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Intercellular communication between cellular compartments within the tumor and at distant sites is critical for the
development and progression of cancer. Exosomes have emerged as potential regulators of intracellular communication
in cancer. Exosomes are nanovesicles released by cells that contain biomolecules and are exchanged between cells.
Exchange of exosomes between cells has been implicated in a number of processes critical for tumor progression and
consequently altering exosome release is an attractive therapeutic target. Here, we review current understanding as well
as gaps in knowledge regarding regulators of exosome release in cancer.

Background

Exosomes have emerged as critical regulators of cell-cell
communication. Exosomes are 40—-150 nm extracellular
vesicles that are generated by all cells and exchanged
between cells. Inward budding of the late endosomal
membrane encapsulates biomolecules and generates
intraluminal vesicles (exosomes) within multivesicular
bodies (MVB) [1]. MVBs then fuse with the plasma
membrane to release exosomes into the extracellular en-
vironment [1]. Exosomes are typically characterized by
their size and expression of exosome marker proteins,
including CD63, CD81, and CD9 (Fig. 1). Essentially all
cell types have been shown to release exosomes in
culture [2-14].

Studies have shown ceramide and neutral sphingomye-
linase, which converts sphingomyelin into ceramide, is
critical for the formation of the intravesicular membrane
of MVBs [15]. In dendritic cells, a number of compo-
nents of the endosomal sorting complex required for
transport (ESCRT), including Hrs, signaling transducing
adaptor molecule (STAMI), and tumor susceptibility
gene 101 (TSG101), are involved in exosome secretion
[16]. Syndecan has also been implicated in exosome se-
cretion through its interaction with syntenin, Alix, and
several ESCRT proteins [17]. In contrast, cells depleted
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of ESCRT-0, I, II, and III complexes retained the ability
to form MVBs [18], suggesting MVB biogenesis can
occur independently of ESCRT in some contexts.

In addition to regulating exosome release, ESCRTs are
thought to be involved in packaging of biomolecules into
exosomes. ESCRT proteins are involved in packaging of
lipids and ubiquitinated proteins into MVBs [19].
Higher-order oligomerization and anchoring of proteins
to the plasma membrane is also associated with protein
packaging into exosomes [20, 21]. CD63 is involved in
ESCRT-independent sorting of premelanosome protein
(PMEL) into the intraluminal vesicles of MVBs [22],
suggesting there are both ESCRT-dependent and inde-
pendent pathways of protein sorting in MVBs. How-
ever, it is unclear if these MVBs are targeted for
degradation in the lysosome or fuse with the cell
membrane to release exosomes.

Exosomes are rich in RNA cargo and studies have
sought to elucidate the mechanisms regulating RNA
loading in exosomes. Many species of RNA are present
in exosomes, including microRNA (miRNA), messenger
RNA (mRNA), vault RNA, Y-RNA, ribosomal RNA
(rRNA) and transfer RNA (tRNA) [23-26]. Preferential
accumulation of certain RNA species appears to occur
within exosomes [27], suggesting RNA packaging is not
random but rather mechanisms exist to package specific
RNAs into exosomes. The RNA processing protein
Y-box protein 1 has been implicated in packaging of
some miRNA [27] and non-coding RNA [26] into
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Fig. 1 Exosome markers and contents. Common exosome markers include tetraspanins (CD9, CD63, and CD81), flotillin-1, integrins, major
histocompeatibility complex (MHC) I and I, Hsp70, TSG101, and Alix. Exosomes also contain other proteins, different species of RNA, and DNA
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exosomes. Heterogeneous nuclear ribonucleoprotein
A2B1 (hnRNPA2B1) has also been implicated in miRNA
packaging in exosomes through its recognition of
miRNA sequence motifs [28]. Breast cancer cell-derived
exosomes contain components of the RNA-induced si-
lencing complex (RISC)-loading complex, including
Dicer, argonaute-2 (Ago2), and TAR RNA binding pro-
tein (TRBP), associated with miRNA [29], which may be
an additional mechanism of RNA loading in exosomes.
It remains unknown if the aforementioned pathways are
broadly applicable to RNA packaging or if additional
mechanisms exist to regulate RNA loading in exosomes.

