolism simply supports tumor growth and
proliferation [5, 6]. A comprehensive understanding of

genetic alterations which underlie the heterogeneity of the
metabolic landscape of cancer cells can elucidate thera-
peutic targets in terms of cancer metabolism.
Here, we aim to investigate the metabolic landscape of

multiple cancer types and its configuration according to
the progression. We also aim to find answers for whether
there are common features in genetic alterations related
to the metabolic landscape across cancer types. An inte-
grated analysis of genomic and transcriptomic profiles of
29 different solid cancers was performed. We demonstrate
that some common metabolic pathways exhibit the close
relationship with TMB and clinical outcome across several
cancer types. We also show that genetic alterations associ-
ated with cancer metabolic heterogeneity were a part of
cancer drivers in most cancer types.

Results and Discussions
Metabolic landscape specific for cancer types
We compared the median values of metabolic signatures
manually curated considering cancer-related pathways for
each cancer type (Additional file 1: Figure S1A). Metabolic
profiles of all cancers were visualized by t-SNE [7]
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(Additional file 1: Figure S1B). Metabolic profiles of cancer
tissues were clustered according to each cancer type. Add-
itionally, metabolic profiles were closely mapped with those
of same histologic types (e.g. HNSC, LUSC, and CESC clus-
ters.) Of note, metabolic profiles of TCGT and CHOL
showed heterogeneous metabolic characteristics. TGCT
showed two large clusters, which correspond to histologic

subtypes, and CHOL showed more heterogeneous meta-
bolic profiles than others (Additional file 1: Figure S2).

Metabolic reconstitution according to mutational burden
Metabolic signatures of all samples were ordered by TMB
and presented by a heatmap (Fig. 1a). Carbohydrate me-
tabolism showed the highest correlation with TMB

Fig. 1 Pan-cancer association of tumor mutation burden and metabolic landscape. a The enrichment scores of metabolic pathways are depicted
according to total mutation burden for all samples. Cancer type is shown as different color in the barplot above the heatmap. b The correlation
coefficient for total mutation burden and each metabolic pathway is presented. Carbohydrate and pyrimidine metabolism show high positive
correlation and most of pathways related to lipid metabolism and oxidative process show negative correlation with tumor mutation burden
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Fig. 2 (See legend on next page.)
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followed by pyrimidine metabolism (Fig. 1b; p < 0.05 for
all pathways). Of note, glycolysis, the well-known cancer
metabolic feature, showed relatively weak correlation with
TMB. LUSC showed the highest carbohydrate metabolism
and TMB among 29 cancer types (Additional file 1: Figure
S3). We could find a trend of increased carbohydrate and
pyrimidine metabolism according to increased TMB
across cancer types (Additional file 1: Figure S4). Of note,
carbohydrate metabolism pathways included broad meta-
bolic pathways related to energy metabolism including
glycogen, glucose, disaccharides, pentose phosphate, and
glycosaminoglycan, thus, the association with TMB sug-
gested comprehensive changes in various energy metabol-
ism pathways. We also investigated whether cancer types
differ in the association between the metabolic landscape
and TMB. Most cancer types showed a positive correlation
between TMB and carbohydrate metabolism, while THYM
and UVM showed a negative correlation (Additional file 1:
Figure S5). Notably, TMB of these two cancer types was
relatively lower than other cancer types.

Recently, TMB has been regarded as an important pre-
dictive biomarker for cancer immunotherapy, based on the
idea that highly mutated tumors harboring more neoanti-
gens can be targets of activated immune cells [8, 9]. In this
regard, metabolic reconfiguration according to TMB can be
an additional biomarker for cancer immunotherapy as
tumor metabolism can be noninvasively and macroscopic-
ally estimated by PET. Moreover, the important metabolic
signatures of each cancer type could help us find appropri-
ate surrogate markers for PET radiotracers.

