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Abstract

Background: Non-coding RNAs are now recognized as fundamental components of the cellular processes. Non-
coding RNAs are composed of different classes, including microRNAs (miRNAs) and long non-coding RNAs
(lncRNAs). Their detailed roles in breast cancer are still under scrutiny.

Main body: We systematically reviewed from recent literature the many functional and physical interactions of non-
coding RNAs in breast cancer. We used a data driven approach to establish the network of direct, and indirect,
interactions. Human curation was essential to de-convolute and critically assess the experimental approaches in the
reviewed articles. To enrol the scientific papers in our article cohort, due to the short time span (shorter than 5 years)
we considered the journal impact factor rather than the citation number.
The outcome of our work is the formal establishment of different sub-networks composed by non-coding RNAs and
coding genes with validated relations in human breast cancer. This review describes in a concise and unbiased fashion
the core of our current knowledge on the role of lncRNAs, miRNAs and other non-coding RNAs in breast cancer.

Conclusions: A number of coding/non-coding gene interactions have been investigated in breast cancer during recent
years and their full extent is still being established. Here, we have unveiled some of the most important networks
embracing those interactions, and described their involvement in cancer development and in its malignant progression.

Background
The non-coding RNAs are a still growing and heteroge-
neous set of genes that act upon other non-coding, or
coding, RNAs and ultimately regulate most biological
processes in the human cell. They have been extensively
studied, mainly after year 2000, in human malignancies
and particularly in the cancers of the mammary gland.
The studies on non-coding RNAs and breast cancer

(BC) prevalently investigate one or few RNAs that have
been selected from clinical genomics. Typically, such
works analyze the BC transcriptomes from retrospective
cohort studies.

We decided to apply a data-driven study selection ra-
ther than use only our human and scientific sensitivity.
Firstly, we performed two queries to isolate from
PubMed all the articles on ncRNAs and miRNAs pub-
lished in the last 5 years on BC (Table 1). To triage the
studies considered for this review we then selected the
journals based on their impact factors. A different, and
probably fairer, criterion would have been the citation
number, but this is impractical for articles with recent
publication time, such as those we wanted to consider
here. Furthermore, we let the skeleton of our work to
self-assemble using the data themselves. We explored
this procedure in our earlier organized view of the role
of non-coding RNAs in drug resistance. Using an ap-
proach where the nodes are the non-coding RNAs, or
their target genes and the edges (connections) are the
PMIDs of their relative articles, we obtained a network
that was used to organize this review. Separate groups of
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RNAs and genes that were not linked will be discussed
as separate entities or ‘sub-networks’. A statistical
analysis of the network helped to identify nodes (RNAs
or genes) with particular properties (i.e. degree, or num-
ber of interacting RNA/genes) and ultimately for
prioritization. The number of citation of an RNA/gene
depends both on its ‘real’ importance as determined by
the experimental method, or on its ‘perceived’ import-
ance, making it an element of choice by the investiga-
tors. The network of non-coding RNAs (ncRNAs) and
their targets in BC, defined using this approach is shown
in Fig. 1. The graph shows the non-coding RNAs, and
their targets, validated in at least two independent
sources from literature. The edges are directed (i.e. from
the non-coding RNA to its target). In red are depicted
the links indicating a repressive action (flat arrowhead),
while in black are those showing activation (with

traditional arrowhead). Dashed lines correspond to edges
indicating indirect effects. The network in Fig. 1 is the es-
sential core showing what remains after filtering the nodes
(non-coding RNAs) based on their degrees (i.e. the num-
ber of connections to targets). Detailed information about
the network composition are reported in Table 2. The fil-
tered out nodes, basically un-replicated findings, are
shown in Table 3. They are still worthy of consideration,
but were strictly left out of the major network.
We will discuss here the most prominent sub-

networks and their single components and interactions,
with the goal of understanding the involvement and
roles of non-coding RNAs in BC.

The miR-200/205 ZEB2 sub-network
Figure 2 shows that ZEB2 is a pivotal actor in this sub-
network, interconnecting the cluster composed by miR-

