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Abstract

Although solid tumors comprise malignant cells, they also contain many different non-malignant cell types in their
micro-environment. The cellular components of the tumor stroma consist of immune and endothelial cells combined with
a heterogeneous population of stromal cells which include cancer-associated fibroblasts. The bi-directional interactions
between tumor and stromal cells therefore substantially affect tumor cell biology.

Herein, we discuss current available information on these interactions in breast cancer chemo-resistance. It is acknowledged
that stromal cells extrinsically alter tumor cell drug responses with profound consequences for therapy efficiency, and it is
therefore essential to understand the molecular mechanisms which contribute to these substantial alterations because they
provide potential targets for improved cancer therapy. Although breast cancer patient survival has improved over the last
decades, chemo-resistance still remains a significant obstacle to successful treatment.

Appreciating the important experimental evidence of mesenchymal stromal cells and cancer-associated fibroblast
involvement in breast cancer clinical practice can therefore have important therapeutic implications.
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Introduction
Breast cancer is the most frequent cancer diagnosed in
women, and is one of the greatest causes of global female
death. In addition, the American Cancer Society reports
this is 25% of all new cancer diagnoses in women
world-wide (American Cancer Society, Cancer Facts and
Figs. 2017). Breast cancer is a heterogeneous disease clas-
sified in the following three main groups based on
immuno-histochemical analysis: (I) estrogen receptor
ER(a)-positive, (II) human epidermal growth factor recep-
tor Her2 positive and (III) triple negative (ER(a)-negative,
progesterone receptor (PR) negative and Her2-negative.
Further sub-typing is based on gene expression profiling
which unraveled the gene cluster which is mostly
expressed in luminal breast cells, myo-epithelial basal cells
and cells associated with increased expression of Her2.
These sub-types are named “luminal-like, basal-like
and Her2-enriched” [1], and the profiling also identified
clinically important sub-types in these three molecular
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groups. For example, the luminal A and B subtypes in-
duce different patient prognosis, where patients carrying
the luminal B tumor type have worse prognosis [2, 3]
and the basal-like and claudin'" subtype express mesen-
chymal markers such as vimentin. While this is present
in epithelial tumors, it is not a component of normal
breast tissue [4].

However, tumor cells alone do not drive tumor growth
or progression. Despite early detection and increased
knowledge of breast cancer biology, approximately 30% of
patients with breast cancer experience recurrence. The re-
lapse usually occurs in patients with adenocarcinoma cells
with chemo-resistant phenotype; and while this was previ-
ously linked to tumor cell genetic alterations, it is now ac-
knowledged that adjacent tissue surrounding tumor cells
has an important role in tumor progression and resistance
[5]. It is also evident that many “normal” cells add to
tumor diversity by varying the micro-environment com-
position, stromal cell proportions and/or activation states.

In addition to malignant cells and various non-malignant
cell populations, solid tumors also contain an extra-
cellular matrix (ECM) which forms a complex tumor
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micro-environment (TME) or tumor stroma. These
stromal cells, ECM, soluble factors and the physical
state of the tumor microenvironment all affect solid
tumor behavior in a complex manner [6]. Moreover,
TME is now considered a hallmark of cancer biology
[7], and researching the molecular characteristics and
interactions between TME components and tumor
cells is expected to produce important knowledge for
developing new therapeutic approaches.

Tumor drug responses are not exclusively determined by
the tumor cell’s intrinsic characteristics because tumor-asso-
ciated stromal cells, including fibroblasts, mesenchymal
stromal cells (MSCs), immuno-inflammatory cells, vascular
endothelial cells and the ECM combine in response to
anti-cancer treatment. These components influence the pro-
liferation, invasion and metastasis of tumor cells [8], and the
adjacent adipose tissue provides a rich source of MSCs
which significantly contribute to stromal constituents in the
breast cancer tumor micro-environment.

Many experimental studies have also confirmed that
MSCs interact with breast cancer cells. They possess
“homing ability” to breast cancer tissue and release
growth factors which consequently promote migration
and epithelial-to-mesenchymal transition (EMT). How-
ever, different reports on MSCs’ influence on chemo-
therapy response have produced contradictory findings,
and while some studies have reported that MSCs con-
tribute to increased breast cancer cell chemo-resistance
[9-12], our results indicate that MSCs may even act as a
drug sensitizer [13, 14].

To improve insight into tumor development and che-
motherapeutic approaches, it is most important to
understand the interplay between specific TME compo-
nents, the associated cellular communication processes
and resultant interactions of this network between can-
cer cells and the various tumor-associated cell popula-
tions. Here, we focus on the molecular communication
between stromal cells, mainly MSCs and breast cancer
cells, and the cell-to-cell signaling role and its effect on
chemotherapy efficiency.