Metabolic landscape reveals prognostic pathways
Several metabolic signatures were associated with overall
survival across all cancer samples (Fig. 2a; p < 0.05 for
all pathways). In general, carbohydrate and nucleotide
metabolism were associated with poor prognosis. Specif-
ically, poor prognostic metabolic signatures include
carbohydrate metabolism, ribonucleotide synthesis, pyr-
imidine metabolism, purine metabolism, and glycolysis,
whereas good prognostic signatures include peroxisomal

(See figure on previous page.)
Fig. 2 Prognostic significance of metabolic pathways. a Hazard ratios from pan-cancer analysis of each metabolic pathways to overall survival are
shown. b The bubble plot shows the result of Cox proportional analysis for each cancer type. Only significant (p < 0.05) metabolic pathways are
shown in this plot. The size of circle represents the log-scaled hazard ratio, and the color of circle represents negative (red) or positive (blue)
prognostic significance. c, d Frequency of metabolic pathways found negative (c) or positive (d) prognostic significance

Fig. 3 Metabolic-related genes and driver gene mutation. a Carbohydrate metabolism-related genes in LGG. Each oncoplot shows the genomic
alteration of each group from LGG divided by the median enrichment scores of carbohydrate metabolism. Four genes (FUBP1, CIC, IDH1, and EGFR)
were identified as differentially mutated genes between two groups. b All metabolic-related genes in LGG. Red color represents high mutation burden
in high metabolic signature, and blue color represents low mutation burden in high metabolic signature. c Venn diagram showing the number of
metabolic-related genes and driver gene mutation for each cancer subtype
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lipid metabolism, fatty acid oxidation, and biological
oxidation.
Metabolic signatures significantly associated with prog-

nosis for each cancer type were presented in Fig. 2b. The
most common metabolic signatures significantly
associated with poor prognosis were ribonucleotide syn-
thesis (7 of 29 cancers), followed by pyrimidine, purine,
and carbohydrate metabolism (6 or 29 cancers) (Fig. 2c).
The metabolic signatures significantly associated with
good prognosis were fatty acid oxidation (6 of 29 cancers),
peroxisomal lipid metabolism, and branched chain amino
acids catabolism (5 of 29 cancers) (Fig. 2d).
In brief, the increased metabolic activity of carbohy-

drate and nucleotides in cancer was associated with poor
prognosis as well as the progression of cancer in terms
of TMB as found in previous results. Furthermore, our
results were similar with the previous report, which
showed that glycolysis, ribonucleotide, pyrimidine, and
purine metabolism were associated with poor prognosis,
and mitochondrial fatty acid oxidation and peroxisomal
lipid metabolism were associated with good prognosis
[2]. These results support the idea that the link between
biological stepwise mutational progression, metabolic
landscape reconfiguration, and clinical progression of
cancer. Accordingly, aggressive malignant phenotypes of
cancer cells obtained by accumulated mutations change
metabolic phenotypes to demand energy source repre-
sented by carbohydrate and elements for proliferation
represented by nucleotide.

Metabolism-related genetic alterations are mostly cancer
drivers
As cancer cells exhibit various metabolic landscapes
even in same cancer types, genetic alterations could
underlie this variety. We tried to examine the genetic
alterations related to the metabolic landscape of each
cancer type to investigate whether there is a common
feature in the metabolism-related genetic alterations
across several cancer types. An example of carbohydrate
metabolism-related genetic alterations of LGG is pre-
sented (Fig. 3a.) The tumors with high carbohydrate me-
tabolism showed significantly more mutations of EGFR
and fewer mutations of FUBP1, CIC, and IDH1. The
genetic alterations of LGG related to other metabolic
signatures are summarized in Fig. 3b. We defined
differentially-mutated genes of tumors for at least one
metabolic signature as the metabolism-related genes. All
metabolism-related genes of each cancer type are pre-
sented in Additional file 1: Figure S6. Seven cancer types
(CESC, DLBC, ESCA, KIRP, OV, PAAD, and READ)
showed no metabolism-related gene.
We further examined whether the metabolism-related

genes were cancer driver genes. All metabolism-related
genes of 12 cancer types (ACC, BLCA, GBM, KICH,