Fig. 1 The network of non-coding RNAs and its targets in breast cancer. The graph shows the non-coding RNAs (in the square nodes) cited in at
least 2 different sources from literature. Empty circles correspond to the coding genes. Each connecting line (or edge) indicates a publication
(PMID) from PubMed. When multiple edges connect the same two RNAs in the network, then multiple publications described this interaction.
The edges are directed (i.e. from the non-coding RNA to its target, being either coding or non-coding). In red are depicted the links indicating a
repressive action (flat arrowhead), while in black are those showing activation (with traditional arrowhead). Dashed lines correspond to edges
indicating indirect effects. The network is the essential core showing what remains after filtering the nodes (non-coding RNAs, in orange, and
miRNAs, in light blue) based on their degrees (i.e. the number of connections to targets or other non-coding RNAs). The network’s details are
reported in the Table 2
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200a/b/c and miR-205 with that of miR-30a/e and miR-
181. Several research groups independently asserted that
miR-200a/b/c are down-regulated in triple negative breast
cancer (TNBC) and function as metastasis suppressor re-
ducing epithelial mesenchymal transition (EMT), tumour
invasion and drug resistance [142]. MiR-200 family’s com-
ponents target other genes that antagonize malignant pro-
cesses, among them Rho GTPase-activating protein 18
(ARHGAP18), an important regulator of cell shape,
spreading, migration, and angiogenesis [143] and the lep-
tin receptor (OBR), which promotes the formation of can-
cer stem-like cells (CSCs) and up-regulates the obesity-
associated adipokine itself associated to BC [144]. Further-
more, in this subnetwork miR-205 is involved in the
modulation of basal-like BC motility mediated by the
ΔNp63α pathway, by preserving the epithelial cells charac-
ters [145]. Mir-205 also is negatively correlated with DNA
damage repair, promoting radio-sensitivity in TNBC, by
targeting the ubiquitin conjugating enzyme E2N (UBC13)
[146]. In contrast, Le et al. demonstrated that delivery of
miR-200 family (miR-200a/b/c) by extracellular vesicles,
through the circulatory system from highly metastatic
tumour cells to poorly metastatic cells, in which ZEB2 and
SEC23A were down-regulated, induced EMT and con-
ferred the ability to colonize distant tissues [147]. Further
considerations on opposite effects of ncRNAs could be
drawn by the second cluster, where the miR-30’s family
members suppressed cell invasion in vitro and bone me-
tastasis in vivo by targeting genes implicated in invasive-
ness (ITGA5, ITGB3) and osteo-mimicry (CDH11) in
TNBC [148]. Consistently, miR-30a was involved in EMT
regulation, upon TP53 stimulation, by targeting ZEB2
[149], while miR-30e displayed an onco-suppressor role
through the modulation of ataxin 1 (SCA1) and EIF5A2,
two disruptors of the BC acini morphogenesis promoted
by laminin111 (LN1) [100]. MiR-181a could also lead to a
reduction in the activation of pro-MMP-2, cell migration
and invasion of BC cells through matrix-metalloproteinase
MMP-14 [150]. In an apparently opposed fashion, Kuan-
can et al. demonstrated that miR-181a and miR-30e, once
stimulated by SOX2 activation, could promote migration
and metastasis dissemination in Basal and Luminal BC via
silencing of Tumour Suppressor Candidate 3 (TUSC3)
[151]. This subnetwork includes another crucial connec-
tion between miR-200c and miR-9, as antagonistic modu-
lators of PDGFR ß-mediated vasculogenesis in TNBC.

High levels of miR-9 exerted pro-metastatic function and
mediated the acquisition of a mesenchymal and aggressive
phenotype. In addition, miR-9 enhanced the generation of
vascular lacunae both in vitro and in vivo, in part by direct
repression of STARD13, and was also required for PDGFRß-
mediated activity. On the other hand, miR-200c in TNBC
models strongly inhibited tumour growth and impaired
tumour cell–mediated vascularization, by inhibiting PDGFRß
activity in vascular lacunae and acting on ZEB1, one of the
main transcriptional factors in EMT induction [152]. Fur-
thermore, miR-9 in collaboration with miR-203a could lead
to a CSC phenotype and to drug resistance after their release
from exosomal vesicles (EV), upon treatment with chemo-
therapeutic agents. These miRNAs target the transcription
factor One Cut Homeobox 2 (ONECUT2), whose reduction
induces the expression of a variety of stemness-associated
genes, including NOTCH1, SOX9, NANOG, OCT4, and
SOX2 [83]. Blocking the EV miRNA-ONECUT2 axis could
constitute a potential strategy to maximize the anticancer ef-
fects of chemotherapy, as well as to reduce chemoresistance.
MiR-203a can collaborate with miR-135 (not showed in this
subnetwork) to inhibit cell growth, migration and invasion,
by the down-regulation of Runx2 and IL11, MMP-13 and
PTHrP targets. Indeed, an aberrant expression of Runx2,
which promotes tumour growth and bone metastasis forma-
tion, was detected in BC [67]. This subnetwork highlights an-
other connection of miR-203a, occurring with the long non
coding UCA1 which affects directly and indirectly the snail
family transcriptional repressor 2 (SLUG). MiR-203 prevents
the induction of motility in luminal BC cells, through down-
regulation of ΔNp63α activity, and the inhibition of its SLUG
and AXL targets [145]. Of interest, UCA1 expression in BC
cells correlated with TGF-β-induced EMT and tumour me-
tastasis. Mechanistically UCA1 is up-regulated by TGF-β
and cooperates with the LINC02599 (AC026904.1) in
order to promote SLUG activation and maintenance
[1]. Furthermore, UCA1 was proposed to act as a com-
peting endogenous RNA (ceRNA) to sequester miR-
122, thus promoting BC invasion. Interestingly, a mech-
anism mediated by insulin-like growth factor 2 messen-
ger RNA binding protein (IMP1) and repressing
invasion has also been hypothesized, via UCA1 decay
through the recruitment of the CCR4-NOT1 deadeny-
lase complex. According to this model, IMP1 could
compete with UCA1 for binding to miR-122 and re-
store miRNA targets to inhibit cell invasion [153].

