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Abstract

Chemoresistance, whether intrinsic or acquired, is a major obstacle in the treatment of cancer. The resistance of
cancer cells to chemotherapeutic drugs can result from various mechanisms. Over the last decade, it has been
reported that 1ong noncoding RNAs (lncRNAs) can mediate carcinogenesis and drug resistance/sensitivity in cancer
cells. This article reviews, in detail, recent studies regarding the roles of lncRNAs in mediating drug resistance.
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Background
Globally, cancer is the leading cause of mortality and in
2018, it was estimated that there were 9.6 million
cancer-related deaths [1]. Currently, the primary thera-
peutic approaches for treating cancer are chemotherapy,
radiation and surgery [2]. However, during treatment,
tumor cells can become resistant to chemotherapy due
to, but not limited to; 1) increased expression of certain
ATP-binding cassette (ABC) transport proteins that
decrease the intracellular concentration of anticancer
drugs, thereby decreasing their efficacy; 2) alterations
that allow cancer cells to avoid cell death; 3) increase in
DNA repair; 4) mutations in specific cellular targets; 5)
alterations that allow cancer cells to tolerate adverse or
stressful conditions and 6) increasing the biotransform-
ation of anticancer drugs to less efficacious or inactive
metabolites [3]. Consequently, drug resistance is still a
major challenge as it often causes therapeutic failure [4].

Furthermore, drug resistance can be present in tumor
cells before chemotherapy, a phenomenon known as
acquired drug resistance [5]. Overall, the underlying
mechanisms of resistance to chemotherapeutic drugs
remain to be fully elucidated.
The development of new technologies, in combination

with bioinformatics, has resulted in the discovery of
additional genes associated with drug resistance [6]. Fur-
thermore, it is important to note that < 2% of the human
genome encodes proteins and 98% of the transcriptional
products are short and long non-coding RNAs
(lncRNAs) [7, 8]. LncRNAs consist of more than 200
nucleotides and have no protein coding function [7].
LncRNAs are less conserved among species, are typically
expressed at low levels and often have high tissue and
development specificity [9]. LncRNAs have important
regulatory roles in many aspects of genome function,
including gene transcription, splicing, and epigenetics, as
well as biological processes involved in the cell cycle, cell
differentiation, development, and pluripotency [10].
LncRNAs have recently been identified as a new mech-
anism in drug resistance/sensitivity and has garnered
significant attention in the area of cancer research.
Indeed, numerous papers have been published over the
last decade regarding lncRNA and resistance to antican-
cer drugs. In this review, we will discuss the mechanisms
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by which lncRNAs produce drug resistance in cancer
cells.

LncRNA roles in mediating resistance to anticancer drugs
The effect of lncRNA on phase I and phase II enzymes
Alterations in drug metabolism are one of the important
and most studied mechanisms that mediate drug resist-
ance. The mechanisms of drug metabolism and dispos-
ition can be categorized as: phase I, phase II and phase
III [11]. LncRNAs can regulate certain phase I enzymes
and affect drug resistance in cancer cells. For example,
lncRNA H19 is overexpressed in colorectal cancer and
increases the intracellular aldehyde dehydrogenase
(ALDH) activity in colorectal tumors [12]. LncRNA H19
activates the β-catenin pathway by sequestering miR-
141, which contributes to tumor development and
chemoresistance in colorectal cancer tumors [12].
LncRNAs have been shown to affect the regulation of

specific phase II enzymes [13, 14]. The expression of the
lncRNA, HOX transcript antisense intergenic RNA
(HOTAIR), is positively correlated with the level of the
carbohydrate sulfotransferase (CHST15) protein in pri-
mary, as well as the number of metastatic tumor lesions
[13]. In addition, HOTAIR promotes the invasion of
breast cancer cells by affecting the expression of cell sur-
face glycosaminoglycans [13]. The lncRNA Homo sapi-
ens glutathione S-transferase mu 3, transcript variant 2
and noncoding RNA (GSTM3TV2) levels are signifi-
cantly increased in pancreatic tumor tissues and it upre-
gulates the L-type amino acid transporter 2 (LAT2) and
oxidized low-density lipoprotein receptor 1(OLR1) by
competitively sequestering let-7 (a mRNA targeting c-
Myc, HMGA2 and Ras) to induce gemcitabine resistance
in pancreatic cancer [15].

