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Abstract

Though Forkhead box P (FOXP) transcription factors comprising of FOXP1, FOXP2, FOXP3 and FOXP4 are involved
in the embryonic development, immune disorders and cancer progression, the underlying function of FOXP3
targeting CD4 + CD25+ regulatory T (Treg) cells and the dual roles of FOXP proteins as an oncogene or a tumor
suppressor are unclear and controversial in cancers to date. Thus, the present review highlighted research history,
dual roles of FOXP proteins as a tumor suppressor or an oncogene, their molecular networks with other proteins
and noncoding RNAs, cellular immunotherapy targeting FOXP3, and clinical implications in cancer progression.
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Background
Cancer still remains a major factor of human deaths
worldwide to date [1]. It is well documented that epigen-
etic and genetic alterations including transcription
factors, growth factors, cytokines, chemokines and pro-
teases are critically involved in cancer progression under
specific microenvironment [2]. As one of transcription
factors Forkhead box P (FOXP) family consist of FOXP1
(3p14.1), FOXP2 (7q31), FOXP3 (Xp11.23) and FOXP4
(6p21.1) with similar 110 amino acid DNA-binding do-
main termed winged helix\forkhead domain [3], since 19
Fox gene subfamilies (A-S) were identified with 50 genes
in humans so far [4]. FOXP proteins play important
roles in the regulation of gene transcription in associated
with immune function [4], carcinogenesis [5, 6], differ-
entiation [7, 8] and angiogenesis [6, 9, 10].
Accumulating evidence reveals that FOXP1 regulates

development of B cells [11], FOXP2 controls language
development [12] and FOXP4 mediates development of

T cell [13]. Furthermore, FOXP3, so called scurfin, is
critically involved in differentiation and function of regu-
latory T cells or CD4+/CD25+ regulatory T (Treg) cells
for cancer immunotherapy [14, 15]. It is well docu-
mented that FOXP3 modulates Treg development and
functions [16] by immune evasion of tumor cells
through imbalance of immunoediting and immunosur-
veillance in some cancers [17].
Additionally, it is well documented that FOXP proteins

interact with other molecules and signaling pathways.
FOXP1 has protein-protein interaction with NFAT1 to
enhance breast cancer cell motility [18] and FOXP2 is es-
sential in growth arrest of 143 osteosarcoma cells via p21
activation [19]. Also, FOXP3 is associated with IL-17 [20],
RUNX1 [21], STAT3 [22], NF-κB [23], FOXO3 [24] and
other cofactors such as EOS (Ikzf4) [25], interferon regula-
tory factor 4 (IRF4) [26], special AT-rich sequence-
binding protein-1 (SATB1) [25, 27] and GATA1, while
FOXP4 is closely associated with miR 4316 in breast can-
cer cells [28], miR 491–5p in osteosarcoma [29] and miR
338-3p in hepatocellular carcinoma [30].
Nevertheless, the underlying functions of FOXP pro-

teins in cancer progression and immunology still remain
unclear and confused to readers. Thus, the present
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review highlighted research history, dual functions of
FOXP family as a tumor suppressor or an oncogene,
their interaction with other proteins and noncoding
RNAs, and cellular therapy targeting FOXP proteins in
cancer progression, their clinical implications and finally
suggested research perspectives.

Overview of FOXP family: structure and domains
and research history
FOXP (Forkhead box P) family proteins share a highly
conserved C2H2 zinc finger domain, leucine zipper
(winged helix) domain (WHD) consisting of β-sheets, α-
helices and wings or loops like a helix-turn helix-like
motif [31], winged helix Forkhead DNA binding domain
(FHD) and about 50 residues N terminal domain [32]
(Fig. 1a). Of note, FOXP1 and FOXP2 contain C-
terminal-binding protein 1 (CtBP1) binding domain dif-
ferent from FOXP3 and FOXP4 [33–36]. Also, tertiary
structure of FOXP1 forkhead domain contains five α-
helices (H1–5), three β-strands (S1, S2 and S3) and two
wings (W1 and W2) [37, 38] and also FOXP2 and
FOXP3 have similar crystal structure of FOXP1 with
their specific dimers (Fig. 1b). Though the FHDs of
FOXP1, FOXP2, FOXP3 and FOXP4 all have a C-
terminal winged helix FHD to be dimerised, FOXP3
dimer is considered more stable than FOXP2 or FOXP1
dimer [36]. Notably, Mendoza et al. [39] identified
homo- hetero dimers and an oligo composed of FOXP1/
2/4 complex in HEK 293 cells and brain. Additionally, of
two independent subdomains required for transcrip-
tional repression activity, subdomain 1 with a highly
conserved leucine zipper similar to that of N-Myc gives
homo- and hetero-dimerisation to FOXP1/2/4 proteins.
In contrast, subdomain 2 with a binding motif for the
corepressor protein C-terminal binding protein 1 (CtBP-
1) is found only in FOXP1 and FOXP2 but not in
FOXP4,while FOXP3 binds to RUNX to repress target
gene expression [13, 40].
Looking back on research history of FOXP family, as

first discovery of FOXP family, Godfrey et al. [41] sug-
gested that T lymphocytes mediate scurfy lesions in ab-
normal thymic environment in 1991, since regulatory T
cell-deficient scurfy mice induce severe autoimmune dis-
orders, leading to death (Fig. 2). Thereafter, Brunkow
et al. [42] first coined FOXP3 for scurfin essential for
normal immune homeostasis, and human Treg cells
were further characterized as CD4+CD25+ T cells by
Taams and his colleagues [43] in 2001, since Sakaguchi
et al. [44] reported that CD4+CD25+ cells enhance self-
tolerance by immunosuppression in 1995. Then Shu and
his colleagues [45] identified and characterized FOXP1
and FOXP2 in the lungs of mice. Also, Banham et al.
[46] suggested FOXP1 as a novel tumor suppressor can-
didate localized to the chromosome 3p 14.1 region.

However, FOXP1 was found as a tumor suppressor in
breast cancer [47] and as an oncogene in MALT lymph-
oma [48]. Additionally, FOXP2 was recognized as an
oncogene in several lymphomas including multiple mye-
loma, and as a tumor suppressor in gastric cancer [49]
and hepatocellular carcinoma (HCC) [50] since Lai et al.
[51] first demonstrated that FOXP2 is critically involved
in a severe language and speech disorder in 2001.
Hori et al. [52] for the first time identified that FOXP3

is a key regulatory gene for the development of Treg
cells in 2003 and Schubert et al. [53] reported that scur-
fin or FOXP3 represses NFAT transcription factor and
cytokine production and proliferation by CD4+ T cell ac-
tivation. Next, Teufel et al. [13] demonstrated FOXP4 as
a tumor suppressor in patients with kidney tumors in
2003 and Wang et al. [30] reported FOXP4 as an onco-
gene in HCC in 2015. Consistently, FOXP4 depletion in-
hibits proliferation of HCC as a negative regulator of
miR-338-3p [30]. Of note, the important role of Th17/
Treg ratio has been a hot issue in cancers [54] and auto-
immune diseases [55, 56], since Treg cells can be differ-
entiated into Th17 cells [57] and then the significance of
Th17/Treg from Th1/Th2 was revealed in immune re-
sponse [58]. From this research chronicle, extensive re-
search has been conducted targeting FOXP family.