Table 1 Queries with keywords used for the selection of articles from PubMed

Query Items
found

”Search ((((microRNA OR miRNA OR ncRNA OR ""non coding RNA"" OR lncRNA) AND ""last 5 years""[PDat]) AND (""breast
neoplasms""[MeSH Terms] OR ""breast carcinoma"" OR ""breast cancer"")) AND ""last 5 years""[PDat]) Sort by: [pubsolr12]"

5219

”Search (ncRNA OR ""noncodingRNA"" OR ""non coding RNA"" OR lncRNA) AND ""last 5 years""[PDat]) AND (""breast neoplasms""[MeSH
Terms] OR ""breast carcinoma"" OR ""breast cancer"")) AND ""last 5 years""[PDat]) Sort by: [pubsolr12]"

4234
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Table 2 List of ncRNA-target and the type of interaction
present in the network

ncRNA Direct target Direct effect* PMID

BCAR4 HK2 pos 28963395

BCAR4 PFKFB3 pos 28963395

BCAR4 PNUTS pos 25416949

BCAR4 SNIP1 pos 25416949

Eleanor ESR1 pos 25923108

Eleanor ESR1 pos 31439835

Eleanor FOXO3 pos 31439835

H19 DNMT3B pos 31340867

H19 HIF1A pos 29106390

H19 let-7 neg 28102845

H19 let-7 neg 29106390

H19 LIN28 pos 28102845

H19 MIR675 neg 30803129

H19 PDK1 pos 29106390

H19 SAHH neg 31340867

H19 BECN1 pos 31340867

HOTAIR BRD4 pos 28846832

HOTAIR EZH2 pos 30764859

HOTAIR HBXIP pos 26719542

HOTAIR KDM1A pos 26719542

HOTAIR NLK neg 30764859

LINC00511 EZH2 pos 31395854

LINC00511 MIR185 neg 30482236

LINC00511 CDKN1B neg 31395854

LINC00511 E2F1 pos 30482236

LINK-A AKT1 pos 28218907

LINK-A BRK pos 26751287

LINK-A LRRK2 pos 26751287

LINK-A HIF1A pos 26751287

LINK-A PIP3 pos 28218907

MALAT1 ID4 pos 28652379

MALAT1 MIR216 neg 30982780

MALAT1 p53 pos 28652379

MALAT1 PNPO pos 30982780

MALAT1 SRSF1 pos 28652379

MALAT1 TEAD1 neg 30349115

MALAT1 VEGFA pos 28652379

mir-100 BMPR2 neg 25217527

mir-200b ARHGAP18 neg 28619708

mir-200b ZEB1 neg 25972084

mir-200b ZEB2 neg 25972084

mir-200b Sec23a neg 25401471

mir-200b ZEB2 neg 25401471

Table 2 List of ncRNA-target and the type of interaction
present in the network (Continued)

ncRNA Direct target Direct effect* PMID

mir-200c OBR neg 25840984

mir-200c ZEB1 neg 27402080

mir-200c Sec23a neg 25401471

mir-200c ZEB2 neg 25401471

mir-200c PDGFRB neg 27402080

mir-203a Axl neg 26292363

mir-203a ONECUT2 neg 31118200

mir-203a RUNX2 neg 25634212

mir-203a SLUG neg 26292363

mir-203a TP63 neg 26292363

mir-205 Ubc13 neg 25476932

mir-205 ZEB1 neg 25476932

mir-205 ZEB1 neg 26292362

mir-205 ZEB2 neg 26292362

MIR2052HG EGR1 pos 30944027

MIR2052HG ESR1 pos 27758888

MIR2052HG PRKCB neg 30944027

MIR2052HG AKT1 pos 27758888

MIR2052HG FOXO3 neg 27758888

MIR2052HG ESR1 pos 30944027

MIR2052HG LMTK3 pos 30944027

mir-23b AMOTL1 neg 26178901

mir-23b PLAU neg 26178901

mir-23b SLC6A14 neg 31269432

mir-25 BTG2 neg 29310680

mir-25 NCOA3 neg 28920955

mir-25 AKT1 pos 29310680

mir-25 MAPK pos 29310680

mir-25 CGAS neg 28920955

mir-27b ENPP1 neg 26065921

mir-27b PDHX neg 30012170

mir-27b ABCG2 neg 26065921

mir-29b CDC42 neg 25622979

mir-29b Hsp47 neg 25744716

mir-100 SMARCA5 neg 25217527

mir-100 SMARCD1 neg 25217527

mir-100 mTOR neg 28741069

mir-100 VEGFA neg 28741069

mir-10b BCL2L11 neg 26359455

mir-10b DYRK1A neg 27569213

mir-10b HOXD10 neg 25428807

mir-10b HOXD10 neg 26359455

mir-10b HOXD10 neg 27569213
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The LINC0511-HOTAIR subnetwork
The intergenic non-protein coding RNA 00511
(LINC00511) participates in a subnetwork with
HOTAIR (HOX transcript antisense RNA), which is
linked to the methyltransferase EZH2 and causes im-
paired cell proliferation and inhibition of apoptosis in
estrogen receptor (ER) negative BC cells [154]; in-
deed, LINC00511 promotes metastasis dissemination
by silencing NLK [155]. In this subnetwork
LINC00511 was proposed to function as a competitive
endogenous RNA, sequestering miR-185, with the ef-
fect of inducing E2F1 expression, ultimately leading
to stemness and tumorigenesis in all BC subtypes
[80]. The other subnetwork member HOTAIR, can
act as a scaffold for the late endosomal/lysosomal
adaptor, MAPK and MTOR activator 5 (HBXIP),
which promotes the expression of three MYC targets, i.e.
CCNA1, EIF4E and LDHA, as well as of the lysine
demethylase 1A (LSD1), recruited by HBXIP itself [156].
A novel isoform of HOTAIR, named HOTAIR-N, was ob-
served in association with an increase of invasion and me-
tastasis in laminin-rich extracellular matrix-based three-
dimensional organotypic cultures (lrECM 3D), compared
with traditional “Claudin-low” culture. HOTAIR-N, once