Altered drug efflux and related lncRNAs
In phase III drug disposition, the metabolites of the
drugs are eliminated and excreted by various endogen-
ous transporters that are found in the liver, small

intestine, brain and kidney, which play a role in protect-
ing tissues and organs from endogenous and xenobiotics
[16, 17]. It is well established that the overexpression of
the ABC proteins by cancer cells, which efflux anti-
cancer drugs from the cancer cells, thereby attenuat-
ing or abrogating their efficacy, mediates resistance to
certain anticancer drugs [18, 19]. Numerous studies
indicate that the members of the ABC transporter
family associated with multidrug resistance (MDR) in
cancer cells include p-glycoprotein (P-gp/ABCB1),
MRP1/ABCC1, MRP2/ABCC2, MRP4/ABCC4, and
BCRP/ABCG2 [20] (Fig. 1).
Recent studies have shown that specific lncRNAs can

affect various ABC transporters, thereby producing drug
resistance. For example, in hepatocellular cancer (HCC),
knockdown of lncRNA H19 significantly increased the
methylation of the MDR1 promoter methylation and de-
creased MDR1/P-glycoprotein expression in doxorubicin
(DOX)-resistant R-HepG2 cells [21]. In addition, the
levels of lncRNA very low density lipoprotein receptor
(VLDLR) are significantly increased in HCC, and the
knockdown of lncRNA VLDLR significantly reduced
HCC proliferation and the expression of BCRP/ABCG2,
while overexpression of BCRP/ABCG2 decreased the ef-
fect of lncRNA VLDLR1 knockdown on sorafenib-
induced cell death in HepG2 cells [22]. The lncRNA
plasmacytoma variant translocation 1 (PVT1) is highly
expressed in gastric cancer tissues of cisplatin-resistant
patients and cisplatin-resistant cells [23]. The up-
regulation of lncRNA PVT1 increased the expression of
MDR1, MRP, mammalian target of rapamycin (mTOR)
and hypoxia-inducible factor alpha (HIF-1α) and de-
creased the apoptosis produced by cisplatin in BGC823
and SGC7901 cancer cells [23]. The lncRNA MDR-
related and upregulated lncRNA (MRUL) was signifi-
cantly upregulated in the multidrug-resistant gastric
cancer cell sublines, SGC7901/ADR [resistant to doxo-
rubicin/adriamycin (DOX/ADR)] and SGC7901/VCR
[resistant to vincristine (VCR)], and its expression

Fig. 1 Schematic illustration of lncRNA-induced resistance to anticancer drugs by altering drug metabolism and drug efflux
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significantly decreased the anti-proliferative efficacy of
ADR or VCR [24]. The expression of lncRNA MRUL in-
creases the expression of P-gp/ABCB1 in an orientation-
and position-independent manner and the depletion of
MRUL decreased ABCB1 mRNA levels in a concentra-
tion - and time-dependent manner [24]. In addition, the
knockdown of lncRNA AK022798 downregulated the
expression of MRP1/ABCC1 and P-gp/ABCB1, and in-
creased apoptosis and the expression of caspase - 3 and
caspase - 8 in the cisplatin-resistant gastric cancer cell
lines, SGC7901/DDP and BGC823/DDP [25]. The
lncRNA metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) significantly upregulates MRP1/
ABCC1 and MDR1/ABCB1 by activating STAT3 in a
cisplatin (DDP) resistant non-small cell lung cancer cells
[26]. The lncRNA antisense non-coding RNA in the
INK4 locus (ANRIL) was highly expressed in the gastric
cancer tissues of cisplatin-resistant and 5-fluorouracil (5-
FU)-resistant patients, and in cisplatin-resistant cells
(BGC823/DDP) and 5-FU-resistant cells (BGC823/5-FU)
[27]. The knockdown of the lncRNA ANRIL decreased
the expression of MDR1/ABCB1 and MRP1/ABCC1, and
increased the efficacy of cisplatin or 5-FU in the cisplatin-
resistant cell line, BGC823/DDP or the 5-FU-resistant cells,
BGC823/5-FU [27]. The lncRNA KCNQ1OT1 is highly
expressed in lung adenocarcinoma cells and the knock-
down of lncRNA KCNQ1OT1 significantly decreased the
expression of MDR1/ABCB1 in A549 adenocarcinomic
human alveolar basal epithelial/human ovary cells derived
from metastatic site (PA1) cells [28]. The knockdown of
lncRNA X-inactive specific transcript (XIST) upregulates
miR-124 and downregulates serum and glucocorticoid-
inducible kinase 1 (SGK1), which increases the in vivo effi-
cacy of DOX in colorectal cancer cells by facilitating DOX-
induced apoptosis [29]. The expression of both lncRNA
linc00518 and MRP1/ABCC1 are significantly increased in
human breast cancer tissues compared to normal adjacent
tissues [30]. The downregulation of lncRNA linc00518
increased the efficacy of DOX, vincristine and paclitaxel in
MCF-7 breast cancer cells resistant to ADR and increased
the anti-tumor efficacy of ADR in vivo by regulating miR-
199a/MRP1 axis in MCF-7/ADR cells [30]. Finally, the
lncRNA bladder cancer associated transcript-1 (BLACAT1)
decreases the efficacy of oxaliplatin, a P-gp/ABCB1 sub-
strate, by increasing the expression of the ABCB1 protein
via sponging miR-361, which targets 3′-UTR of BLACAT1
and ABCB1 mRNA [31].