Dual biologic functions of FOXP family proteins as
a tumor suppressor or an oncogene
Despite accumulating evidence on dual functions of
FOXP proteins as an oncogene or a tumor suppressor in
specific cancer types [59, 60] and their related signaling
pathways, it still remains unclear under what factors or
circumstances the FOXP proteins act a tumor suppres-
sive or oncogenic role. It is well documented that
FOXP1 is overexpressed with poor prognosis in diffuse
large B-cell lymphoma (DLBCL) [61–64], primary cuta-
neous large B-cell lymphomas (PCLBCL) [65, 66], fol-
licular lymphoma [67] and gastric mucosa-associated
lymphoid tissue lymphoma (MALT) [68] as an onco-
gene. Consistently, Wang et al. [69] reported that
FOXP1 depletion reduced the proliferation of hepatocel-
lular carcinoma via G1/S phase arrest and decreased
phosphorylation of retinoblastoma protein (Rb). Notably,
Brown et al. [70] indicated that the growth of DLBCL is
mediated by suppression of MHC class II expression and
immune response signatures and activation of Wnt/β-
catenin signaling induced by FOXP1 [71]. Also, Bates
et al. [47] reported that nuclear FOXP1 is significantly
co-expressed with estrogen receptor beta or alpha in ER
positive MCF-7 breast cancer patients following tamoxi-
fen treatment, though they do not directly affect each
other by siRNA transfection [72]. Also, FOXP1 works as
an oncogene by activating chromosome translocations
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under the control of immunoglobulin heavy chain (IGH)
enhancers [60, 73].
In contrast, FOXP1 is also known as a tumor suppressor,

since FOXP1 gene maps to a tumor suppressor locus at
3p14.1 and so loss of FOXP1 expression is associated with
a poor outcome in in breast cancer [74]. Furthermore, over-
expression of FOXP1 inhibits proliferation and invasion in
U251 glioma cells [75], while knockdown of FOXP1 pro-
motes the development of lung carcinoma [76]. Similarly,
FOXP1 represses AR-induced transcriptional activity or

histone modification as a tumor suppressor [77, 78]. Inter-
estingly, previous evidence reveals that FOXP1 and FOXP2
exert functional cooperativity during development. Indeed,
FOXP2−/−FOXP1−/+ mice showed severe developmental de-
fects and perinatal lethality compared to FOXP2−/−-

FOXP1+/+ mice [5]. Furthermore, FOXP1 is also known to
interact with FOXP3 through NFAT-IL-2 promoter DNA
complexes [74, 79].
Recently, critical roles of FOXP2 have been demon-

strated in cancer progression as a tumor suppressor,

Fig. 1 Domains and crystal structures of FOXP family. a Domains of FOXP1, FOXP2, FOXP3 and FOXP4. FOXP members share a highly conserved
C2H2 zinc finger domain, leucine zipper domain, Forkhead DNA binding domain and about 50 residues N terminal domain. Also, FOXP1 and
FOXP2 contain CtBP1 binding domain different from FOXP3 and FOXP4. b Crystal structures of FOXP1 (PDB: 2KIU), FOXP2-DNA complex (PDB:
2A07) and FOXP3-DNA complex (PDB:3QRF) by using The PyMOL Molecular Graphics System Version 2.3.0
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though FOXP2 mutations are well known to cause lan-
guage and speech development deficits. Also, FOXP2
was reported to suppress the transcriptional activity of
target genes through the Zinc finger domain and also
binds to domain for C-Terminal Binding Protein-1
(CtBP1) for suppressing E-cadherin and promoting inva-
sion [59]. Furthermore, Cuiffo et al. reported that downreg-
ulation of FOXP2 enhances tumor initiation in breast
cancers as a putative tumor/metastasis suppressor [80].
Also, FOXP2 was downregulated in hepatocellular carcin-
oma (HCC) tumor tissues with poor overall survival rate
and its downregulation significantly promoted the

invasiveness of HCC [50]. In addition, FOXP2 is essential
for regulation of p21 in 143B osteosarcoma cell growth in-
hibition [19]. Of note, Morris et al. claimed that phosphor-
ylation at Ser557 is identified as another means of
regulating the transcriptional functions of FOXP2 [81]. Fur-
thermore, FOXP2 is regarded as a SUMO target protein at
cellular level, since FOXP2 is covalently modulated by both
SUMO1 and SUMO3. SUMOylation of FOXP2 is signifi-
cantly disturbed by a specific SUMO Specific Protease 2
(SENP2), since SUMOylation modulates transcriptional ac-
tivity of FOXP2 in targeting downstream target genes
(DISC1, SRPX2, and MiR200c) by reporter gene assay [82].

Fig. 2 Timeline for FOXP family research history. DLBCL, diffuse large B-cell lymphoma; FOXP1–4, forkhead box P1–4; NFAT, Nuclear factor of
activated T-cells; Th17, T helper 17; Treg, T regulatory; nTreg cells, naïve T regulatory cells; NF-kappa B, Nuclear factor kappa B. The numbers in
references indicate PMID of PubMed
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In contrast, mutations of transcription factor FOXP2
were shown in neoplastic plasma cells [83] and overex-
pression of FOXP2 is associated with high risk of early
PSA recurrence in erythroblast transformation-specific-
related gene (ERG) fusion-negative prostate cancers [84].
FOXP3 promotes the immune evasion as Treg cell

marker suppressing immune response against cancer,
while FOXP3 at the Xp11.23 revealed good prognosis in
breast cancers as a tumor suppressor [85–88] by regulat-
ing HER-2/ErbB2 [88] or SKP2 [89, 90] oncogene. Fur-
thermore, it is noteworthy that FOXP3 functions as dual
roles through interaction with other transcription factors
nuclear factor kappa-B (NF-κB), nuclear factor of acti-
vated T cells (NFAT) [91], and acute myeloid leukemia 1
(AML-1) [92] in the tumor microenvironment.
FOXP4 is closely associated with FOXP1 and FOXP2

with 54 and 60% identity, respectively since FOXP4
forms a large multidomain transcriptional repressors
with FOXP1 and FOXP2 [40], while FOXP3 and FOXP4
protein sequences are merely 47% identical in the
aligned sequence region [13]. FOXP4 was overexpressed
in A549 and H1703 non-small cell lung cancer (NSCLC)
cells and conversely FOXP4 depletion markedly reduced
the growth and invasion of above two NSCLCs [93]. Fur-
thermore, FOXP4 gene was closely associated with pros-
tate cancer risk in Chinese men [94, 95] and also long
non-coding RNA FOXP4-AS1 is suggested a poor prog-
nostic factor in colorectal cancer [96] and osteosarcoma
[97]. In contrast, FOXP4 was significantly downregulated
in patients with kidney cancers [13]. Overall, despite ac-
cumulating evidence on dual functions of FOXPs, fur-
ther study is required to verify the dual role mechanisms
of FOXP proteins in association with their related mole-
cules under specific microenvironment or phosphoryl-
ation condition in the near future.