Table 2 List of ncRNA-target and the type of interaction
present in the network (Continued)

ncRNA Direct target Direct effect* PMID

mir-10b KLF4 neg 25428807

mir-10b PTEN neg 27113763

mir-10b PTEN neg 27569213

mir-10b Tbx5 neg 27569213

mir-10b AKT1 pos 27113763

mir-125a HDAC5 neg 25531695

mir-125a HER2 neg 30068375

mir-125a HER3 neg 30068375

mir-125b HER2 neg 25388283

mir-125b HER2 neg 30068375

mir-125b HER3 neg 30068375

mir-146a FN1 neg 30622118

mir-146a IRAK1 neg 25712342

mir-146a TRAF6 neg 25712342

mir-146a NF-KB1 neg 25712342

mir-181a MMP-14 neg 25977338

mir-181a TUSC3 neg 28288641

mir-182 Palladin neg 27641360

mir-182 SMAD7 neg 27996004

mir-196a HOXB7 neg 26180042

mir-196a SPRED1 neg 29685157

mir-196a HER2 neg 26180042

mir-200a Sec23a neg 25401471

mir-200a ZEB1 neg 25972084

mir-200a ZEB2 neg 25401471

mir-200a ZEB2 neg 25972084

mir-200b ARHGAP18 neg 28619708

mir-200b ZEB1 neg 25972084

mir-200b ZEB2 neg 25972084

mir-29b PIK3R1 neg 25622979

mir-29c Hsp47 neg 25744716

mir-29c TET2 neg 29109788

mir-30a CDH11 neg 30042152

mir-30a ITGA5 neg 30042152

mir-30a ITGB3 neg 30042152

mir-30a ZEB2 neg 29666469

mir-30e CDH11 neg 30042152

mir-30e EIF5A2 neg 29560860

mir-30e ITGA5 neg 30042152

mir-30e ITGB3 neg 30042152

mir-30e SCA1 neg 29560860

mir-30e TUSC3 neg 28288641

mir-34a AGO2 neg 29941603

Table 2 List of ncRNA-target and the type of interaction
present in the network (Continued)

ncRNA Direct target Direct effect* PMID

mir-34a SRC neg 26676753

mir-34a C22ORF28 neg 29187905

mir-34a eEF2K neg 29748184

mir-34a FOXM1 neg 29748184

mir-34a GFRA3 neg 28356515

mir-34a MCT-1 neg 30885232

mir-34a NOTCH1 neg 25368020

mir-34a tRNAiMET neg 29941603

mir-9 ONECUT2 neg 31118200

mir-9 STARD13 neg 27402080

mir-9 PDGFRB pos 27402080

mir-96 FOXO1 neg 27170187

mir-96 FOXO1 neg 29792692

mir-96 Palladin neg 27641360

NEAT1 FOXN3 pos 28805661

NEAT1 GATA3 neg 28805661

NEAT1 JAM1 neg 25417700

NEAT1 MIR204 neg 30803129

NEAT1 SIN3A pos 28805661

UCA1 MIR122 neg 29669595

UCA1 SLUG pos 29774079

*pos positive interaction, activation, neg negative interaction, repression
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Table 3 List of non-codingRNAs, their targets and the type of interactions, cited by only one scientific article, and therefore
excluded from the network illustrated in Fig. 1 and further described and discussed in the main text of the review

Non-coding RNA Target Type of interaction* PMID Reference

AC0269041 SNAI2 pos 29774079 [1]

AGAP2-AS1 MyD88 pos 30157918 [2]

Ai-EGOT ITPR1, HNRNPH1 pos 30999914 [3]

AK023948 AKT1 pos 28176758 [4]

ANCR EZH2 neg 27716745 [5]

ARNILA miR-204 neg 29844570 [6]

ASncmtRNA-1 CCNB1, CCND1, CDK1, CDK4, BIRC5 pos 31142736 [7]

BCYRN1 BCL2L1 pos 27277684 [8]

BORG RPAIN pos 30467380 [9]

CASIMO1 SQLE pos 29765154 [10]

CCAT1 miR-148a/152, miR-204, ANXA2, miR-211 neg 31695775 [11]

circ_0025202 miR-182-5p, FOXO3 neg 31153828 [12]

circAGFG miR-195-5p neg 30621700 [13]

circANKS1B miR-148a, miR-152 neg 30454010 [14]

circEPSTI1 miR-4753, miR-6809 neg 30083277 [15]

circFoxo3 FOXO3 pos 27886165 [16]

circGFRA1 miR-34a pos/neg 29037220 [17]

circIRAK3 miR-3607 neg 29803789 [18]

circKIF4A miR-375 neg 30744636 [19]

CYTOR mTOR, GOLPH3, KIF14, PRKCA, SMYD3 pos 27617288 [20]

DANCR RXRA, PIK3CA pos 30518934 [21]

DSCAM-AS1 HNRNPL pos 27666543 [22]

EFNA3 (NC1 and
NC2)

EFNA3 pos 25023702 [23]

ELAV1 CD133 neg 27197265 [24]

EPB41L4A-AS2 RARRES1 pos 30764831 [25]

EPIC1 CDC45, CDC20, CCNA2, CDKN1A pos 29622465 [26]

Esrp2-as ESRP2 pos 28759043 [27]

FGF13-AS1 MYCBP, IGF2BP neg 30771425 [28]

FN1 miR-200c neg 30967542 [29]

GAS5 miR-222 neg 29969658 [30]

IRAIN IGF1R neg 30195750 [31]

LncKLHDC7B KLHDC7B pos 30648789 [32]

let-7a BCL2L1 neg 26915294 [33]

LINC00673 miR-515-5p neg 31623640 [34]

LINC00968 WNT2 neg 30791958 [35]