In addition to containing RNA species, exosomes also
contain several types of DNA. Mitochondrial DNA
(mtDNA) [30-32], single-stranded DNA (ssDNA) [33],
and double stranded DNA (dsDNA) [34—36] have been
detected in exosomes. DNA incorporated in exosomes
can be transferred to and have functional consequences
in recipient cells transiently [37]. Exosomal DNA can be
transferred to and activate dendritic cells in a stimulator
of interferon genes (STING)-dependent manner [38].
While treatment with an epidermal growth factor recep-
tor (EGFR) [39] or topoisomerase-I inhibitors [38] in-
creases DNA packaging into exosomes, the precise
mechanisms controlling DNA packaging in exosomes re-
main to be determined.

Exosomes contain a variety of biomolecules, including
DNA, mRNA, miRNA and proteins [40, 41], and can be
exchanged between cells. The tumor microenvironment
consists of a number of recruited cells that interact to
regulate tumor progression and metastasis. As a result,
exosomes have emerged as critical regulators of inter-
cellular communication in cancer. Here, we discuss

the role of exosomes in cancer and mechanisms con-
trolling their release.

The function of exosomes in cancer progression and
metastasis

Tumors have been described as wounds that do not heal
due to the chronic inflammatory response observed in
tumors [42]. Cancer cells evolve to promote tumor
growth and evade immune recognition through intercel-
lular interactions within the tumor microenvironment
(Fig. 2). Exosomes derived from breast cancer cells sup-
press natural killer (NK) cells in vitro [43] and recruit
neutrophils to tumors in vivo [44]. Tumor-derived exo-
somes induce proliferation and expression of STAT3 in
myeloid-derived suppressor cells (MDSCs) through
Hsp72 [45]. MDSCs are able to inhibit T-cell activation,
so exosomes may act to induce immunosuppression
through the expansion and activation of MDSCs. Den-
dritic cell-derived exosomes contain major histocomp-
ability complex class I and class II molecules along with
T-cell costimulatory molecules, allowing them to func-
tion in antigen presentation [46]. Similarly, tumor cell
exosomes contain and deliver antigens to dendritic cells
for cross-presentation [47]. While these studies suggest
tumor cell exosomes can indirectly affect T cell function,
tumor exosomes containing Fas ligand can also directly
induce CD8" T-cell apoptosis [48]. In addition, PD-L1 is
packaged in melanoma, glioblastoma and breast cancer-
derived exosomes and is thought to contribute to im-
munosuppression and lack of response to PD-1 blockade
[4, 49, 50]. Collectively, these studies implicate exosomes
as mediators of immune regulation in tumors.
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Fig. 2 The role of tumor and stromal cell-derived exosomes in cancer. Reported effects of tumor-cell derived exosomes on stromal cells and vice
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The inflammatory tumor stroma is typically also char-
acterized by an accumulation of activated fibroblasts.
Interactions between tumor cells and fibroblasts are crit-
ical for multiple stages of tumor progression [51].
Tumor cell-derived exosomes initiate fibroblast activa-
tion through transfer of transforming growth factor
(TGE-B) [52, 53]. Activated fibroblasts can then recipro-
cally secrete exosomes containing metabolites which are
transferred to cancer cells and reprogram recipient cell
metabolism [8]. In addition, fibroblast-derived exosomes
can contribute to chemoresistance by increasing the can-
cer stem cell pool [54] and promote cancer cell invasion
through mobilization of Wnt11 [55]. While most studies
have reported fibroblast exosomes as being tumor-pro-
moting, in vivo fibroblast subsets are likely to have both
tumor-promoting and tumor-suppressive functions [51];
thus, the role of fibroblast exosomes on cancer progres-
sion is likely context-dependent. The function of exo-
somes from other tumor stromal populations is not well
characterized, though in pancreatic cancer it has been
demonstrated that macrophages transfer miRNA
through exosomes to induce gemcitabine resistance,
which can be reversed by inhibiting exosome secretion
in macrophages [3].