Regulating tumor progression by FOXP3 in the
tumor microenviroment
It is well documented that FOXP3 is a key transcription
factor for development and function of Treg cells [98].
Treg cells are produced from the thymus, and the per-
iphery, by constitutively expressing glucocorticoid-
induced TNF receptor family-related gene (GITR), cyto-
toxic T lymphocyte associated antigen 4 (CTLA-4) and
IL-2 receptor (IL-2R) α chain (CD25) [99, 100]. Treg
cells induce immunosuppression by CTLA-4–mediated
downregulation of costimulatory molecules or IL-2
deprivation on antigen-presenting cells (APCs), and by
secretion of cytokines, such as IL-10 or TGF-β. Thus,
Treg cells suppress tumor-specific CD8+ T cell cytotoxicity
through TGF-β signaling [101] and some molecules includ-
ing nuclear factor of activated T cells (NFAT) [15] and
Runt-related transcription factor 1 (RUNX1) [92] are found
to bind to the promoter regions of FOXP3-regulated genes

for activation of Treg cells. FOXP3 overexpression of Tregs
may promote tumor cell growth in non-small cell lung can-
cer (NSCLC) microenvironment [102].
FOXP3 regulates immune system as a specific marker

for CD4+/ CD25+ or CD4+/CD25− Treg cell develop-
ment and function [17, 103, 104]. CD4+/CD25+/FOXP3+

Treg contributes to immunosuppression and cancer pro-
gression by reducing the anticancer immunity of CD4+

or CD8+ effector T cells [17, 105]. Two major popula-
tions of Treg cells have been defined as peripherally in-
duced Treg (iTreg) cells and thymically derived natural
Treg (nTreg) cells. CD4+CD25+FOXP3+ nTreg cells de-
rived from thymus are known to modulate immune dis-
orders such as autoimmunity, allergy, and graft rejection
by suppressing activation of naïve T cells, effector T cells
and memory CD4+ and CD8+ T cells [106]. iTreg cells,
so called as type 1 regulatory T cells (Tr1), are devel-
oped from naïve T cells in the periphery during an active
immune response including antigens, IL-2, IL-10 and
TGF-β [107]. Furthermore, human FOXP3 expressing
nTreg cells can be subdivided into CD25+/CD45RA+/
FOXP3lo (resting Treg cells; rTreg cells), CD25hi/C-
D45RA−/FOXP3hi (activated Treg cells; aTreg cells), and
CD25+/CD45RA−/FOXP3lo (non-Treg cells) [108, 109].
Interestingly, Whiteside [110] suggested that iTreg cells
should be depleted and nTreg cells are promoted in can-
cer patients, since iTreg cells produce immunosuppres-
sive cytokines, notably TGF-β as well as prostaglandin
E2 resistant to oncological therapy, while FOXP3+ nTreg
cells are responsible for peripheral tolerance to avoid
autoimmune disease [111].
In addition, CD4+CD25+ regulatory T cell deficiency

due to loss-of-function mutations of FOXP3 gene in-
duces the lethal autoimmune syndromes observed in
FOXP3-null mice or FOXP3-mutant scurfy mice [98].
Consistently, the infiltration of effector Treg cells into
tumor cells indicates poor prognosis of overall survival
(OS) [87, 112] and FOXP3 is overexpressed in pancreatic
[113], prostate [114] and gastric [115] cancers by sup-
pressing antitumor immunity [116] and inducing ef-
fector CD4+ T cell death by activation of proapoptotic
protein Bad and Bim [101].

The interplay between FOXP family members and
other molecules
FOXP1 and interleukins (IL-7 and 21)
FOXP1 works as a negative regulator of tumor-specific
CD4+ T helper 7 (Th7) cells for cancer immunotherapy,
since mature naïve CD4+ T cells proliferate to exert anti-
tumor effect programmed by IL-7 only in the absence of
FOXP1 [117, 118]. Similarly, CD8+ T cells lacking the
transcription factor FOXP1 show function and effector
phenotype of IL-7, since FOXP1 represses expression of
IL-7 receptor α-chain (IL-7Rα), phosphorylation of MEK
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and ERK [119]. Furthermore, FOXP1 suppresses the an-
titumor function of interleukin 21 (IL-21) to stimulate
the secretion of IFNγ from CD4+ T or CD8+ T cells in
estrogen positive MCF-7 breast cancers [70, 120]. In
contrast, De Silva et al. indicated that FOXP1hi super-
natant reduced lymphocyte migration by secretion of
chemokines such as CXCL9, CXCL10, CXCL11,
CXCL13, CX3CL, CCL20, IL-7, IL-21, and IFNγ com-
pared to FOXP1lo supernatant [121]. Nevertheless, the
mechanism by which FOXP1 represses IL-7 or IL-21 still
remains unclear to date.

FOXPs and nuclear factor of activated T cell (NFAT)
Nuclear factor of activated T cells (NFAT) is an indu-
cible nuclear factor binding to the antigen receptor re-
sponse element-2 (ARRE-2) of IL-2 promoter in human
T cells and also is involved in cell proliferation, survival,
invasion, migration and angiogenesis [122]. NFAT family
include five members such as four calcium-responsive
isoforms named NFAT1 (NFATp or NFATc2), NFAT2
(NFATc or NFATc1), NFAT3 (NFATc4), NFAT4
(NFATx or NFATc3) and a tonicity-responsive enhancer-
binding protein (NFAT5 or TonEBP) [122, 123]. The
NFAT isoforms are constitutively activated in several can-
cer types [122, 124]. Interestingly, FOXP proteins form co-
operative complexes with NFAT [74] and so the crystal
structures of the FOXP2–NFAT2 DNA complex are also
conserved with FOXP1 and FOXP3 [15, 123]. Also,
NFAT1 depletion inhibited invasion and migration of hu-
man non-small cell lung cancer [125] and NFAT overex-
pression promoted invasion in breast cancers via
upregulation of cyclooxygenase-2, α6β4 integrin and
glypican-6 [126–128]. Likewise, Oskay et al showed that
FOXP1 directly binds to NFAT1 on DNA and promotes
migration in MDA-MB231 breast cancer cells [18]. How-
ever, FOXP1 binds poorly to the ARRE2 composite site in
the absence of NFAT1 [15]. Overall, NFAT1 closely inter-
acts with FOXP1 or FOXP3 in cancer progression.