LINC01125 LXR-623 pos 30867411 [36]

LINC01133 KLF4 pos 31283068 [37]

LINC01355 CCDN1, FOXO3 neg 31243265 [38]

LINC01638 MYCBP pos 30002443 [39]

LINC02582 USP7 neg 31601781 [40]

LINCIN NF90 (a major spliced form of interleukin enhancer binding factor 3, ILF3)
CDKN1A

pos, neg 28558830 [41]

LINCK RSL1D1, ZEB1, ZO-1, CDH1/E-cadherin, CDH2/N-cadherin, VIM pos, pos, neg, neg, pos, 30795783 [42]
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Table 3 List of non-codingRNAs, their targets and the type of interactions, cited by only one scientific article, and therefore
excluded from the network illustrated in Fig. 1 and further described and discussed in the main text of the review (Continued)

Non-coding RNA Target Type of interaction* PMID Reference

pos

LINCRNA-APOC1P1–
3

TUBA1A pos 27228351 [43]

LINC-RoR DUSP7 neg 29041978 [44]

LINC-ZNF469–3 miR-574-5p pos 29755127 [45]

LINP1 IGFBP3 pos 30725116 [46]

LncATB miR-200, TWIST1 neg 30518916 [47]

Lnc-BM JAK2/STAT pos 29130936 [48]

lncRNA152,
lncRNA67

E2F4 pos 26236012 [49]

lncRNA-Hh GAS1 pos 26418365 [50]

LOC284454 COL2A1, COL4A1 COL6A1, ITGA2 neg 29227193 [51]

MAYA MST1, YAP1 pos 28114269 [52]

MBNL1 DBNL, TACC neg 26883358 [53]

MEG3 TGFB, TGFBR1, SMAD2 neg 26205790 [54]

MIR100HG CDKN1B pos 30042378 [55]

miR-101 POMP neg 26145175 [56]

miR-103, miR-107 NKILA neg 25759022 [57]

miR-105 MXI1 neg 29588351 [58]

miR-106b BRMS1L neg 25406648 [59]

miR-1204 VDR neg 29555976 [60]

miR-122 PKM neg 25621950 [61]

miR-124 IL-11 neg 29343249 [62]

miR-1254 CCAR1 neg 27002217 [63]

miR-1285, miR-136 HERC4 neg 30710319 [64]

miR-130a PTEN neg 28935812 [65]

miR-132, miR-212 SOX4 neg 26377202 [66]

miR-135 RUNX2 neg 25634212 [67]

miR-135a1 ESR1, ESRRA, NCOA1 neg 29945962 [68]

miR-138 EZH2 neg 25339353 [69]

miR-139 MAT2A, POLQ, TOP1, TOP2A, XRCC5 neg 29180477 [70]

miR-141 TCF12 neg 26068592 [71]

miR-142 APC neg 25406066 [72]

miR-144 TET2, EIF5A2, ATXN2 neg 29109788 [73]

miR-148a DKK1 neg 29721077 [74]

miR-148b ITGA5, ALCAM neg 27328731 [75]

miR-15 BCL2 neg 26915294 [33]

miR-153 KLF5 neg 26941846 [76]

miR-155 miR-143 pos 26795347 [77]

miR-159 TCF7 neg 26794868 [78]

miR-181c PDPK1 neg 25828099 [79]

miR-185 E2F1 neg 30482236 [80]

miR-18a SREBF1 neg 29988076 [81]

miR-190 SMAD2 neg 29510731 [82]
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Table 3 List of non-codingRNAs, their targets and the type of interactions, cited by only one scientific article, and therefore
excluded from the network illustrated in Fig. 1 and further described and discussed in the main text of the review (Continued)

Non-coding RNA Target Type of interaction* PMID Reference

miR-195 ONECUT2 neg 31118200 [83]

miR-199a LCOR neg 28530657 [84]

miR-200c/141 HIPK1 neg 30613263 [85]

miR-204 PIK3CB neg 30737233 [86]

miR-206 TWF1, MAP 3 K9, SPATA6, IL-11 neg, pos, pos, pos 27435395 [87]

miR-20a MAPK1 neg 29125598 [88]

miR-21 DDX5, PTEN pos 30413718 [89]

MIR210HG miR-1226-3p neg 31399552 [90]

miR-214 miR-148b neg 27328731 [75]

miR-216b-5p PNPO neg 30982780 [91]

miR-218 ZFX neg 31310241 [92]

miR-221 Beclin1 neg 27940575 [93]

miR-24 ING5 neg 28490335 [94]

miR-31 GNA13 neg 25889182 [95]

miR-320b NRP1, ETS2 neg 26178901 [96]

miR-329, miR-362 BCAR1 neg 26337669 [97]

miR-33a ADAM9, ROS1 neg 26507842 [98]

miR-345 KISS1 neg 28981380 [99]

miR-34c EIF5A2, SCA2 neg 29560860 [100]

miR-3609, miR-5096 CDK1 neg 31142736 [7]

miR-375 TNS3, PXN, CCL2 neg 30850595 [101]

miR-424 (322)/503 BCL2, IGF1R neg 28404630 [102]

miR-4306 SIX1, CDC42, VEGFA neg 30867840 [103]

miR-4485-3p CCNB1, CCND1 neg 31142736 [7]

miR-454-3p RPRD1A, AXIN2, DKK3, SFRP1 neg 30809286 [104]

miR-4728 ESR1 neg 29476008 [105]

miR-4766-5p SIRT1 neg 29752439 [106]

miR-484 CDA neg 25643696 [107]

miR-515 NRAS, MARK4, PIK3CB neg 26882547 [108]

miR-548a SIX1 neg 29455928 [109]

miR-548j Tensin1 neg 26949125 [110]

miR-5582-3p LUCAT1, TCF7 neg 31300015 [111]

miR-600 SCD1 neg 28249169 [112]

miR-892b NF-kB, TRAF2, TAB3, TAK1 neg 26747895 [113]

miR-93 NCOA3 neg 28920955 [114]

miR-940 ARHGAP1, FAM134A neg 29440427 [115]

miR-99a Her2 neg 25388283 [116]