Exosomes have also been implicated as critical regula-
tors of communication between primary tumor cells and
distant sites. Exosome secretion is critical for the forma-
tion of invadopodia and invasive behavior of breast can-
cer cells, which may aid in the escape from the primary
tumor site [56]. In addition, migratory and invasive be-
havior can be transferred to non-invasive cells through
exosomes [57]. In vivo, uptake of exosomes derived from

metastatic cells in cells with lower metastatic capability
is associated with transfer of metastatic potential [58].
Inhibition of exosome secretion through knockdown of
Rab27A is associated with decreased tumor growth and
metastasis in metastatic breast cancer and melanoma
models [44, 59]. Rab27A is reported to have functions
outside of exosome release, namely in MMP9 secretion
[44]; thus, it remains difficult to discern exosome-
dependent from exosome-independent effects on tumor
progression. Injection of exosomes derived from meta-
static cancer cell lines initiates formation of the pre-
metastatic niche through recruitment of bone marrow-
derived cells and induction of vascular leakage in melanoma,
pancreatic cancer, and breast cancer models [5, 59-61].
Integrins in exosomes are also associated with metastatic
organotropism, specifically oy is associated with lung
metastasis and «, is associated with liver metastasis
[5], suggesting exosomal integrins can predict meta-
static site. While these studies suggest exogenously
provided exosomes are critical for metastasis, it is un-
clear if they accurately recapitulate native release of
exosomes from tumor cells.

Canonical regulators of exosome secretion: nSMase2 and
Rab proteins

Based on the numerous ways exosomes contribute to
tumor progression, targeting exosome secretion has
emerged as an attractive therapeutic target and has been
studied in numerous contexts (Tables 1 and 2). Early
studies of exosome release identified ceramide as a regu-
lator of exosome secretion. Ceramide is involved in the
inward budding of endosomes to form multivesicular
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Table 1 Small molecules and their effect on exosome release in cancer cells

Treatment Effect on exosome secretion Cancer cell type
GW4869 Decreases Bladder cancer cells (T24) [63]
No effect Epidermal cancer cells (A431) [39]
Liver cancer cells (Huh7) [64]
Melanoma cells (B16BL6) [65]
Multiple myeloma cells (OPM2) [62]
Head and neck squamous cell carcinoma cells (SCC61) [56]
Prostate cancer cells (22RV1 and PC3) [66]
Head and neck squamous cell carcinoma tumors (MEERL) [67]
Breast cancer cells (MDA MB 231) [49]
Prostate cancer cells (PC3) [70]
C6 ceramide Increases Multiple myeloma cells (OPM2) [62]
Hypoxia Increases Breast cancer cells (MCF7, SKBR3 and MDA MB 231) [80]
Shikonin Decreases Lung cancer cells (A549) [83]
Acidic pH/ protein pump inhibitors Increases Melanoma cells (Mel1-Mel3, Me665/1, MelP1-MelP3 and WM983A) [84, 85]
Tunicamycin Increases Cervical cancer cells (HeLa) [90]
Monensin Increases Leukemia cells (K562) [94]
Irradiation Increases Prostate cancer cells (LNCaP, 22Rv1 and DU145) [97]
UV radiation Increases Colon cancer cells (HCT116) [99]
Doxorubicin Increases Prostate cancer cells (PC3) [100]
Photodynamic treatment Increases Prostate cancer cells (PC3) [100]
Tipifarnib Decreases Prostate cancer cells (C4-2B) [106]
Melphalan Increases Multiple myeloma cells (SKO-007) [102]
Cl-1033/ PF-00299804 Increases Glioma cells (U373) [39]
Manumycin A Decreases Prostate cancer cells (C4-2B) [66]

Table 2 Genetic manipulation of exosome release in cancer cells

Gene Effect on exosome secretion Cancer cell type
RAB27A Knockdown decreases Cervical cancer cells (HeLa) [6]
Breast cancer cells (4 T1 [44], TS/A [44], and MDA MB 231 [56,75])
Bladder cancer cells (T24 and FL3) [63]
Head and neck squamous cell carcinoma cells (SCC61 [56, 76] and mEERL [67])
RAB27B Knockdown decreases Cervical cancer cells (Hela) [6]
Bladder cancer cells (T24 and FL3) [63]
Head and neck squamous cell carcinoma cells (mEERL) [67]
PIKfyve Knockdown increases Prostate cancer cells (PC3) [74]
Hrs Knockdown decreases Head and neck squamous cell carcinoma cells (SCC61) [56]
Syt7 Knockdown decreases Head and neck squamous cell carcinoma cells (SCC61) [56]
Cortactin Knockdown increases, overexpression decreases Head and neck squamous cell carcinoma cells (SCC61) [76]
STAT3 Knockdown decreases Ovarian cancer cells (OVCARS) [79]
PKM2 Knockdown decreases Lung (A549) and cervical cancer cells (HelLa) [83]
Munc13-4 Knockdown decreases Breast cancer cells (MDA MB 231) [96]
miR-155 Knockdown decreases, overexpression increases Pancreatic cancer cells (Panc1) [101]
EGFR Oncogenic EGFRVIIl increases Glioma cells (U373) [39]
Ras Oncogenic HRas increases Intestinal epithelial cells (IEC-18) [37, 105]
hnRNP H1 Knockdown decreases Prostate cancer cells (C4-2B) [66]