The inhibition of apoptosis by lncRNAs
Numerous studies have shown that the majority of che-
motherapeutic drugs used in the treatment of cancer in-
duce cell death by activating apoptosis pathways and the
dysregulation of apoptosis produces drug resistance and
enhance the survival of cancer cells [32, 33]. Recently,

the expression levels of lncRNAs have been reported to
be significantly correlated with drug resistance in various
tumors. The lncRNA E2F1-regulated inhibitor of cell
death (ERIC) is a 1.7 kb transcript up-regulated by E2F1
[34]. The knockdown of ERIC significantly increases
etoposide-induced apoptosis in osteosarcoma cells incu-
bated with etoposide, suggesting that ERIC plays a role
in mediating etoposide resistance [34]. The loss of
lncRNA p53-dependent apoptosis modulator (PDAM)
increased the expression of the anti-apoptotic protein,
BCL-2, which induces cisplatin resistance in oligo-
dendroglial tumors (Fig. 2) [35]. The overexpression of
the lncRNA prostate cancer gene expression marker 1
(PCGEM1) produces resistance to DOX-induced apop-
tosis by suppressing the cleavage of caspase - 7 in
LNCaP (cancer cells isolated from the lymph node of a
patient with prostate cancer) (Fig. 2) [36]. The lncRNA
cancer upregulated drug resistant gene (CUDR) is an
urothelial cancer associated 1 (UCA1) transcript variant
that is upregulated in many types of tumors [37]. The
overexpression of CUDR inhibits apoptosis induced by
cisplatin and increases tumorigenesis in bladder cancer
cells [37]. Moreover, CUDR produces resistance to DOX
and etoposide in squamous cell cancer [38].

The repair of damaged DNA by lncRNAs
DNA damage, which is produced by ultraviolet radiation,
ionizing radiation and genotoxic chemicals, occurs on a
constant basis [39]. DNA damage can be repaired or tol-
erated in normal cells so as to maintain cellular and
organ functions [40]. However, recurrent chemoresistant
cancer cells activate the DNA damage response more ef-
ficiently and have a higher tolerance in genotoxic stress
environments produced by chemotherapeutic drugs
compared to primary cancer cells [41].
Several lines of evidence indicate that lncRNA expression

is significantly altered in drug resistant cancers. Cisplatin,
which damages DNA and induces cell death, is a com-
monly used chemotherapeutic drug for the treatment of
non-small cell lung cancer (NSCLC) [42]. The lncRNA
DNA damage-sensitive RNA1 (DDSR1), by interacting with
BRCA1 and hnRNPUL1, increases DNA repair by inducing
homologous recombination, thereby increasing cisplatin re-
sistance in NSCLC (Fig. 2) [43, 44]. Furthermore, a number
of p53-regulated lncRNAs are stimulated in response to
DNA damage induced by chemotherapeutic drugs. The
lncRNA p21 associated ncRNA DNA damage activated
(PANDA) is activated by p53 and interacts with the protein,
nuclear transcription factor Y subunit alpha (NFYA, one of
the subunits of the trimeric protein, NF-Y, that interacts
with CCAAT motifs in promoter regions [45]) to inhibit
DNA damage-induced apoptosis in FL3 cells incubated
with DOX [46]. The lncRNA HOTAIR produces cisplatin
resistance in NSCLC by downregulating p21, an inhibitor

Liu et al. Molecular Cancer           (2020) 19:54 Page 3 of 13



of cyclin-dependent kinase that causes cell cycle arrest after
DNA damage or overexpression of p53 [47, 48].