MPPED2-AS1 DNMT1, MPPED2 neg 31181813 [117]

NAMPT-AS POU2F2 pos 30940661 [118]

NBR2 AMPK pos 26999735 [119]

NDRG1-OT1 NDRG1 neg 30497328 [120]

NKILA Ik-B neg 25759022 [57]

NONHSAT101069 miR-129-5p neg 31444414 [121]
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Fig. 2 The miR-200 s/ZEB2 cliche

Table 3 List of non-codingRNAs, their targets and the type of interactions, cited by only one scientific article, and therefore
excluded from the network illustrated in Fig. 1 and further described and discussed in the main text of the review (Continued)

Non-coding RNA Target Type of interaction* PMID Reference

NORAD S100P neg 30967631 [122]

PDCD4-AS1 PDCD4 pos 30496290 [123]

piR-FTH1 Fth1 neg 30102404 [124]

PIWI-36712 SEPW1P neg 30636640 [125]

PIWIL3 miR-21, miR-45 neg 28094937 [126]

PNUTS miR-205, ZEB1, ZEB2 neg, pos, pos 28825698 [127]

PRLB SIRT1 pos 29752439 [106]

PTENP1 miR-20a, PTEN neg, pos 31196157 [128]

PTV1 BAP-1, CTNNB1 pos 29760406 [129]

PYCARD-AS1 DNMT1, G9 pos 31086376 [130]

RAINs RUNX2 pos 28981843 [131]

RP1 p27 neg 31073122 [132]

SNHG5 miR-154-5p neg 31255976 [133]

SPRY4-IT1 ZNF703 pos 25742952 [134]

ST8SIA6-AS1 PLK1, AURORA pos 31286138 [135]

T3p RISC, NUPR1, PANX2 neg, pos, pos 30397354 [136]

TINCR HER-2, miR-125b, Snail1 Pos, neg, pos 30621694 [137]

TROJAN ZMYND8, ZNF592 neg 30854423 [138]

WDR7–7 GPR30 pos 29096683 [139]

XIST c-Met, miR-503 neg, pos 30028120 [140]

YIYA CDK6, PFKFB3 pos 29967256 [141]

*pos positive interaction, activation, neg negative interaction, repression
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cells are attached to extracellular matrix, binds BRD4, a
reader of histone markers that recognizes trimethylation
on histone H3 lysine 4 [157].

The H19/LINK-A/MIR2052HG/miR-25/miR-10b/
Eleanor sub-network
This relatively large sub-network is depicted in Fig. 3. Lnc-
H19 and Long intergenic non-coding RNA for kinase activa-
tion 01139 (LINK-A) are both indirectly involved in the
regulation of the expression of HIF1A. In particular, H19
could induce CSC properties and tumorigenesis possibly via
LIN28 by acting as a competitive endogenous RNA towards
let-7 miRNA. Furthermore, H19 can indirectly stimulate the
expression of HIF1A and PDK1, thus promoting the glycoly-
sis pathway, a crucial step in CSC reprogramming.
H19 and PDK1 therefore may represent possible thera-

peutic targets, to contrast glycolysis and cancer stem-
like properties [158, 159]. Consistently, LINK-A is in-
volved in the normoxic HIF1A stabilization pathway,
through the recruitment of the protein tyrosine kinase 6
(BRK) and of LRRK2, that phosphorylate and activate
HIF1A itself. From a functional point of view, LINK-A is
associated with glycolysis reprogramming in TNBC and
promotes tumorigenesis [160]. H19 promotes tamoxifen
resistance and autophagy in MCF7 cells, by down-
regulating Beclin-1 methylation via epigenetic mecha-
nisms. In details, H19 inhibits adenosylhomocysteinase
(SAHH), with subsequent acyl-CoA synthetase medium
chain family member 3 (SAH) accumulation, which in
turn inhibits Beclin-1 promoter methylation by DNMT3B.
Therefore the H19/SAHH/DNMT3B axis was proposed
as a therapeutic target against tamoxifen resistance [161].
LINK-A is further connected with MIR2052HG, miR-25

and miR-10b, all known activators of AKT1. In this sub-
network a single nucleotide polymorphism (SNP),
rs12095274: A >G, in LINK-A affects the phosphorylation
status of AKT1 and is associated with AKT inhibitor-
resistance by AKT-PREX1 interactions, which results in a
worse prognosis for patients [162]. Also MIR2052HG pre-
sents a SNP (rs13260300), which have been associated
with a higher recurrence of BC and resistance to aroma-
tase inhibitors. MIR2052HG positively regulates estrogen
receptor alpha (ERα) via the AKT/FOXO3 pathway, and
limiting ERα ubiquitination [163]. MIR2052HG has shown
to regulate ERα expression by: i) promoting the recruit-
ment of EGR1 on LMTK3 promoter with reduction of
PKC activity, indirectly enhancing ERα protein levels; ii)
limiting ERα ubiquitination via PKC/MEK/ERK/RSK1
pathway. Both mechanisms have been identified as active
in the presence of the MIR2052HG SNP rs13260300 and
of aromatase inhibitors in ERα-positive BC [164]. MiR-25
can promote cell proliferation in TNBC by silencing B-cell
translocation gene 2 (BTG2) and, indirectly, by the activa-
tion of AKT and ERK-MAPK pathways [165]. Additionally
it has been reported that miR-25 interacts with miR-93
(not present in this network), to down-regulate CGAS, by
targeting NCOA3 at its promoter. Hence, it could deter-
mine immune evasion and accelerated cell cycle progres-
sion under hypoxia in Luminal A cells [114].
The other microRNA engaged in this network is miR-