FOXPs and p53/p21
It is well documented that p53 suppresses tumorigenesis
by regulating apoptosis, metabolic networks, free radical
and senescence [129]. Recently, Jung et al. demonstrated
that p53 induction by genotoxic reagent upregulates
FOXP3 expression and conversely FOXP3 is regulated in
a p53-dependent manner by MDM2 inhibitor Nutlin-3
[130]. Of note, FOXP3 induced cellular senescence in
MCF7 and HCT116 cells via activation of p53/p21 and
reactive oxygen species(ROS) production [131]. Further-
more, FOXP1 known as a B cell oncogene is reduced by
miR-34a via p53 networks [132], indicating .the cloe
interaction between FOXP1/3 and p53 signaling.
Accumulating evidence demonstrate that the cyclin-

dependent kinase inhibitor p21 WAF1/CIP1 is a widely-

characterized p53 target gene during cell cycle arrest
[133, 134]. Of note, Gascoyne et al. indicated that
FOXP2 activation preceded up-regulation of p21WAF1/-

CIP1 in 143B osteosarcoma cells [19]. Likewise, FOXP2
overexpression upregulated the expression of p21 in
hematopoietic stem cells (HSCs). However, though p21
is known a downstream effector of gp130/STAT3 activa-
tion [135], exogenous STAT3 promoter IL-6 could not
rescue reduction of p21WAF1/CIP1 expression following
FOXP2 depletion, implying that FOXP2-dependent
regulation of p21 WAF1/CIP1 independent of IL-6 [19].
Also, it was known that FOXP2 regulates p21 independ-
ent of p53 status in cell lines (143B mutant, MG-63 null,
U2OS wild-type, SAOS-2 null) different from FOXP1
[136, 137] proteins, which should be further investigated
in specific cell lines and in vivo.

FOXP3 and Interleukin-17
Emerging evidence shows that Treg population is
observed in tumor infiltrating lymphocytes of several
cancers such as breast cancer [138], gastric cancer [139],
pancreatic cancer [140] and, colorectal cancer [141] and
lung cancer [142]. Interestingly, CD4 + CD25 +
FOXP3 + (GFP+) T cells can differentiate into T helper
17 (Th17) cells in the presence of IL-6 [57] and Th17
cells, one of the CD4+ T cells, can produce IL-17 to
protect cells against microbial infection [143]. In con-
trast, activation of Treg cells reduces antipathogenic or
anticancer immunity, leading to cancer progression and
infection [144].
Hence, the balance between FOXP3+ Treg cells and

Th17 cells is considered an important factor for treat-
ment of autoimmune diseases [145] and cancers [146].
Indeed, Maruyama et al. [54] reported that the infiltra-
tion of Th17 cells gradually decreased compared to in-
creased Treg cells in gastric cancer progression.
However, Hou et al. [20] claimed that Th17 cells and
FOXP3-expressing T cells were significantly increased in
uterine cervical cancer and cervical intraepithelial neo-
plasia while the ratio of Th17/FOXP3 Treg cells was de-
creased in tumor-infiltrating lymphocytes (TILs).
Consistently, Beyer [147] suggested a novel strategy to
suppress expansion and differentiation of naïve Treg
cells induced by IL-2 therapy, since Treg cells induce
immunosuppression in neoplastic patients. For repro-
gamming Treg cells into Th17 like cells, Sharma et al.
[148] suggested that indoleamine 2,3-dioxygenase (IDO)
inhibitor and antitumor vaccine converted Treg cells
into Th17 phenotype cells in B16 melanoma mouse
model. Similarly, Bahan et al. [149] reported that high
dose of oligonucleotides (CpG) treatment directly repro-
grammed splenic FOXP3 Treg cells to express IL-17
with efficiency of 6–7% in IDO-KO mice model.
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In contrast, Xu et al. [57] suggested that activated
FOXP3+ Treg cells have potential to stimulate
CD4+CD25−FOXP3−T cells or can differentiate into
Th17 phenotype cells in the presence of IL-6 regardless
of exogenous TGF-β. Thereafter, the property of IL-
17+FOXP3+ T cells has been recognized with low ex-
pression of Helios [150] and overexpression of ICOS
[139] and RORγt for distinguishing peripherally induced
and thymic-derived FOXP+ Treg cells. Thus, IL-
17+FOXP3+ T cells were considered as an intermediate
differentiation stage between Th17 cells and Treg cells,
since Treg cells can be converted into IL-17+FOXP3+ T
cells by stimulation of TGF-β and/or IL-6 [151]. Accu-
mulating evidence reveals that IL-17 + FOXP3+ T cells
are shown highly in colon [152] and esophageal [153]
cancers, inflammatory bowel disease [154], periodontitis
[155], and rheumatoid arthritis [156]. Nevertheless, fur-
ther studies are required to explore the mechanisms and
interplay with other molecules in the differentiation of
IL-17+FOXP3+ T cells, and to assess clinical implications
targeting the balance between FOXP3+ Treg cells and
Th17 cells in the near future.

FOXP3 and RUNX
RUNX proteins such as RUNX1 (AML1) and RUNX3
induced by TGF-β play a critical role in embryonic de-
velopment, hematopoiesis and T cell development by
regulating CD4, CD8 and lymphokine genes [157, 158].
Emerging evidence indicates that the complex of core-
binding factor subunit beta (CBFβ) and runt-related
transcription factor 1 and 3 (RUNX1 and 3) is essential
for Treg suppressive function [7, 159]. Recouvreux et al.
suggested that RUNX1 plays a critical role in breast
tumor progression, only depending on FOXP3 availabil-
ity [21]. Also, RUNX1 is known as an important target
for chromosomal translocations of leukemias with
CD4+CD25highFOXP3+ Treg cells [92, 160], while
RUNX3 methylation and silencing are observed in sev-
eral epithelial cancers [161, 162]. Also, the role of
RUNX1 or RUNX3 should be explored in the differenti-
ation of I IL-17+FOXP3+ T cells in association with
mTOR, CNOT2, HIF-1α and RIF-4 that are involved in
tumor progression and immune tolerance.