Oxidative stress and lncRNAs
Reactive oxygen species (ROS) are cell signaling mo-
lecules produced in mitochondria during normal cell
metabolisms and high concentrations of ROS can cause
oxidative stress, producing cytotoxicity in certain cellular
environments [49–51]. Aberrant or dysregulated
ROS-scavenging systems in cancer can decrease the
susceptibility to oxidative stress, resulting in drug
resistance [52].
LncRNAs play essential roles in the cellular response

to oxidative stress. The ncRNA smoke and cancer-
associated lncRNA-1 (SCAL1) is up-regulated by the
protein transcription factor, nuclear factor erythroid 2-
related factor 2 (Nrf2) in different lung cancer cell lines
[53]. As Nrf2 plays an important role in protecting
normal cells from oxidative stresses and mediating che-
moresistance in certain cancer cells, SCAL1’s increased
expression in lung cancer cells suggests that it may pro-
vide protection from oxidative stress induced by certain
chemotherapeutic drugs (Fig. 2) [53, 54]. The lncRNA
transient receptor potential cation channel subfamily M
member 2 antisense (TRPM2-AS) codes for an oxidative
stress-activated ion channel that regulated cell survival

[55]. The lncRNA TRPM2-AS is overexpressed in the
prostate cancer cell line, PC3, and its knockdown
induced PC3 apoptosis and increased the intracellular
levels of hydrogen peroxide, a potent oxidative molecule
[55]. Furthermore, recent studies indicate that TRPM2
may have a protective effect in cells exposed to moderate
oxidative stress [56, 57] (Table 1).

Alterations in drug targets by lncRNAs
There is accumulating evidence indicating that there is
heterogeneity among various carcinoma cells, such as
pancreatic [59], breast [60], and prostate [61]. Cancer
stem cells (CSCs) have the capacity for self-renewal and
they differentiate to produce cancer cells [62]. Cancer
cells derived from CSC have genes that when expressed,
induce epithelial-mesenchymal transition (EMT), which
plays an important role in mediating metastasis [62, 63].
Emerging evidence suggests that lncRNAs mediate
tumorigenesis and drug resistance in certain types of
cancers. Below, we will discuss the potential of lncRNAs
as novel therapeutic targets for chemoresistance and
targeted drug therapy to prevent and treatment drug-
resistant cancers.
Gefitinib is a tyrosine kinase inhibitor (TKI) that an-

tagonizes the epidermal growth factor receptor (EGFR)
[64]. However, it has been previously reported that

Fig. 2 LncRNAs protect cells from anti-cancer drugs by suppressing apoptosis caused by oxidative stress or DNA damage. The lncRNA SCAL1
protects cancer cells from chemotherapeutic drug-induced oxidative damage by upregulating the transcription factor, NrF2. The lncRNA DDSR1
produces cisplatin resistance by increasing DNA repair. The lncRNA PCGEM1 prevents apoptosis by inhibiting the activation of caspase - 7. The
loss of lncRNA PDAM inhibits cisplatin induced-apoptosis by upregulating the expression of the anti-apoptotic protein, BCL-2
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cancer cells can develop resistance to gefitinib during
treatment by the following mechanisms: a second muta-
tion in the EGFR protein [65], c-MET amplification [66],
changes in signaling pathways, such asIL-6/JAK1/STAT3
[67], PIK3CA [68] and IGF1R [69], activating mutations,
RAS-MAPK pathway activation [70], and by alterations
in the tumor microenvironment [71]. A recent study re-
ported that gefitinib resistance in NSCLC is mediated by
the overexpression of LINC00665 and that the loss of
LINC00665 reduces the activation of the EGFR and Akt
pathways (which decreases cell proliferation and sur-
vival) by interacting with the enhancer of the zeste 2
polycomb repressive complex 2 subunit (EZH2) [72].
Specific drug targets of lncRNAs have been reported