Cellular components of stroma in breast tumors

Tumor tissue is a heterogeneous mixture of cells, where
cancer cells are surrounded by disorganized blood ves-
sels formed by endothelial cells, lymphatic vessels, infil-
trated immune cells (T cells, natural killers (NKs) and
macrophages), adipocytes, fibroblasts and MSCs. Some
of these cells exist in the tissue before tumor develop-
ment and others are recruited to the micro-environment
by the tumor cells [15, 16]. TME heterogeneity depends
on location within the tumor, and TME cells located at
the tumor periphery can significantly differ from cell
types at the tumor core [17]. This is due to randomly
generated mutations in the tumor cells, immune cell
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infiltration, tumor cell necrosis and interstitial pressure
[18]. While each tumor has unique TME, critical TME
components and their role in tumor progression remain
similar in different cancers. Bi-directional communica-
tion between cells and their micro-environment is ne-
cessary for normal tissue homeostasis. However, it is
also required for tumor growth, and therefore inter-
action between cancer cells and the surrounding stroma
is an important relationship that alters all cell pheno-
types, proliferation and metabolism. This communica-
tion also affects disease initiation and progression; and
thus influences patient prognosis [19, 20].

This review specifically focuses on novel findings in
the contribution of MSCs and cancer-associated fibro-
blasts (CAFs) in breast cancer chemo-resistance. Al-
though the link between MSCs and CAFs remains
undetermined, recent studies suggest they may have
similar characteristics and pro-tumorigenic activity. In
contrast, however, Su et al. found no overlap between
these components [21, 22].

Mesenchymal stromal cells

Mesenchymal stem/stromal cells are multipotent
spindle-shaped cells first described in the 1960’s as
hematopoietic bone marrow supportive cells [23, 24].
Multiple populations of MSCs have now been derived
from the plethora of adult and fetal tissues reviewed by
Ullah and colleagues [25].

The term “mesenchymal stem cells” was popularized
by Arnold Caplan many years later, in the belief that
they can give rise to bone, cartilage, tendon, ligament,
marrow stroma, adipocytes, dermis, muscle and con-
nective tissue [26]. The International Society for Cellular
Therapy (ISCT) recommended the term “multipotent
mesenchymal stromal cells” because support for their
“stemness” in vivo was lacking [27] and it further pro-
posed minimum criteria to define MSCs [28]. The ex-
pression of negative surface marker CD34, however,
remains controversial [29].

These characteristics are valid for all MSCs, but some
differences still exist in isolates derived from various tis-
sue types. Many studies reported additional MSC
markers dependent on aspiration source. For example,
stromal precursor antigen-1 (Stro-1) was identified as a
“stemness” marker for the MSCs [30] and dental [31]
and bone marrow-derived MSCs (BM-MSCs) [32] were
reported to be Stro-1 positive while the adipose
tissue-derived (AT-MSCs) are negative [33].

BM-MSCs and AT-MSCs share many important char-
acteristics and few differences [34]. The AT-MSCs are
more genetically stable in long-term culture, have lower
senescence ratio, higher proliferative capacity and retain
their differentiation potential for a longer period in cul-
ture than BM-MSCs [35]. In addition, AT-MSCs support
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haematopoiesis both in vitro and in vivo more efficiently
than the BM-MSCs [36], and they also have significantly
higher angiogenic potential [37]. Moreover, higher num-
bers of AT-MSCs are easily isolated from subcutaneous
adipose tissue aspirate. This operation can be repetitive
utilizing liposuction with minimal invasiveness, thus ren-
dering this an attractive MSC source [38].

Defined by their ability to differentiate into multiple
stromal cell lineages, the MSCs can be found in most
body parts and they can migrate throughout the organ-
ism and into tumor tissue [39]. Therefore, tumors are
sometimes considered “wounds that do not heal” be-
cause of chronic inflammation, immune cell infiltration
and neo-vascularization [40]. Migration of MSCs to in-
jury enables TME to recruit these cells by releasing in-
flammatory molecules, growth factors and cytokines.
Although they preferentially “home and engraft” in tu-
mors from the bone marrow, which is the major MSC
reservoir, they also emanate from surrounding adipose
tissue.

In addition, MSCs in TME can easily differentiate into
CAFs [41], and MSC-like CAFs that express FSP and
FAP [42] originate from BM-MSCs whereas the
AT-MSCs mainly differentiate into vascular and
fibro-vascular stromal cells [43, 44]. Here, it is also im-
portant to note that normal healthy tissues have almost
no detectable FAP expression.