FOXP3 and STAT3/5
There is accumulating evidence that STAT3 is involved
in cancer initiation and development as an oncogenic
transcription factor [163]. Regarding relationship be-
tween FOXP3 and STAT3, Hossain et al. revealed that
FOXP3 silencing decreased the expression of STAT3-
related genes such as IL-6, VEGFA, C-Myc, BCL2L1, and
CCND1, but not TGF-β1 in tumor induced regulatory T
cells by qRT-PCR analysis [22]. Conversely, STAT3 pro-
moter IL-6 induced DNA-methyltransferase 1 (DNMT1)

expression and promoted STAT3-dependent methyla-
tion of FOXP3 in Treg cells [164]. Also, Lam et al. dem-
onstrated the important role of Cdk5 in phosphorylation
of STAT3 (S727) to bind to FOXP3 gene in CD4+ T
cells [165].
Additionally, activated STAT5 is associated with sup-

pression of antitumor immunity, since STAT5 plays a
critical role in the function and development of Treg
cells to promote proliferation, invasion, and survival of
tumor cells [166]. Furthermore, several studies demon-
strated that STAT5 mediates the critical link between
the IL-2/15 and FOXP3. Thus, in T-cell-specific STAT5-
null mice, CD25- and FOXP3-expressing cells were re-
duced and also STAT5 was detected to bind to gamma
interferon-activated sequence (GAS) sites of FOXP3 pro-
moter [167, 168]. Similarly, Wang et al showed that acti-
vated STAT5 is associated with increased FOXP3
expression in melanoma cells and lymphocytes [169].
Hence, the pivotal role of STAT3 or STAT5 should be
extensively explored in FOXP3+ Treg cells in vitro and
in vivo.

FOXP1/3 and FOXO3a/1
Among FOXO subfamilies, FOXO3a is well known to
act as a tumor suppressor by inducing apoptosis and
cell cycle arrest [170]. Interestingly, FOXO3a phos-
phorylation as a downstream of E3 ubiquitin-protein
ligase CBL-B increased FOXP3 expression in CBL-B
deficient T cells and conversely FOXO3a depletion
impaired TGF- β driven FOXP3 induction [171], since
FOXO3a directly binds to the FOXP3 promoter in
iTreg cells [172]. Furthermore, corporation of FOXO1
and STAT5 suppresses FOXP3 expression and pro-
duction in response to the TCR signaling [173], since
miR-182 downregulates FOXO1 [174] and PTPN2 de-
phosphorylates STAT5 [175], leading to suppression
of FOXP3. Also, Du et al. reported that Mst1/Mst2
kinases enhanced FOXO3-mediated FOXP3 expression
by maintaining the stability of FOXO1/3 proteins
through phosphorylation of S212 and S207 and inhib-
ited TCR induced Akt activation [176], implying the
role of Mst1/Mst2 kinases in FOXO3-mediated
FOXP3 expression. In addition, Bi et al. [118] re-
ported that FOXO1 acts as a negative regulator and
FOXP1 and a negative regulator of CD4+ T helper 9
(TH9) cell differentiation and antitumor activity. Like-
wise, van Boxtel et al. demonstrated that FOXO1/3
activation in FOXP1 depleted cells enhanced cell
death, indicating the opposing roles between FOXO1/
3 and FOXP1 [177]. Hence, the underlying mechan-
ism of FOXO1 or FOXO3 mediated FOXP1/3 expres-
sion should be further explored in vitro and in vivo
in tumor progression and chemoresistance.
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FOXP3 and NF-κB
It is well documented that NF-κB is involved in inflam-
mation, proliferation, cell adhesion and tumor progres-
sion [178]. Of note, Hao et al. revealed that FOXP3
suppresses cell migration by inhibition of NF-κB activity
and COX-2 expression in gastric cancers [179]. How-
ever, the tumor suppressor role of FOXP3 was disturbed
under inflammatory microenvironment in gastric can-
cers, since FOXP3 interacts with two key transcription
factors such as nuclear factor of activated T cells
(NFAT) and NF-κB [91, 180]. Consistently, Wang et al.
suggested that silencing of FOXP3 promoted the prolif-
erative, migratory and invasive properties of A549 cells
by downregulation of ZO-1, upregulation of vimentin and
phosphorylation of NF-κB at protein level. Likewise,
FOXP3 downregulation attenuated the expression of LIM
Domain Only 2 (LMO2) but increased the expression of
an oncogenic transcription factor T-cell acute lymphocytic
leukemia protein 1 (TAL1) at mRNA level in T-cell acute
lymphoblastic leukemia (T-ALL) cells [181]. However,
Chu et al. demonstrated that FOXP3 depletion downregu-
lated cyclin D1 and NF-κB subunit p65, but upregulated
caspase-3 levels in K1 and WRO thyroid cancer cells
[182]. Also, Jia et al. indicated that blockade of toll-like re-
ceptor 4 (TLR4) signaling induced downregulation of
FOXP3 after blocking NF-κB in A549 cells [183]. Here mi-
croenvironmental conditions where FOXP3 acts as a
tumor suppressor or an oncogene should be clearly deter-
mined in specific cancers in association with TRL4, NFAT
and NF-κB signaling in the future.

FOXPs and VEGF
It is well documented that angiogenesis related mole-
cules including VEGF play pivotal role in carcinogenesis
[184]. Le et al. reported that FOXP3 suppresses VEGF
signaling to exert anti-angiogenic or anti-metastatic ef-
fect in MDA-MB-231 breast cancer cells [185, 186].
However, Tang and his colleagues demonstrated that
FOXP3 is positively correlated with VEGF-C in lym-
phangiogenesis of cervical cancer [187]. Likewise,
FOXP1 promoted proliferation, migration and tube for-
mation in cultured endothelial cells [9]. Also, Wan et al.
demonstrated the correlation between FOXP1 and
VEGF in the patients with renal carcinoma [188]. Fur-
thermore, He et al. suggested that FOXP1 and FOXP2
upregulates levels of angiogenic factor such as VEGF
with G patch and FHA domains 1 (AGGF1) [189] and
induces angiogenesis in glioma cells [190]. Overall, it is
demonstrated that FOXP proteins are closely associated
with VEGF signaling.

FOXPs and noncoding RNAs
Emerging evidence suggests that FOXP members modu-
late various noncoding RNAs during cancer development