to affect the progression stages in prostate cancer (PCa)
[73]. In addition, since the emergence of next-generation
sequencing, there is evidence indicating that PCa is a
molecularly heterogeneous cancer [61]. The most salient
therapeutic target in PCa is the androgen receptor (AR)
[74]. In hormone-sensitive PCa, AR signaling is regu-
lated by lncRNAs, such as HOTAIR, which represses the
degradation of the E3-ubiquintin - AR complex, which
induces castration resistant prostate cancer (CRPC) to
promote metastasis of cancer cells [75]. Gu et al. [73] re-
ported that the lncRNA bladder and prostate cancer
suppressor (LBCS) protein is overexpressed CRPC cells
and tissues, which inhibits PCa growth under castration
conditions by blocking AR signaling [73]. In hormone
sensitive PCa, transforming growth factor-beta (TGF-
beta) activates the expression of the long noncoding
RNA activated by TGF-beta (lncRNA-ATB), which up-
regulates the levels of certain EMT molecules in CRPC
and increases cyclin D1 and cyclin E levels which
increase cell proliferation and EMT [76]. In contrast, the
differentiation antagonizing non-protein coding RNA
(DANCR) produces an accelerated terminal differenti-
ation of normal prostate epithelial cells and reverses AR
signaling, repressing the metastasis in PCa cells [77, 78].
Thus, it is possible that PCa metastasis may be mediated

by positive or negative lncRNAs, depending on the sub-
type of hormone-sensitive receptors. Furthermore, the
lncRNA AR splice variant 7 and AS region of C-terminal
binding protein 1 (CTBP1-AS) downregulates CTBP1
expression by recruiting the RNA-binding transcrip-
tional repressor, PSF, and together with histone deacety-
lases, accelerates progression to CRPC in PCa cells [79,
80]. Recently, Ta et al. [81] reported a significant positive
correlation between the expression of the novel
hormone-upregulated lncRNA within LCK (HULLK)
and resistance to AR signaling. HULLK is encoded
within the lymphocyte-specific protein tyrosine kinase
(LCK), which is regulated by androgen receptors [81]. In
the presence of AR, the loss of HULLK significantly de-
creased cancer cells proliferation, whereas the overex-
pression of HULLK increased the sensitivity of PCa cells
to AR in CRPC [81]. Overall, these data may be useful in
finding novel biomarkers or more effective therapeutic
targets for clinically resistant PCa.

The effect of lncRNAs on EMT in the cytoplasm and the
nucleus
The EMT plays an important role in cancer progression,
metastasis and drug resistance [59, 82]. In various can-
cers, EMT is defined as the transformation from epithe-
lial cells to a mesenchymal phenotype [82] (Fig. 3).
Recent studies have shown a significant positive cor-

relation between the expression of EMT and CSCs and
an increase in cancer cell metastasis and resistance [83].
In aggressive cancer cells, the expression of EMT
markers increased the stemness of tumor-initiating CSCs
and the magnitude of invasiveness and metastasis [59].
LncRNAs mediate pathophysiological processes associ-

ated with hepatocellular carcinomas and regulate invasive-
ness and drug resistance. The lncRNA miR503HG is
minimally expressed in HCC and when expressed at high
levels, it inhibits HCC metastasis by regulating the hetero-
geneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1)/
NF-κB signaling pathway [84].

Table 1 LncRNAs-induced cell death in drug - resistant cancer cells

LncRNA Cancer type Drug
resistant

Mechanisms Ref

ERIC Osteosarcoma Etoposide ERIC inhibits DNA damage-induced apoptosis [34]

PDAM Oligodendroglial
tumor

Cisplatin Loss of PDAM inhibits apoptosis by increasing the expression of BCL-2 [35]

PCGEM1 Prostate cancer DOX Overexpression of PCGEM1 inhibits apoptosis by suppressing the activation of caspase 7 [36]

CUDR Bladder cancer Cisplatin Overexpression of CUDR suppresses DNA damage-induced apoptosis [37]

DDSR1 Non-small cell lung
cancer

Cisplatin DDSR1 inhibits DNA damage-induced apoptosis by promoting DNA repair with homologous
recombination