LIHC, LUSC, PCPG, PRAD, SARC, THCA, THYM, and
UVM) were included in cancer drivers (Fig. 3c). In other
cancer types, most of the metabolism-related genes over-
lapped with cancer drivers except STAD, COAD, and
CHOL. The metabolism-related genes of CHOL did not
overlap with cancer drivers. Notably, metabolic profiles
of CHOL were highly heterogeneous (Additional file 1:
Figure S2) as a previous result. STAD and COAD
showed a large number of the metabolism-related genes
than other cancer types. Since they are known to include
tumors with MSI which is associated with hypermuta-
tion [10, 11], we examined the relationship between
metabolic profiles of the two cancer types and MSI sta-
tus. As shown in Additional file 1: Figure S7, tumors
with high metabolic signatures including pyrimidine
metabolism and glucose metabolism were clustered in
those with MSI.
According to the results, cancer transcripts and pro-

tein networks consisting of metabolic pathways may be
changed by cancer drivers instead of alterations of genes
participated in the networks. It corresponds to the
Darwinian selection of cancer cells which carry driver
mutations facilitate cellular survival and growth by chan-
ging a favorable metabolic landscape [12]. The results
also suggest that the metabolic change as a hallmark of
cancer may be one of the tumorigenesis processes
caused by genetic alterations rather than an independent
process.

Conclusions
Among several metabolic signatures, carbohydrate me-
tabolism representing overall nutrient demand and
nucleotide metabolism showed the closest association
with TMB and clinical outcome. Genetic alterations
closely associated with metabolic heterogeneity were a
part of cancer drivers in most cancers rather than genes
affiliated to metabolic pathways. It supports the role of
cancer drivers in the evolution process in constituting
metabolic landscape appropriate for tumor growth. Our
database of the metabolic landscape (https://choih.shi-
nyapps.io/metabolicsignatures) according to cancer type
and its reconstitution according to cancer progression
can contribute to developing appropriate diagnostics and
therapeutics targeting metabolism for cancer subtypes.

Additional file

Additional file 1: Materials and methods, supplementary figures and
supplementary tables. (PDF 1650 kb)

Abbreviations
MSI: Microsatellite instability; TCGA: The Cancer Genome Atlas; TMB: Tumor
mutation burden; t-SNE: T-Distributed Stochastic Neighbor Embedding
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Abbreviations for cancer type
ACC: Adrenocortical carcinoma; BLCA: Bladder urothelial carcinoma;
CESC: Cervical and endocervical cancers; CHOL: Cholangiocarcinoma;
COAD: Colon adenocarcinoma; DLBC: Diffuse Large B-cell Lymphoma;
ESCA: Esophageal carcinoma; GBM: Glioblastoma multiforme; HNSC: Head
and Neck Squamous Cell Carcinoma; KICH: Kidney Chromophobe;
KIRP: Kidney renal papillary cell carcinoma; LGG: Brain low grade glioma;
LIHC: Liver hepatocellular carcinoma; LUSC: Lung Squamous Cell Carcinoma;
OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma;
PCPG: Pheochromocytoma and Paraganglioma; PRAD: Prostate
adenocarcinoma; READ: Rectum adenocarcinoma; SARC: Sarcoma;
STAD: Stomach adenocarcinoma; TCGT: Testicular Germ Cell Tumors;
THCA: Thyroid carcinoma; THYM: Thymoma; UVM: Uveal Melanoma

Abbreviations for genes
CIC: Capicua Transcriptional Repressor; EGFR: Epidermal growth factor
receptor; FUBP1: Far Upstream Element Binding Protein 1; IDH1: Isocitrate
dehydrogenase 1
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