Liver Kinase B1
EIF3C

Expression restoration increases

Overexpression increases

Lung cancer cells (H460 and A549) [107]
Liver cancer cells (PLC5, SNU449 and Huh7) [64]
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bodies (MVBs) containing exosomes and is generated by
neutral sphingomyelinase (nSMase2) [15]. Exosomes are
enriched in ceramide and secretion is reduced through
inhibition of nSMase2 with siRNA or the small molecule
inhibitor GW4869 [15]. Alternatively, treatment of mul-
tiple myeloma cells with C6 ceramide induces release of
exosomes [62]. A number of other studies have impli-
cated ceramide synthesis in the secretion of exosomes
by cancer cells [39, 49, 56, 62-67]. Knockout of
nSMase2 reduces angiogenesis and metastasis in breast
tumors, which may be mediated through exosome secre-
tion [68]. In addition, mice treated with GW4869 and
inoculated with LLC1 cells display a reduced number of
lung colonies, likely due to reduced exchange of exoso-
mal miRNAs [69]. GW4869 sensitizes breast tumors to
immune checkpoint blockade by reducing secreted exo-
somal PD-L1 [49]. However, at least one study has re-
ported ceramide as being dispensable for exosome
release [70]; consequently, it remains to be determined if
this pathway is a conserved regulator of exosome secre-
tion across all cancer types. In addition, it is unclear if
the effects of GW4869 in vivo are due to inhibition of
exosome release by cancer cells specifically or through
organism-wide inhibition of exosome secretion.

A number of vesicle-trafficking related genes have
been implicated in the release of exosomes. In oligoden-
drocytes, TBC1D10A functions to activate Rab35 in
order to induce exosome secretion [71]. Expression of a
dominant-negative form of Rab11 in K562 cells is associ-
ated with reduced exosome release [72]. Rabll is also
involved in MVB interactions with autophagosomes in
K562 cells [72]. Further studies demonstrated Rabll1 is
involved in the docking of MVBs to the plasma mem-
brane [73]. Upon induction of autophagy, Rab11 colocal-
izes with the autophagosome marker LC3, which is
associated with decreased exosome release [72]. Alterna-
tively, inhibition of PIKfyve, an enzyme that phosphory-
lates phosphatidylinositol, induces secretory autophagy
and increases exosome secretion [74]. Thus, the role of
autophagy in the release of exosomes remains to be elu-
cidated and may be context dependent.

While Rab11 appears to be critical for exosome release
in K562 cells, it is dispensable for exosome secretion in
HeLa cells [6]. In HeLa cells, silencing of Rab2B, Rab5A,
Rab9A, Rab27A, and Rab27B reduces exosome secre-
tion, with Rab27A and Rab27B having the largest effects
[6]. Rab27A regulates the size of MVBs, whereas Rab27B
controls their cellular localization [6]. The role of
Rab27A/B in exosome release has been confirmed in
many additional cancer cell types [6, 44, 56, 59, 63, 67,
75, 76]. MVBs containing Rab27A are secreted at inva-
dopodia sites [56] and Rab27A in conjunction with cor-
tactin and coronin 1b acts to control stability of MVB
docking sites [76] allowing for exosome secretion (Fig. 3).
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Fig. 3 Mechanisms of exosome biogenesis. Multivesicular bodies
(MVBs) are formed from budding of early endosomes, which is in
part regulated by neutral sphingomyelinase 2 (nSMase2), endosomal
sorting complex required for transport (ESCRT), syntenin, ALIX,
tetraspanins, and phospholipase D2 (PLD2). In addition, vesicles
derived from the Golgi apparatus can fuse with endosomes to
be incorporated into MVBs. MVBs fuse with the plasma membrane
releasing their contents (exosomes). Membrane docking is regulated
by Rab7, Rab11, Rab27, Rab35, soluble NSF attachement protein
receptors (SNAREs), cortactin and coronin 1b

Consequently, Rab27A and exosome secretion are in-
trinsically linked to cancer cell invasion. In addition,
knockdown of Rab27A and Rab27B is associated with
increased accumulation of tumor-suppressive miRNA
within bladder cancer cells, suggesting the secretion of
tumor-suppresive miRNA through exosomes may be
critical for tumor progression [63]. Knockdown of
Rab27A in metastatic breast cancer cells (4 T1) reduces
primary tumor growth and metastasis, but has no effect
on nonmetastatic breast cancer (TS/A) [44]. Loss of
Rab27A also reduces lung metastasis in melanoma, likely
through reducing the recruitment of bone-marrow de-
rived cells in the lung [59].