[43]

HOTAIR Non-small cell lung
cancer

Cisplatin HOTAIR contributes to cisplatin resistance via downregulation of P21 [58]

SCAL1 Non-small cell lung
cancer

Gefitinib SCAL1 is overexpressed in lung cancer cells with elevated expression of NrF2 [53,
54]
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In squamous cell carcinomas (SCCs), such as esopha-
gus, head and neck, lung and skin cancers, lncRNA have
“super-enhancer” regions that are involved in inducing
the expression of certain genes. For example, the tran-
scription factors, tumor protein p63 (TP63) and SRY-
box transcription factor 2 (SOX2), which co-bind to the
promoter and super-enhancer regions of the lncRNA
CCAT1, regulate lineage-specific expression patterns in
esophageal SCC [85]. The TP63/SOX2/CCAT1 complex
activates EGFR, which activates its downstream signaling

pathways in esophageal SCC [85]. MALAT1 is a classical
lncRNA that mediates alternative splicing, metastasis
and recurrence in several types of cancers [86]. Recent
evidence suggests that MALAT1 interacts with c-MYC,
and this complex binds to the Kinectin 1 promoter
region to enhance EGFR protein expression in SCC [87].
The MALAT-KTN1-EGFR axis plays a pivotal role in
SCC progression [87].
LncRNAs, such as epidermal growth factor-like

domain-containing protein 7 (EGFL7), which increases

Fig. 3 Schematic illustration of lncRNA-induced resistance to anticancer drugs by altering drug targets and EMT progression

Table 2 Drug targets and EMT related lncRNAs in anti-cancer drug resistance

lncRNAs Up/
down

Targets Mechanisms and function Cancers Refs

lncRNA
LBCS

up AR AR activation PCa [73]

HOXC-AS3 up H3K4me3 and
H3K27

By YBX1 regulating, promotes H3K4me3 and H3K27 acetylation GC [97]

miR503HG Down HCC [84]

HOTAIR up PCa [75]

CCAT1 up EGFR TP63 and SOX2 co-bind to the promoter and super-enhancer regions of
CCAT1

SCC [85]

URRCC up EGFL7/P-AKT/
FOXO3

AKT signaling pathway
Proliferation and metastasis

RCC [88]

lncRNA
GUARDIN

up TRF2 p53-responsive lncRNA Various cancers [98]

Linc00210 up CTNNBIP1 Wnt/β-catenin signaling activation liver cancer [99]

Linc00659 up cycle-related genes colorectal
cancer

[100]

LINC01133 up APC Wnt/β-catenin pathway gastric cancer [101]
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cancer cell proliferation and metastasis, have been iden-
tified and validated as clinical targets for genitourinary
cancers [88]. Zhai et al. [88] have shown that the novel
lncRNA URRCC accelerates the progression of renal cell

carcinoma (RCC). The expression of high levels of
URRCC are positively correlated with increased tumor
volume, clinical stages and overall survival of patients
[88]. URRCC binds to the EGFL7 promoter, resulting in

Table 3 LncRNAs with an epigenetic function in cancer

Name Cancer Mechanism Ref.

ecCEBPA Upregulated in gastric cancer; inverse correlation with CEBPA in
leukaemia cell lines.

association with DNMT1 regulates DNA methylation [106–
108]

Xist Abnormal expression in hematologic cancer. ① influences X reactivation and results in genome-wide
changes; ②directly interacts with SHARP to silence tran-
scription through HDAC3; ③binds PRC2(the epigenetic
complex responsible for trimethylation of histone H3 lysine
27 methylation), and targets PRC2 to Xi;

[109–
111]

HOTAIR Upregulated in epithelial cancer cells, such as primary breast tumors
and metastases, gastric cancer, oral squamous cell carcinoma
glioblastoma multiforme, colorectal cancer, esophageal squamous
cell carcinoma etc., and promotes cancer metastasis.