and progression, since noncoding RNAs (ncRNAs) are
RNA molecules that are not translated into proteins, in-
cluding transfer RNAs (tRNAs) and ribosomal RNAs
(rRNAs), as well as small RNAs such as microRNAs (miR-
NAs), siRNAs, circular RNA and the long ncRNAs
(lncRNAs) [191]. For instance, FOXP1 induction by inhib-
ition of miR-9 promoted tumor growth, while FOXP1
knockdown suppressed the growth of epidermal growth
factor receptor (EGFR) dependent cancers [192]. Also,
downregulation of FOXP1 increased miR-34a level as a
tumor suppressor in gastric diffuse large B-cell lymphoma
(gDLBCL) cells [193]. Furthermore, elevation of miR-199a
and repression of FOXP2 are prominent features of malig-
nant breast cancer with poor survival rate [194]. Likewise,
miR-181d-5p [195], miR-374b-5p [196], miR-122 [197],
miR-150 [198] and miR-504 [199] act as a tumor suppres-
sor by inhibition of FOXP1, while miR-376a [200] and
miR-139 [201] work as a tumor suppressor via inhibition
of FOXP2 in lymphoma and osteosarcoma. Additionally,
miR-146 [23, 202], miR-7 and miR-155 [203] induced by
FOXP3 act as a tumor suppressor in breast and prostate
cancers. Notably, Liu et al. revealed that FOXP3-induced
miR-146a/b suppressed tumor cell proliferation and en-
hanced apoptosis by inhibition of NF-κB activation
through suppression of interleukin-1 receptor-associated
kinase 1 (IRAK1) and TNF receptor associated factor-6
(TRAF-6) in MCF-7 breast cancer cells [202]. Likewise,
McInnes et al. showed that FOXP3 induced miR-7 and
miR-155 to target oncogenic SATB1 in BT549 breast can-
cer cells [203], whereas overexpression of miR-338-3p
inhibited proliferation of hepatocellular carcinoma cells
and induced cell cycle arrest partially through the down-
regulation of FOXP4 [30]. Of note, miR-338-3p [30], miR-
491–5p [29] and miR-138 [93, 204] were downregulated
in HCC, osteosarcoma and non-small lung cancer cells,
targeting FOXP4. In addition, lncRNA MALAT1 [205]
and SNHG12 [206] promoted proliferation of multiple
myeloma and glioma targeting FOXP1, while lncRNA
UFC1 [207] and 7SL [208] enhanced proliferation of cer-
vical cancer and osteosarcoma, targeting FOXP3 and
FOXP4, respectively. Notably, circular RNA SHKBP1 was
upregulated in malignant glioma targeting FOXP1 or
FOXP2 [190], while circular RNA ZNF609 [209] and
MYO9B [28] were upregulated in renal cancer and breast
cancer, respectively, targeting FOXP4. Taken together, the
critical roles of these miRNAs, lncRNAs, circular RNAs
should be further investigated during antitumor or onco-
genic effects of FOXP families in vitro, in vivo and clinic-
ally in the future.

Clinical application and cellular cancer
immunotherapy
Among clinical trials Dr. Sylvain Ladoire performed clin-
ical trial (ClinicalTrials.gov Identifier: NCT01513408) at
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Centre Georges Francois Leclerc with 500 participants
with a topic, “Prospective study of the relevance of T
lymphocytes tumor infiltrates D8 and FOXP3 as a new
immune prognostic biomarker in breast cancer treated
by neoadjuvant chemotherapy to verify that accumula-
tion of regulatory T-lymphocytes expressing FOXP3 is
associated with poor prognosis in breast cancer patients.
Also, another clinical trial (ClinicalTrials.gov Identifier:
NCT03718923) on FOXP1 related neurodevelopmental
disorders is underway at The Seaver Autism Center for
Research and Treatment, New York. Also, pilot study
(ClinicalTrials.gov Identifier: NCT01538485) was com-
pleted to assess the effects of Vitamin D supplementa-
tion on the number of regulatory FOXP3+ T cells in the
gastrointestinal mucosa in healthy women and men in
Austria in 2012. Besides, graft rejection studies in renal
transplant recipients (ClinicalTrials.gov Identifier:
NCT01446484) and liver transplant recipients (Clinical-
Trials.gov Identifier: NCT01678937) were conducted tar-
geting FOXP3. Here it was found that clinical trials have
been conducted targeting FOXP1 or FOXP3. Emerging
evidence indicates that FOXP3 regulates Treg develop-
ment and functions [16] to induce the immune evasion
of tumor cells through imbalance of immunoediting and
immunosurveillance [17] and. FOXP1 acts as a tran-
scriptional regulator for primary human CD4+ T cells
[210]. Recently dendritic cells (DCs) based immunother-
apy has been on the spotlight for cancer therapy, since
DCs are considered the most powerful antigen-
presenting cells (APCs) activating naïve and memory im-
mune responses [211]. Through a lot of clinical trials
with DCs via various routes (intradermal, intranodal,
intravenous, subcutaneous, intratumoral) [212], cancer
immunotherapy efficacy by DC vaccine was limited
mainly due to inhibition of immune response by tumor-
secreted TGF-β and FOXP3 related Treg cells and low
quality of DC production [213]. Notably,
CD4+CD25+FOXP3+ (GFP+) T cells can differentiate
into Th17 cells in the presence of IL-6 [57] and T helper
17 (Th17) cells, one of the CD4+ T cells, can produce
IL-17 to protect against microbial infection [214], while
excessive activation of Treg cells suppresses antipatho-
genic or anticancer immunity, leading to chronic infec-
tion and tumor progression [144]. The balance between
FOXP3+ Treg cells and Th17 cells is considered an im-
portant target for treatment of autoimmune diseases
[145] and cancers [146]. Thus, next generation DC im-
munotherapy is required for more effective cancer ther-
apy. Thus, Treg depletion and Th17 booster can be a
potent strategy for DC cancer immunotherapy and DC
vaccines were suggested as a next generation cancer im-
munotherapy [215], only if the standardization and qual-
ity of DC vaccines can be upgraded to enhance
migrating activity to the lymph nodes, presenting

antigen and costimulation to T cells, and surviving
long enough for optimal T-cell activation. In the
same line, combination therapy of DCs with check-
point inhibitors including ipilimumab [216] or other
immune cells or oncolytic virus [216] is considered
attractive in cancer therapy [216, 217]. In this
regard, we suggest the cocktail of specialized DC
vaccines and Th17 cells by reprogramming Treg cells
into Th17 cells [146] or ex vivo expansion of Th17
cells from human PBMCs [218] is suggested as a
next generation cellular cancer immunotherapy,
which should be further investigated in vivo and
clinically.

Conclusions and perspectives
FOXP family consisting of FOXP1, FOXP2, FOXP3 and
FOXP4 are involved in the embryonic development, im-
mune disorders and cancer progression. Accumulating
evidence reveals that FOXP family act as a tumor sup-
pressor or an oncogene in several cancers. FOXP1 was
overexpressed with poor prognosis in DLBCL, MALT,
primary cutaneous large B-cell lymphomas and follicular
lymphoma as an oncogene, while FOXP1 worked in
breast, lung carcinoma and U251 glioma cells as a tumor
suppressor. Also, FOXP2 was activated for up-regulation
of p21 in 143B osteosarcoma cells, while FOXP4 was
overexpressed in A549 and H1703 NSCLC cells along
with prostate cancer risk. Likewise, CD4+/CD25+/
FOXP3+Treg cells are overexpressed in pancreatic,
prostate and gastric cancers through immunosuppres-
sion and cancer progression as an oncogene, while
FOXP3 overexpression indicates good prognosis in
patients with breast cancers as a tumor suppressor.
Given that transcriptional activity of FOXP1, FOXP2,
and FOXP4 is modulated by tissue-specific homo-
and heterodimerisation via a zinc finger and a leucine
zipper motif [33], their functional similarity is ex-
pected and so their more detailed protein-protein in-
teractions and the molecular conditions for their dual
roles as an oncogene or a tumor suppressor should
be clarified in specific cancer types in the future, con-
sidering reports that dual functions of FOXP family
may be closely associated with tumor microenviron-
mental factors such as dendritic cells (DCs), inflam-
matory cytokines especially in colon and esophageal
cancers related to inflammation.
Regarding interplay of FOXP members with their