In addition to regulating tumor cell-intrinsic properties,
Rab27A/B are also involved in the exchange of exosomes
between different cells within the tumor microenviron-
ment. Genetic deletion of both Rab27A and Rab27B in
head and neck squamous cell carcinoma cells reduced
exosome-mediated induction of innervation both in vitro
and in vivo [67]. Exosome secretion by macrophages is
also regulated by Rab27A/B [3]. While the function of
Rab27A and Rab27B in exosome release has been estab-
lished in a number of models, Rab27A has additional
exosome-independent roles in tumor progression [44].
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In addition, the role of Rab27A/B in exosome secretion is
largely based on in vitro experiments, and it remains un-
clear if Rab27A/B function similarly in vivo.

Microenvironmental control of exosome release

Cancer cells exist within a complex tumor microenvir-
onment, consisting of recruited endothelial cells, fibro-
blasts, and immune cells embedded within extracellular
matrix that support tumor growth. As the tumor ex-
pands, cells compete for nutrients, oxygen, and growth
factors; consequently, tumor cells develop mechanisms
to survive under these stressful conditions. It has been
proposed that tumor cells may use exosome secretion as
a way to survive under stress [77, 78].

A hypoxic microenvironment increases the secretion
of exosomes by inducing a secretory lysosome pheno-
type [79]. Exposure of breast cancer cells to hypoxia in-
creases exosome secretion and packaging of hypoxia-
related miRNA into exosomes in a hypoxia-inducible
factor la (HIF-la)-dependent manner [80]. Exosomes
secreted under hypoxic conditions also contained more
STAT3 and FAS, which can be transferred to other
tumor cells to promote tumor progression and metasta-
sis [79]. Moreover, exosomes from glioblastoma cells
cultured in hypoxia induce angiogenesis and tumor
growth, potentially through the exchange of hypoxia-re-
lated RNAs and proteins [81]. Collectively, these studies
demonstrate hypoxia increases secretion of tumor
cell-derived exosomes which influence cell behavior in
the microenvironment.

Exposure to hypoxia induces downstream metabolic
reprogramming to rely on aerobic glycolysis. Pyruvate
kinase M2 (PKM?2) expression is increased in cancer
cells to promote glucose uptake and lactate production
through activation of HIF, B-catenin, STAT3, and
OCT4-mediated transcription [82]. Studies demon-
strated lung cancer cells have high levels of glycolysis,
which correlates with high levels of exosome secretion
[83]. Inhibition of glycolysis with shikonin decreases
exosome release, whereas induction of glycolysis with
tumor necrosis factor a (TNF- «) increases exosome se-
cretion [83]. Exosome release can be modulated through
the expression of PKM2, suggesting a link between cel-
lular metabolic state and exosome secretion. PKM2
functions to regulate exosome secretion through phos-
phorylation of synaptosome-associated protein 23
(SNAP-23) [83]. Additional studies demonstrated exo-
somes are transferred from cancer-associated fibroblasts
(CAFs) to modulate cancer cell metabolism to increase
glycolysis [8], potentially further modulating exosome
secretion.

Hypoxia within tumors is typically associated with in-
creased glycolysis and buildup of lactate in the extracellular
environment, which leads to an acidic microenvironment.
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Intracellular pH also has an effect on the biogenesis of exo-
somes, with acidic pH (pH = 6.0) increasing exosome secre-
tion [84]. Similarly, inhibition of proton pumps reduces
exosome secretion [85]. Alkaline pH reduces exosome se-
cretion as well as exosomal protein and RNA [86]. In
addition, acidic extracellular pH has been shown to alter in-
tegrin activation. Integrins are critical regulators of exo-
some uptake [87]; thus, microenvironmental pH may also
influence exosome entry into recipient cells. While acidic
pH increases exosome release, storage in acidic solutions
(pH =4.0) is associated with exosomal protein degradation
[88]. Although this condition is outside of the typical
physiological pH range of the tumor microenvironment
(pH 6.5-6.9), these studies suggest exosomes may have de-
creased long-term stability in acidic environments poten-
tially influencing their physiological functions.