① Induces genome-wide re-targeting of PRC2 to an occu-
pancy pattern, leading to altered histone H3 lysine 27
methylation, and increased cancer invasiveness and metas-
tasis in a manner dependent on PRC2. ②HOTAIR promotes
EMT by switching histone H3 lysine 27 acetylation to
methylation at the E cadherin promoter, which induces the
transcriptional inhibition of E cadherin. ③interacts with
PRC2 and LSD1 complex, and as a histone scaffold, to in-
hibit the transcription of the HOXD cluster

[112–
117]

H19 Upregulated in different cancer types, such as colorectal cancer,
breast cancer, ovarian cancer cells, etc., and promotes oncogenesis
and drug resistance.

① Interacts with SAHH to regulate the DNMT3B -
dependent DNA methylation at different genetic loci. ②
The impact of H19 on metastasis could be due to the
sequestration of different microRNAs

[12,
118–
121]

MITA1 A new identified energy stress-inducible lncRNA that promotes hepa-
tocellular carcinoma metastasis

MITA1 may regulate the transcription of Slug to promote
the epithelial-mesenchymal transition

[122]

TARID Deregulated in various human cancers Recruits the DNA demethylation regulator, GADD45α, to
activate the transcription of the tumor suppressor gene,
TCF21.
GADD45A is an epigenetic R-loop reader that recruits the
demethylation machinery to promoter CGIs.

[123,
124]

MALAT1 Upregulated in lung cancer, gastric cancer, colorectal cancer,
hepatocellular carcinoma, thoracic aortic aneurysm;
Deregulated in breast cancer

① Oct4 transcriptionally activates MALAT1 via enhancer
binding to promote cell proliferation and motility, causing
lung tumorigenesis and poor prognosis. ② MALAT1 acts as
a competing endogenous RNA for miR-23b-3p and attenu-
ates the inhibitory effect of miR-23b-3p in GC cells. ③ the
rs664589 G allele alters the binding of MALAT1 to miR-194-
5p, resulting in increased expression of MALAT1 in colorec-
tal cancer; ④ MALAT1 regulates cancer glucose metabol-
ism, enhancing glycolysis, and inhibiting gluconeogenesis
via elevated translation of the transcription factor TCF7L2.
⑤ MALAT1 binds and inactivates the prometastatic tran-
scription factor TEAD, preventing TEAD from associating
with its co-activator, YAP, and target gene promoters in
breast cancer. ⑥ interacts with DBC1 to regulate p53
acetylation. ⑦ The HDAC9-MALAT1-BRG1 complex binds
chromatin and represses contractile protein gene expres-
sion in association with gain of histone H3-lysine 27 tri-
methylation modifications.

[125–
131]

NEAT1 Upregulated in lung cancer Oct4 transcriptionally activates NEAT1 via promoter binding
to facilitate cell proliferation and motility, causing lung
tumorigenesis and poor prognosis.

[126]

ANRIL High expression linked to poor outcome. ANRIL was identified as an
oncogene in a number of tumors such as acute myeloid leukemia,
gastric cancer, lung cancer, hepatocellular carcinoma, and esophageal
squamous cell carcinoma.

① represses the expression of adiponectin receptor
(AdipoR1), which is a key regulator of glucose metabolism,
which affects the phosphorylation of AMPK and SIRT1. ②
represses KLF2 transcription by binding to PRC2 and
recruiting it to the KLF2 promoter region.

[132–
135]

AFAP1-
AS1

High expression linked to poor outcome in non-small cell lung
cancer

AFAP1-AS1 interacts with EZH2 and recruits EZH2 to the
promoter regions of p21, epigenetically repressing p21
expression.

[136]
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the acetylation of EGFL7 at the histone H3 residue,
increasing Akt signaling, while inhibiting FOXO3
signaling, facilitating RCC proliferation and invasion
in RCC [88].

EMT and exosomal lncRNA in cancer
Exosomes are 30–100 nm in diameter, composed of pro-
teins, RNA, and DNA [89], and are secreted by extracel-
lular vesicles and released by exocytosis [90]. Exosomal
noncoding RNAs have been found in the blood, urine,

breast milk, saliva, and various tissues [91]. There is
increasing evidence indicating that exosomal RNAs are
present in various cancers and they enhance cancer pro-
gression, invasion, metastasis and tumorigenesis [92].
The levels of lncRNAs can be either increased or de-
creased in exosomes from cancer-associated fibroblasts
(CAFs), which facilitate the transition of cancer cells to
the EMT [90] (Fig. 3).
The metastasis of cancer cells can be affected by exoso-