related molecules, FOXP1 is closely associated with
IL-7, IL-21, NFAT, while FOXP2 is more related to
p21 and FOXP3 is critically associated with IL-17,
RUNX, STAT3/5, FOXO3a/1 and NF-κB. Also, it is
well documented that FOXP members are regulated
by miRNAs, lncRNAs, circular RNAs (Table 1, Fig. 3).
Nonetheless, their detailed interactions are not fully
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Table 1 Effect of miRNAs, LNCRNAs and Circular RNAs on molecular mechanisms of FOXP family proteins and their related genes in
several cancers

Expression
Level

Related
gene

Function Molecular mechanism cancer cell line References

Tumor Suppressor miRNAs

microRNA-
181d-5p

down FOXP1↓ cell proliferation↓
metastasis↓ EMT↓

miR-181d-5p-FOXP1
feedback loop

Osteosarcoma MG63, SaOS2
U2OS, HOS

1

microRNA-
374b-5p

down FOXP1 ↓ cell proliferation↓
migration↓ EMT↓
cisplatin sensitivity↑

miR-374b-5p-FOXP1
feedback loop

Ovarian SKOV3, 3AO
A2780, OVCAR3

2

microRNA-122 down FOXP1 ↓ apoptosis ↑ crosstalk HCC HepG2 3

microRNA-150 down FOXP1 ↓ cell proliferation ↓ Myc↑ → miR-150↓ →
Foxp1↑

trnasformation
of FL to DLBCL

patient sample 4

microRNA-504 down FOXP1 ↓ cell proliferation↓ cell
cycle arrest↑ apoptosis↑

FOXP1 as a direct target
of miR-504

Gliomas U87, U373, U251,
T98G, LN18, LN229,
SF295

5

microRNA-9 down FOXP1 ↓ tumorgenity ΔEGFR/Ras/PI3K/AKT
axis → miR-9↓ → FOXP1↑

Glioblastoma U87, U373
ΔEGFR cells

6

microRNA-34a down FOXP1 ↓ malignant
transformation ↓

Myc↑ → miR-34a↓ →
Foxp1↑

Gastric DLBCL U2932 7

microRNA-
376-a

down FOXP2 ↓ cell proliferation↓
apoptosis↑

cyclin D2↓, cyclin A↓,
Bax↑ and Bcl-2↓.

Lymphoma JeKo-1 8

microRNA-139 down FOXP2 ↓ proliferation↓migration↓ FOXP2 is a direct target
of miR-139

Osteosarcoma SAOS-2 MG63 9

microRNA-7
microRNA-155

induced
by
FOXP3

Transformation of the
healthy breast
epithelium to a
cancerous phenotype↓

FOXP3 and FOXP3-regulated
microRNAs → SATB1↓

Breast BT549 12

microRNA-146 Induced
by
FOXP3

proliferation↓
apoptosis↑

FOXP3 → miR-146a/b↑→
NF-κB activation↓ by
repressing Irak1 and Traf6

Breast T47D, BT474,
MDA-MB-468

10

microRNA-146 induced
by
FOXP3

apoptosis ↑ during
tumor initiation tumor
supression

FOXP3 → miR-146a/b↑→
NF-κB activation↓ by
repressing Irak1 and Traf6

Prostate PC3 DU145
LNCaP

11

microRNA-338-3p down FOXP4 ↓ proliferation↓ cell cycle
arrest↑

miR-338-3p could directly
target FOXP4

HCC HepG2 Hep3B,
QGY7703

13

microRNA-491-5p down FOXP4 ↓ proliferation↓
migration↓ invasion↓
apoptosis↑

FOXP4 is a target of
miR-491-5p

Osteosarcoma SAOS-2 MG63,
U-2OS

14

microRNA-138 down FOXP4↓ growth↓ invasion↓ miR-138 was the upstream
regulator of FOXP4

NSCLC SK-MES-1, A549,
H460, SPC-A1

15.1/15.2

Oncogenic miRNAs

microRNA-92a up FOXP1↓ cell proliferation↑cell
cycle progression↑
tumor growth↑

FOXP1 was identified as
a functional downstream
target of miR-92a

OSCC HSC3, OC3, SSC25
Tca-8113

16

microRNA-504 up (stage
lll, lV)

FOXP1↓ invasion ↑ metastasis ↑ CTGF → miR-504↓ →
FOXP1↑

OSCC SAS 18

microRNA-19a up FOXP1↓ cell viability↑ colony
formation↑ migration↑
invasion↑

miR-19a↑ → FOXP1,
TP53INP1, TNFAIP3,
and TUSC2↓

Lung LK79 17

microRNA-196b up FOXP2 ↓ migration ↑ invasion ↑ miR 196b could directly
bind to the 3'UTR of
FOXP2mRNA

HCC HCCLM3, Huh7
Hep3B, MHCC97H

19

microRNA-23a up FOXP2 ↓ proliferation↑ invasion↑ miR-23a directly targets
FOXP2

PDAC Aspc-1, Capan-2,
Bxpc-3, Panc-1,
MIA-Paca-2,
SW1990

20

microRNA-190 up FOXP2↓ invasion ↑ migration the direct target regulation Gastric GC tissue 21
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understood as a tumor suppressor or an oncogene,
which indicates further mechanistic study in vitro and
in transgenic mouse model. Also, the underlying
mechanisms that FOXO1/3 suppresses FOXP1/3
should be further examined in vitro and KO mice
model.
Additionally, FOXP3 is known a key transcription

factor for the development and function of
CD4+CD25+ regulatory T (Treg) cells. Recently the
balance between FOXP3+ Treg cells and Th17 cells
provides a new insight into a potent cellular cancer
therapy, since FOXP3+Treg cells can be differenti-
ated into antimicrobial Th17 cells or IL-17+FOXP3+