Lack of nutrients and dysregulated protein synthesis in
cancer cells is also associated with increased protein
misfolding and endoplasmic reticulum (ER) stress [89].
Induction of endoplasmic reticulum stress increases
MVB formation and subsequent exosome release
through ER stress sensors inositol required enzyme 1
(IRE1) and PKR-like ER kinase (PERK) [90]. In chorio-
carcinoma cells, severe ER stress is associated with se-
cretion of exosomes containing DAMP molecules [91],
which may induce an inflammatory response. ER stress
also induces splicing of X-box binding protein 1 (XBP1),
which is then incorporated in exosomes [92]; thus, ER
stress and unfolded protein response may not only influ-
ence the secretion of exosomes, but also exosomal pack-
aging of biomolecules.

Calcium signaling plays critical roles in tumorigenesis,
progression and metastasis through its involvement in
transcription, cell cycle, genotoxicity, angiogenesis and
migration [93]. In addition, treatment of cells with mon-
ensin, an ionophore that acts as a Na'/H" antiporter
and reverses the activity of the Na*/Ca®* exchanger, in-
creases exosome release [94]. Treatment of cells with
thapsigargin, which leads to increased cytosolic Ca®*con-
centration, also increases exosome secretion in neuronal
cells [95]. Recently, studies demonstrated Muncl3—4 is
upregulated in invasive cancer cells and is involved in
MVB maturation [96]. Increased Muncl3—4 is associated
with increased Ca”" uptake and exosome release [96].

In addition to adapting to survive under lack of nutri-
ents and oxygen, tumor cells also acquire the ability to
survive after radiation and chemotherapy treatment. Ir-
radiation of prostate cancer cells increases exosome se-
cretion in a p53-dependent manner [97]. Exosomes
derived from cells following UV exposure [98] or ioniz-
ing radiation [99] are able to elicit a bystander effect in
treatment naive cells through the exchange of RNA species.
Treatment with a phototherapeutic or doxorubicin also in-
creased exosome release [100]. Long-term treatment with
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gemcitabine induces miR-155 expression in pancreatic can-
cer cells, which is associated with increased exosome secre-
tion and transfer of chemoresistance to surrounding cells
[101]. Reduction of exosome secretion through knockdown
of miR-155 or Rab27B attenuated these phenotypes [101].
The alkylating agent melphalan induces secretion of exo-
somes, which are able to stimulate interferon-y production
in NK cells [102]. Thus, DNA damage through radiation
and chemotherapy induces release of cancer cell exosomes
which have effects on surrounding cells.

Oncogenic regulation of exosome biogenesis

Studies have demonstrated tumor-bearing patients have
increased exosomes in circulation compared to healthy
patients [103], suggesting that tumorigenesis is associ-
ated with increased exosome secretion. Overexpression
of oncogenic EGFRVIII in glioma cells increases secre-
tion of exosomes with EGFRVIII [104]. These vesicles
can be transferred to other glioma cells lacking EGFR-
VIIL, resulting in transfer of oncogenic activity [104]. In
addition, in cells that are dependent on mutant EGFR,
inhibition of EGFR with small molecule inhibitors leads
to increased secretion of exosomes with genomic DNA
[39]. Consequently, in gliomas driven by EGFR, EGER is
intrinsically linked to the packaging and release of
exosomes.

Expression of oncogenic RAS in non-tumorigenic epi-
thelial cells increases exosome secretion [105]. These se-
creted exosomes have HRAS DNA, RNA, and protein
which can be transferred to recipient cells in a transient
manner. Similarly, inhibition of RAS signaling with a far-
nesyl transferase inhibitor (tipifarnib) or manumycin A
decreases exosome secretion in prostate cancer cells
[106]. Manumycin A-dependent exosome release suppres-
sion is associated with inhibition of the oncogenic splicing
factor hnRNP H1 in an ERK-dependent manner [66].