mal lncRNAs. For example, the exosomal FMR1 antisense

Fig. 4 Schematic illustration of the effect of lncRNAs on gene expression

Fig. 5 Schematic illustration of the effect of lncRNAs on drug resistant cancer cells
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RNA1, FMR1-AS1, in female esophageal squamous cell
carcinoma (ESCC), maintains ESCC and CSC dynamic
interconversion, by activating the TLR7/NFκB/c-Myc sig-
naling pathway in ESCC [93]. Gastric cancer cells produce
and secrete the exosomal HOXA distal transcript anti-
sense RNA (HOTTIP) and it is superior to traditional bio-
markers in the serum of cancer patients, such as cancer
embryonic antigen (CEA), cancer antigen 19–9 and cancer
antigen 72–4 [94]. The lymph node metastasis-associated
transcript 2 (LNMAT2) increases lymphatic metastasis in
bladder cancer, most likely by binding to the prospero
homeobox 1(PROX1) promoter, where it regulates
PROX1 transcription by inducing hnRNPA2B1-mediated
H3 lysine 4 trimethylation, resulting in lymphangiogenesis
and lymphatic metastasis [95]. Exosomes can also be af-
fected by lncRNAs. Indeed, the lncRNA activated by the
anaphase-promoting complex subunit 1 (APC1) regulator
of the Wnt signaling pathway (lncRNA-APC1), which has
a tumor-suppressive role in colorectal carcinoma (CRC),
is activated by peroxisome proliferator-activated receptor
alpha (PPAR-α), which decreases the production of exo-
somes [96] (Table 2).

Epigenetics and related lncRNAs
It has recently been postulated that drug resistance is
linked to genetic factors (drug – induced mutations) and
epigenetic factors (drug - induced non-mutational alter-
ations of gene function) [5, 102]. LncRNAs can regulate
epigenetic modifications involved in cell cycle, cell dif-
ferentiation, development, and pluripotency of cancers
[103, 104]. Their involvement in epigenetic processes in-
clude the recruitment of histone-modifying enzymes and
DNA methyltransferases, leading to the establishment of
chromatin conformation patterns that result in the spe-
cific regulation of certain genes [105]. In the material
below, we discuss cancer-related lncRNAs that regulate
epigenetic changes by histone modifications, DNA methy-
lation and chromatin architecture (Table 3) (Fig. 4).
The lncRNA HOTAIR plays a role in cancer metastasis

and its levels are increased in epithelial cancer cells, such as
breast cancer [112], gastric cancer [113], oral squamous cell
carcinoma [114], glioblastoma multiforme [115], colorectal
cancer [116], and esophageal squamous cell carcinoma
[117]. LncRNA H19 expression is increased in various types
of cancers and it regulates DNA methylation genome wide
by regulating S-adenosylhomocysteine hydrolase to pro-
mote oncogenesis and drug resistance [118]. The lncRNA
extra coding CCAAT enhancer binding protein alpha
(ecCEBPA) is upregulated in gastric cancer cells [106]. The
lncRNA ecCEBPA regulates DNA methylation at the
CEBPA gene locus due to the interaction of ecCEBPA with
DNA methyltransferase 1(DNMT1) [107, 108]. The
lncRNAs Xist and HOTAIR interact with the proteins poly-
comb repressive complex 2 (PRC2) and lysine-specific

demethylase 1 (LSD1) to prevent the transcription of target
genes, such as HDAC3 and E-cadherin, and regulate cancer
metastasis [109, 112, 113].

Conclusions and perspectives
Apart from altered drug metabolism, drug efflux, DNA
damage repair, ROS, cell death, drug target, EMT, epi-
genetic factors, autophagy, oncogenes and microRNAs,
lncRNAs have been shown to produce drug resistance in
certain types of cancer cells. LncRNAs are also involved
in many cellular and genomic process and recent re-
search indicates their involvement in carcinogenesis.
Currently, different lncRNAs have been shown to induce
chemoresistance in cancer cells (Fig. 5). Further research
is required to identify additional lncRNAs that may be
associated with cancer cell drug resistance and delineate
their roles in carcinogenesis and chemoresistance.
Overall, accumulating research indicates that targeting
lncRNAs may be a strategy for the treatment of drug
resistance in cancer cells.
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