MSC migration to tumors leads to cellular interactions
with tumor cells and TME components. This occurs
both directly through gap junctions, membrane recep-
tors and nanotubes and indirectly by soluble molecules
[45]. The MSCs stimulate adjacent cells by releasing
endocrine and paracrine signals. In turn, MSCs can be
stimulated by tumor cells and develop an aberrant
tumor-associated phenotype [46]. Consequently, they ei-
ther promote or inhibit tumor cell growth [47, 48].

Reduction of tumor growth by MSCs can be mediated by
inhibiting angiogenesis, suppressing the Wnt and AKT sig-
naling pathways or inducing cell cycle arrest and apoptosis
[46, 47, 49]. Thus, aberrant tumor-associated MSCs can ac-
quire different functions after interaction with tumor cells.
These include TGF-B secretion which contributes to both
EMT and immune system suppression. Moreover, these
MSC:s release VEGF for neo-vascularization in the TME and
produce CXCL12 to support tumor cell growth and survival
[50]. While P2X signaling was recently identified as a path-
way favoring MSCs-mediated breast cancer cell proliferation
[51], high IFN-B expression suppresses human breast cancer
cell growth [52]. Therefore, TME MSCs have either pro- or
anti-tumorigenic properties depending on the cancer cell
properties and the experimental settings [53].

Bartosh et al's seminal research identified the remark-
able phenomenon of cancer cell cannibalism and the ac-
quired senescence-associated secretory phenotype (SASP).
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The authors discovered that breast cancer cells in 3D
co-cultures entered dormancy after internalizing and de-
grading human BM-MSCs. The cannibalistic breast cancer
cells then became highly resistant to chemotherapy and
other stresses caused by nutrition deprivation. Most inter-
estingly, these secreted SASP factors enabled dormant
breast cancer cells to communicate with the various TME
components [54].

MSCs provide a promising tool for many types of
anti-tumor therapies because of their role in the TME;
and this was comprehensively summarized in Valken-
burg et al [55].

Fibroblasts in breast cancer

Fibroblasts are non-vascular, non-inflammatory, non-epi-
thelial cells in connective tissue. They secrete the extracel-
lular matrix (ECM) and basement membrane components,
regulate epithelial cell differentiation, modulate immune
system responses and maintain homeostasis [56]. Activated
fibroblasts are termed “cancer-associated fibroblasts”
(CAFs), and they are major stromal cells contributing to
the TME. When activated by direct contact with leukocytes
or secreted factors, including TGF-B, PDGE, FGF2, EGF
and CXCL12 [57], CAFs promote tumor growth, increase
angiogenesis, degrade ECM to release signaling mole-
cules and promote EMT and metastasis [56].
Although CAFs were first considered tumor develop-
mental elements lacking effect on cancer cells, they
have since been identified as essential components of
tumor progression [58].

The CAFs can be derived not only from normal fibro-
blasts, but also from other types of cells, including
MSCs, epithelial cells, pericytes, adipocytes and endothe-
lial cells [59]. An interaction between tumor-induced
fibroblast activation and fibroblast-induced tumor prolif-
eration and metastasis has been proven, thus it can be
concluded that CAFs act as tumor supporters [60].

CAFs are present in the TME in aberrantly high num-
bers and differ from normal fibroblasts in many mor-
phological and biological ways. CAFs are functionally
defined by intensive proliferation and high ECM depos-
ition, and further acknowledged as “activated myofibro-
blasts that cannot regress to an inactivated state” [61].

The CAFs exhibit differential gene expression of several
factors compared to normal fibroblasts. Membrane pro-
tein FAPa, selectively expressed in activated CAFs, is one
of the most important markers of these cells [62], and
FSP-1, podoplanin-a, SI00A4 protein, vimentin and PDGF
receptors a and P are also highly expressed in CAFs [63].
Most recently, the IGFBP7 protein has been identified
as a novel biomarker of tumor fibroblasts. IGFBP7-ex-
pressing CAFs have been demonstrated to promote
colon cancer cell proliferation through paracrine
tumor-stroma interactions in vitro [64]. In addition,
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TGF-B2 expression in CAFs was previously identified
in metastatic colon cancer [65].

In summary, 46 differentially expressed genes regu-
lated by the transforming growth factor (TGF)-p signal-
ing pathway were identified in CAF cell lines compared
to normal fibroblast cell lines [66]. All these genes en-
code for paracrine factors released into the TME. More-
over, numerous altered gene transcripts have been
identified in breast CAFs, including ribosomal protein
S6 kinase o3, FGF receptor 1, nardilysin and
cyclin-dependent kinase inhibitor 1B [67].