In contrast, restoration of liver kinase B1 (LKB1/STK11)
expression, a tumor suppressor frequently mutated or lost
in lung cancer, increases exosome secretion [107]. Restor-
ation of LKBI1 is associated with decreased proliferation
but increased cell migration [107]. LKB1 has several func-
tions in nutrient sensing, p53-related pathways [108] and
Rab7 interactions [109]; thus, it is unclear which pathways
downstream of LKB1 are critical for exosome release.

Eukaryotic translation initiation factors (elFs), includ-
ing elF3, have been implicated in tumorigenesis [110]. In
hepatocellular carcinoma (HCC), high expression of
elF3C is associated with poor survival. Exosome secre-
tion is increased in HCC cells expressing eIlF3C to pro-
mote angiogenesis through S100A11 [64]. Inhibition of
elF3C-dependent exosome release in vitro and in vivo
with GW4869 reverses angiogenesis and inhibits tumor
growth [64]. Together, these studies implicate oncogenic
signaling in the secretion of exosomes.
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Conclusions

There is accumulating evidence that many aspects of
tumor progression regulated by cancer cells and the
tumor microenvironment can impact the exchange of
exosomes. Studies have suggested exosomal cargo can
be transferred to recipient cells; however, the fate of exo-
somes and their cargo in recipient cells remains incom-
pletely understood. Tracking of fluorescently tagged
purified exosomes with confocal microscopy demon-
strated exosomes enter cells at filipodia, are transferred
into endocytic vesicles to the endoplasmic reticulum,
and then targeted to lysosomes for degradation in fibro-
blasts [111]. Other studies showed labeled fibroblast-de-
rived exosomes colocalize with mitochondria in breast
cancer cells [31]; thus, exosomes or exosome subpopula-
tions may not be trafficked the same way in all cell types.
In addition, it remains to be determined if exosomal
cargo is trafficked similarly to the exosomal membrane
and membrane-bound proteins. Additional studies could
provide critical insight into the fate of exosomes and
how this ultimately influences recipient cell behavior.

Most of the studies implicating exosomes in cancer
progression utilize in vitro culture systems or inject exo-
somes isolated ex vivo. As a result, it is unclear if the
mechanisms identified from these studies are conserved
in vivo. Recently, rat models expressing CD63-GFP were
developed to study exosome release in vivo in the whole
organism and specifically in neural stem cells [112, 113].
Using a transgenic CD63-GFP mouse model, Manca et
al. demonstrated exosomes can be transferred to nursing
pups through milk [114]. Disparate results were found
by directly nursing mice with endogenously tagged exo-
somes compared with oral administration of labeled
purified exosomes [114], suggesting CD63 may only
label a subset of exosomes in vivo or endogenously se-
creted exosomes have a different uptake pattern com-
pared to purified exosomes. Further characterization of
exosome exchange in these models will be critical for
understanding the physiological role of exosomes.

In another study, direct exchange of exosomes be-
tween cancer cells and host cells was demonstrated
using the Cre-LoxP system [58]. Exosomes released from
cancer cells entered cells at both local and distant cells;
however, the degree of exchange was significantly lower
than what was observed in vitro, suggesting the transfer
of exosomes in vivo may not be fully recapitulated in
vitro. It remains to be determined if the mechanisms of
exosome release and entry into recipient cells identified
in vitro are also conserved in vivo. Furthermore, while
studies have utilized cells genetically engineered to ex-
press fluorescently labeled exosomes [29, 115], the use
of cell lines precludes studying exosomes in naturally de-
veloping tumors and at early stages of tumorigenesis.
Additional mouse models to track endogenous exosome
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release in vivo may clarify the precise mechanisms can-
cer cells utilize to secrete exosomes and subsequently in-
fluence tumor progression.

The small size of exosomes coupled with the lack of
techniques to study exosome exchange in distinct cell
compartments in vivo has limited our knowledge of the
functional role of exosomes in vivo. In addition, while
many potential regulators of exosome secretion have
been identified, few have been validated in vivo and it is
unclear if these regulators are universal to all cell types.
The development of additional tools to study exosome
exchange between cancer cells, immune cells, fibro-
blasts, and endothelial cells in vivo will be critical to elu-
cidate interactions within the tumor microenvironment.

The exchange of exosomes within the tumor micro-
environment and at distant sites may influence tumor
progression, metastasis and therapy response. Unravel-
ing the mechanisms regulating exosome release and fate
in recipient cells has the potential to identify novel ways
to target intercellular communication and prevent the
progression of cancer.
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