T cells to overcome the immunosuppressive function
of Treg cells, leading to anti-tumor immunity in
cancers. The efficacy of DC cancer immunotherapy
has been limited due to immunosuppression by
tumor-secreted TGF-β and Treg cells with tumor
response rates rarely exceeding 15% in many clinical
trials [213, 217], though many clinical trials were

completed in melanoma (> 1000 patients), renal cell
carcinoma (RCC; > 250 patients), glioblastoma (GBM;
> 500 patients), prostate cancer (> 750 patients)
[217]. Thus, Treg depletion and Th17 booster can be
a potent strategy for DC cancer immunotherapy and
mature DC vaccines were suggested as a next generation
cancer immunotherapy with the standardization and
quality of DC vaccines. Here we suggest the cocktail of
specialized DC vaccines and Th17 cells by reprogramming
Treg cells into Th17 cells [146] or ex vivo expansion of
Th17 cells from human PBMCs [218] is suggested as a
next generation cellular cancer immunotherapy, which
should be further investigated in vivo and clinically
(Fig. 4).
Overall, our review demonstrates that FOXP pro-

teins are critically involved in cancer progression and
immunology in concert with other molecules includ-
ing noncoding RNAs and signaling pathways as
potent biomarkers and targets for cancer diagnosis
and treatment and also suggests another clinical trial

Table 1 Effect of miRNAs, LNCRNAs and Circular RNAs on molecular mechanisms of FOXP family proteins and their related genes in
several cancers (Continued)

Expression
Level

Related
gene

Function Molecular mechanism cancer cell line References

↑proliferation↑ of miR-190 to FOXP2

microRNA-155 up induced
by
FOXP3

Tumor initiaion FOXP3 → BRCA1↓ →
miR-155↑

Breast Breast tissue 22

LNCRNAs

MALAT1 up FOXP1↑ proliferatin↑ cell grotwh
↑ apoptosis↓ G1/S
phase ↓

MALAT1↑ → Foxp1↑
through sponging
mir-509-5p

multiple
myeloma

MM.1S, OPM-2,
NCL-H929, U266,
RPMI-8226

23

SNHG12 up FOXP1↑ proliferation↑
apoptosis↓ cell
growth↑ migration↑

SNHG12/miR-101-3p/
FOXP1 axis

Glioma U87 U251, A172,
SHG44

24

UFC1 up FOXP3↑ cell proliferation↑
migration↑ invasion↑
apoptosis↓

E2F1-linc-UFC1/miR-
34a/FOXP3 axix

Cervical Hela sila 25

7SL up inhibited
by
FOXP3

tumor growth FOXP3 → 7SL↓ → P53↑
feedback loop

Breast MCF-7 MCF10A 26

MFI2 up FOXP4↑ proliferation↑
apoptosis↓ migration↑
invasion↑

correlation between
MFI2 expression and
FOXP4 expression

Osteosarcoma MG63 SAOS-2 27

Circular RNAs

Circ-SHKBP1 up FOXP1↑
FOXP2↑

angiogenesis ↑ circ-SHKBP1 → miR-544a/
miR-379 ↓ → FOXP1
FOXP2↑→ AGGF1↑→
PI3K/AKT ERK1/2 ↑

Malignant
gliomas

GECs 28

CircRNAZNF609 up FOXP4↑ proliferaion↑ invasion↑ CircRNAZNF609↑ → FOXP4↑
by sponging miR-138-5p

Renal
carcinoma

A-498, ACHN 29

CircMYO9B up FOXP4↑ proliferaion↑ invasion↑
migration↑

CircMYO9B↑ → FOXP4↑ by
sponging miR-4316

Breast MCF-7 MDA-
MB-231

30
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Fig. 3 Interplay between FOXP family and their related molecules targeted by noncoding RNAs. FOXP family members consist of FOXP1, FOXP2,
FOXP3 and FOXP4 that communicate with other molecules. Interleukin-6 (IL-6) activates the Janus tyrosine kinase (JAK) family members (JAK1,
JAK2, and TYK2), leading to the activation of transcription factors of the signal transducer and activator of transcription (STAT) family including
STAT3 and STAT5. Also, IL-6 induces DNA-methyltransferase 1 (DNMT1) expression and promotes STAT3-dependent methylation of FOXP3. FOXP2
overexpression upregulates the expression of p53/ p21, a downstream effector of gp130/STAT3. Transforming growth factor-β (TGF-β) activates
phosphorylation of SMAD, which forms complex with CBFβ/RUNX1/3 for maintenance of FOXP3, but ThPOK blocks RUNX [219]. TNF-α stimulates
protein phosphatase 1 (PP1) for dephosphorylation of FOXP3 (S418). FOXP3 interacts with two key transcription factors such as nuclear factor of
activated T cells (NFAT) and NF-κB. FOXO3a phosphorylation increases FOXP3 and FOXO1 acts as a negative regulator and FOXP1. The receptor
tyrosine kinases (RTKs) activate MEK-ERK signaling axis, which is repressed by FOXP1. Among noncoding RNAs, MALAT1, SNHG12 and CircRNA
SHKBP1 activate FOXP1, while miR-9, miR-19a, miR-34a, miR-92a, miR-122, miR-150, miR-181–5p, miR-374-5p and miR-504 downregulate FOXP1.
CircRNA SHKBP1 increases FOXP2, while miR-23a, miR-139, miR-190, miR-196b and miR-376a suppress FOXP2. UFC1 activates FOXP3 and miR-138,
miR-338-3p and miR-491–5p downregulate FOXP4, while circR-SHKBP1, CircR-MYO9B and MFI2 upregulate FOXP4
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Fig. 4 Cellular cancer immunotherapy by using Th17 cells and DC vaccine cocktail. Proinflammatory T helper 17 (Th17) cells, one of
the CD4+ T cells, can produce IL-17 and protect cells against microbial infection, expressing RORγt (orphan nuclear receptor) [143],
while excessive activation of Treg cells suppresses antipathogenic or anticancer immunity by inactivation of Th1, CTL and NK cells
[220], leading to chronic infection and tumor progression [144]. Dendritic cells (DCs), the most efficient antigen-presenting cells (APCs)
of the innate immune system, can be produced from peripheral blood mononuclear cells (PBMCs) or human pluripotent stem cells
(hPSC) including embryonic stem cells and induced pluripotent stem cells [221]. Loading tumor specific antigens on immature DCs is
the first step for DC vaccine production and DCs can be activated for maturation by defined cytokine formulation such as IL-1β+ IL-6+

PGE2+ TNF and TLR agonists (IL-2, IFNα/γ, GM-CSF, bacterial toxoids). Combination of TGFβ1 and IL-6 can be used for Th7
differentiation by reprogramming Treg cells into Th17 cells [146] and also a cocktail of TGFβ1, IL-6,IL-23, IL-1β and IL-21 is used for
Th17 differentiation expansion from human PBMCs [218, 222]. Next generation cancer immunotherapy by a cocktail of DC vaccines
and Th17 cells is suggested for cancer regression, which should be validated in vivo or clinically by intradermal injection or infusion
after checking safety in the future
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for cellular cancer immunotherapy by DC vaccine and
Th17 cells cocktail through Treg depletion, which
should be also validated in vitro, in vivo and clinically
in the future.
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