Su et al. also recently identified the CD10 and GPR77
fibroblast-associated cell-surface molecules not previ-
ously described. These specifically define a CAF
sub-population which promotes chemo-resistance and
cancer formation in breast and lung cancer patients.
CD10"GPR77" CAFs secrete abundant interleukins IL-6
and IL-8 which provide a survival niche for cancer stem
cells (CSCs) via continuous NF-kB signaling. Although
most CAFs are relatively genetically stable, and therefore
present a potential therapeutic target with lower risk of
developing chemo-resistance [68], increasing data sug-
gests that fibroblasts’ protective role enables cancer cells
to evade the cytotoxic effects of chemotherapy. For ex-
ample, HGF has been identified as an essential factor in
the CAF-mediated resistance to lapatinib in HER2+
breast cancer [69]; and CAFs may also act as a physical
barrier against anti-tumor drugs and decrease their
availability to tumor cells.

Chemo-resistance in breast cancer and association with
“stemness” phenotype

Chemo-resistance can be an intrinsic and inherent fea-
ture of tumor cells, where this is often associated with
their quiescent state prior to treatment. In contrast, ac-
quired resistance occurs despite initial positive response
to therapy [70]. There are many mechanisms of resist-
ance that include different involved cells and signaling
pathways; dependent on the cancer type (Fig. 1).
Up-regulation of the cancer stem cell phenotype can be
critical in resistance to a variety of drugs in cancer treat-
ments; including breast cancer treatment [71]. CSCs
have increased capacity to actively export many drugs
from cells by over-expressing ATP-binding cassette
(ABC) drug transporter proteins. Moreover, CSCs have
higher anti-apoptotic gene expression and a more effect-
ive DNA repair system [72].

The TME provides shelter for CSCs; thus inducing
therapy resistance and tumor development. However,
traditional cancer treatments, including the majority of
chemotherapeutic agents and radiation, target actively
dividing cells, and while they reduce tumor mass, they
do not effectively remove quiescent cells such as CSCs.
This can lead to tumor recurrence. For example, breast
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CSCs have paclitaxel resistance [73], and also decreased
ROS expression which is critical in inducing DNA dam-
age by ionizing radiation [74], but the TME blocks drug
penetration and suppresses immune system responses
[75]. Herein, we focus on the mechanisms involved in
acquired chemo-resistance mediated by stromal cells in
breast tumor TME. This is tightly linked to their mutual
interactions and the “stemness-phenotype-support”
exerted by MSCs and CAFs.

Chemo-resistance mediated by mesenchymal stromal
cells

MSCs usually interact with breast CSCs through IL-6 and
CXCL7 cytokine secretion. This signaling is responsible
for the self-renewal potential of breast CSCs. Cytokines
such as SDF-1 (CXCL12) produced by CAFs can also pro-
mote the proliferation of cancer cells carrying the SDF-1
receptor CXCR4; where SDF-1 expression-level correlates
with breast cancer survival [76].

Multiple signaling pathways have been ascribed to the
MSC- and CAF-mediated drug resistance in breast can-
cer, and these are often associated with induction of the
“stemness” phenotype. Moreover, the protective effect of
MSCs on breast cancer cells against cytotoxic drugs ap-
pears to need both secretory proteins and direct
cell-to-cell interaction (Fig. 2). Here, IL-6 has an import-
ant role in acquired breast cancer chemo-resistance
through its secretion by MSC which promotes great im-
pact on the stimulation of ERa-positive breast cancer
cell proliferation [77, 78]. In addition, IL-6 has proven
protective effect against paclitaxel and doxorubicin in
ERa-positive breast cancer [9, 79], and also against tras-
tuzumab in Her-2 positive tumors [80]. However, IL-6
released by breast cancer cells mediates “homing” of
MSCs into primary tumor sites, and then interacts with
its MSC receptor to induce MSC CXCL7 secretion.
These cytokines work together to provide chemokine
networks that influence CSCs to promote resistance to
anti-cancer drugs [81].

The MSC secreted CXCL1 cytokine enhances expres-
sion of ABCG2 by altered miR-106a expression in triple
negative breast cancer cells. ABCG2 is also known as
the breast cancer resistance protein (BRCP) and it is the
ATP-binding cassette transporter protein responsible for
the efflux of doxorubicin, and causes resistance to this
drug [11]. Similarly, IL-8 secreted by MSCs increases
ABCG2 expression. This results in reduced intracellular
doxorubicin accumulation in triple negative breast can-
cer cells [10].