10b which targets HOXD10 and KLF4 to play a pro-
oncogenic role. It can promote cell invasion and metas-
tasis formation in the TNBC subtype through its
secretion via exosomal vesicles, mediated by neutral
sphingomyelin phosphodiesterase 2 (nSMase) indeed
and it is capable of transforming non malignant HMLE

Fig. 3 The H19/LINK-A/MIR2052HG/miR-25/miR-10b/Eleanor sub-network
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cells into cells with invasion-ability [166]. Metastasis
generation and self-renewal of CSCs driven by miR-10b
are the results of the directly inhibition of miRNA target,
PTEN, and the indirectly increase of the expression of
AKT [167], as well as that of HOXD10 and BCL2 like
11(BIM) [168].
For this reason, miR-10b has been proposed as a “metas-

tamiR”, re-asserted by Kim and co-workers who focused on
its targets onco-suppressors Tbx, PTEN, DYRK1A and the
anti-metastatic gene HOXD10 [169]. Finally, Eleanor also
plays a role in the cluster of non-coding RNAs, cis-
activating both ESR1 and FOXO3 [170]. The inhibition of
Eleanor could represent a key to switch off topologically as-
sociating domain (TAD) containing proteins and to target
cells resistant to endocrine therapy [171].

The MALAT1/miR-100 partnership
The sub-network shown in Fig. 4 evidences long non-
coding MALAT1 and miR-100. These non-coding RNAs
are indirectly interconnected by VEGFA. MALAT1
modulates VEGFA isoforms expression enhancing TP53
mutations in basal-like BC subtype (BLBC). The inter-
action between MALAT1 and mutant TP53/ID4 is me-
diated by SRSF1 splicing factor and promotes MALAT1
delocalization from nuclear speckles and its recruitment
on VEGFA pre-mRNA [172].. In addition, MALAT1 acts
as competitive endogenous RNA to sponge miR-216b,
thus restoring the expression of PNPO, which is associ-
ated with promoted cell proliferation, migration and in-
vasion in invasive ductal carcinoma (IDC). MALAT1/
miR-216/PNPO pro-metastatic axis represents a target
for molecular therapy, as validated in Luminal A and
TNBC subtypes [91]. However the role of MALAT1 is
still debated. Other studies reported that MALAT1 in-
hibits the transcription of the pro-metastatic factor
TEAD, hindering the interaction between the YAP1 at
the TEAD promoters; suggesting MALAT1 as a
metastasis-suppressing factor in BLBC [173]. The trans-
fer of miR-100 via MSC-derived exosomes in cancer

cells determines the down-regulation of VEGFA secre-
tion by directly targeting mammalian target of rapamy-
cin (mTOR) and modulating mTOR/HIF-1α axis, in fact
the miR-100 up-regulation could inhibit angiogenesis
and endothelial cell proliferation in the BC microenvir-
onment [174].
Furthermore, mir-100 is negatively correlated with

CSC-like self-renewal by inhibiting the SMARCA5,
SMARCD1 and BMPR2 regulatory genes in TNBC and
Luminal A subtypes. The miR-100 involvement in the in-
hibition of metastasis has also been validated in vivo [175].

The miR-125a/b-miR196 sub-network
Figure 5 shows the miR-125/HER2 subnetwork. MiR-
125a/b target the 3’UTR region of both HER2 which ele-
vates HER3 expression levels, thus reducing HER2
mRNA levels and consequently their oncogenic effects
in cellular models, including increase of tumour growth
rates and trastuzumab resistance [176]. Consistently, the
loss of miR-125b promotes HER2 signalling, and is

Fig. 4 The MALAT1/miR-100 sub-network

Fig. 5 The miR125/HER2 subnetwork
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associated with poor prognosis in patients with Luminal
A tumours [116]. MiR-125a exerts also a crucial role in
the regulation of apoptosis by silencing of HDAC5, upon
stimulation of the RUNX3/p300 pathway, representing a
novel anticancer strategy able to activate caspase 3/9
[177]. Indirectly, also miR-196 contributes to inhibit
HER2 expression, by altering HOXB7 and HOXB7-ERα
interaction. Nevertheless, miR-196 is down-regulated by
MYC, which restores HOXB7 and promotes Luminal A
breast cancer tumorigenesis and tamoxifen resistance
[178]. On the contrary, Jiang et al. demonstrated that
miR-196a, upon stimulation by ER-α interaction, pro-
motes growth of Luminal A breast cancer inhibiting
SPRED1, a negative regulator of the RAS/RAF/MAPK
signalling, indirectly activated by miR-196 [179].