MSCs also produce abundant levels of transforming
growth factor p (TGF-f) and this signaling pathway can
trigger epithelial to mesenchymal transition (EMT).
Thus, TGE-B contributes to the MSC drug protective ef-
fect by inducing EMT. MSCs can also promote EMT by
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accumulation; and hyaluronan excess in breast tumor
stroma induces doxorubicin resistance [83].

The importance of cell-to-cell interaction between
MSCs and breast cancer cells in acquired drug resistance
is highlighted by MSC presence inducing over-expression
of HER-2 and loss of PTEN. This indicates that MSCs
regulate HER-2 receptor and PTEN tumor suppressor
interaction in breast cancer cells by activating Src which
induces subsequent PTEN inactivation. Therefore, Src
and its downstream PI3K/Akt signaling pathway enhance
resistance to trastuzumab [85].

Further recent study has shown that MSCs induce in-
creased expression of PAG1/Cbp; a transmembrane
adaptor protein which enhances resistance to adriamycin
hydrochloride (ADMh) [86]. PAG1/Cbp is ubiquitously
expressed in lipid rafts and is significantly involved in
many signaling pathways that include Src-associated sig-
naling and the AKT/mTOR pathway. Activation of Cbp
leads to activation of Src and thus it can enhance resist-
ance to ADMh; and most likely also to trastuzumab.

MSCs also secrete factors which protect carcinoma
cells against platinum-based chemotherapeutics [87].
These include two types of polyunsaturated fatty acids
(PUFAs), 12-ox0-5,8,10-heptadecatrienoic acid (KHT)
and hexadeca-4,7,10,13-tetraenoic acid (16:4(n-3)). In
minute quantities, these both induce resistance to a
broad spectrum of chemotherapeutic agents. Central en-
zyme blocking involved in the production of these
PUFAs (cyclooxygenase-1 and thromboxane synthase)
prevents MSC-induced resistance. These combined find-
ings show that MSCs are potent mediators of resistance
to chemotherapy and important targets in enhancing pa-
tient treatment efficacy [12].

In addition to the above-stated molecular mechanisms,
drug resistance is also mediated by exosomes derived from
MSCs. These small cell-derived vesicles contain miR-23b;
an miRNA inhibiting myristoylated alanine-rich C-kinase
substrate (MARCKS). This is a prominent cellular sub-
strate for protein kinase C, and its inhibition leads to
breast CSC dormancy in the metastatic niche, and thereby
to docetaxel treatment resistance [88].

However, there is also evidence that MSCs can not al-
ways protect tumor cells against cytotoxic drugs. Their
protective activity depends on the type of the drug and
also on the type of cancer cell. In addition, some reports
suggest that MSCs can act as drug sensitizers. For ex-
ample, BM-MSCs can sensitize breast cancer cell lines to
kinase inhibitors [89], and AT-MSCs are able to render
Her-2 positive breast cancer cells more sensitive to doxo-
rubicin and 5-fluorouracil [13]. Interestingly, while some
cancer cell lines react to MSCs by cell cycle arrest, others
display higher proliferation activity in their presence [8,
90, 91]. Hence, cell cycle arrest is a potent mechanism en-
abling cancer cells to escape cytotoxic drug effects.
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Conclusions

Future cancer therapy success depends on thoroughly
understanding the many complex mechanisms involved,
and establishing the pathways prominent in resistance to
anti-cancer treatment. Developing methods of targeting
them is then essential. There is also rapidly increasing
research on the tumor micro-environment (TME) and
its role in chemo-resistance acquisition, subsequent
treatment failure and cancer recurrence. It is therefore
critical that the TME is acknowledged as an important
cancer-target strategy, and that further TME investiga-
tion is initiated.

While the TME in all breast cancer sub-types acts
through a network of secreted molecules, adipose tissue
is most important in mediating communication between
the TME and breast cancer cells because especially in
the breast it forms a major part of the tumor environ-
ment. Therefore mesenchymal stromal cells from adja-
cent adipose tissue, and especially the cancer-associated
fibroblasts in the tumor-microenvironment, are of ut-
most importance in processes associated with cancer
progression and resistance to therapy.

Finally, recent research stresses that stromal-cell-medi-
ated protection against cytotoxic drugs requires both
secretory proteins and direct cell-cell interactions. There-
fore, further research into these processes is anticipated to
provide better understanding of their effects on therapy re-
sistance and hasten the design of effective therapeutic strat-
egies and personalized regimens for breast-cancer patients.
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