The miR-182 and miR-96 microRNAs
A study by Yu et al. focuses on the pro-metastatic miR-
182, which is associated with EMT, invasion, as well as
distant metastasis formation. MiR-182 inhibits the ex-
pression of SMAD7, which is both a transcriptional tar-
get of TGFβ and a negative regulator of TGFβ signalling
[180]. Also, miR-96 modulates the pro-apoptotic
FOXO1, a relevant target for precision therapies, and in-
spired the rational design of TargaprimiR-96 [181]. As a
proof of concept, the development of a conjugate small
molecule that selectively binds the oncogenic miR-96
hairpin precursor (RIBOTACs), is able to recruit a latent
endogenous ribonuclease (RNase L) to FOXO1 tran-
script, inducing its cleavage. Functionally the silencing of
miR-96 de-repressed FOXO1 and induced apoptosis ex-
clusively in TNBC [182]. Other articles highlight an op-
posite role for these two miRNAs. MiR-96 and miR-182
both target the 3′-UTR region of the PALLD gene.
Down-modulation of Palladin transcript expression leads
both to decreased migration and invasion of Luminal A
breast tumour cells. However, when it is present
rs1071738 SNP, a common functional variant of PALLD
gene, at the miR-96/miR-182-binding site, the 3’UTR
fails to bind the target microRNAs, compromising cell
invasion, as verified in in vitro experiments [183].

miR29b and miR-29c
MiR-29b and miR-29c both target chaperone Hsp47, a
modulator of the extracellular matrix (ECM) and promoter
of BC development; their indirect regulation of ECM genes
reduces collagen and fibronectin deposition [184].
In addition, miR-29c targets TET2, thus inhibiting the

metastatic phenotype and the genome instability induced
by the conversion of 5-methylcitosine (5-mC) to 5-
hydroxymethylcytosine (5-hmC). Nevertheless, in TNBC
this condition is antagonized by the lymphoid specific
helicase (LSH), which induces miR-29c silencing [73].

Interestingly, miR-29b can act as both inhibitor and
promoter of cell proliferation, in Luminal A and TNBC
subtypes respectively, based on differential regulation of
activation of NFkB and TP53 pathway, mediated by
S100A7. In MCF7 cells, S100A7 inhibits NFKB signalling
with a consequent upregulation of miR-29b that in turn
targets CDC42 and PIK3R1 and indirectly activates
TP53 leading to the activation of anti-proliferative path-
ways. In contrast, in MDA-MB-231 cells, miR-29b which
has a lower expression than in MCF7 cells, is suppressed
by NFkB with consequent repression of TP53 and pro-
motion of metastasis dissemination [185].

Other non-coding RNAs relevant in breast cancer
In Fig. 1 we showed all sub-networks, whose ncRNAs
have been described in at least two different sources
from literature.
One of these ncRNAs is the estrogen-inducible long

non-coding NEAT1, which has been proposed to act as
ceRNA and ‘sponge’ miR-204. MiR-204 inhibition in
turn induced impaired cell proliferation and inhibition
of apoptosis. These two processes were supported by the
H19 lncRNA [186], to promote para-speckle formation
under hypoxia condition, mediated by sequestration of
HIF2A and F11 receptor (JAM1) [187]. NEAT1 was also
involved in the promotion of invasion, EMT and metas-
tasis dissemination in Luminal A cells by interfering with
FOXN3/SIN3A interactions and leading to the repres-
sion of GATA3, a crucial regulator of EMT [188].
Another miRNA, miR-27b negatively regulates the ac-

quisition of drug resistance, and is able to induce
tumour seeding, two critical properties of CSCs. These
effects are mediated by the targeting of ENPP1 and by
indirect prevention of the over-expression of ABCG2
transporter. This function was supported by anti-type II
diabetes (T2D) drug metformin, that counteracted the
generation of CSCs [189]. MiR-27b was also shown to
promote the Warburg effect, by inhibiting the PDHX
with subsequent dysregulation of the levels of pyruvate,
lactate and citrate that increase cell proliferation in the
Luminal A and TNBC subtypes [190].
MiR23b has also been subject of recent researches, and it-

self a notable ncRNA in BC. Its exosome-mediated delivery
promoted by Docosahexaenoic acid, an anti-angiogenesis
compound, was able to suppress the pro-angiogenic targets
PLAU and AMOTL1 in Luminal A and TNBC [96]. Fur-
thermore, in ER-positive endocrine therapy resistant cells,
miR-23b was involved in the reprogramming of aminoacid
metabolism occurring in association with the down-
regulation of SLC6A14 aminoacid transporter, the stimula-
tion of autophagy and the import of aspartate and glutam-
ate by SLC1A2 transporter [191].
The lncRNA breast cancer anti-estrogen resistance 4

(BCAR4) is associated with advanced BC and metastasis.
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In response to CCL21 chemokine, BCAR4 binds SNIP1
and protein phosphatase 1 regulatory subunit 10
(PNUTS) activating the non-canonical Hedgehog/GLI2
transcriptional program and promoting cell migration
[192]. It has been demonstrated that BCAR4 is also in-
volved in the reprogramming of glucose metabolism me-
diated by YAP1 and favours the transcription of
glycolysis promoters HK2 and PFKFB3 via Hedgehog-
signalling. The activation of YAP1-BCAR4-glycolisis axis
is linked with poor prognosis, and represents an interest-
ing therapeutic target for locked nucleic acids (LNA) de-
livery, as shown by Zheng et al. [193]
In our review, miR-34a appears as the most dis-

cussed non-coding RNA, and several independent re-
search groups all pointed it out as an oncosuppressor.
MiR-34a, poorly-expressed in TNBC, revealed its anti-
tumorigenic nature by direct targeting of c-SRC [194],
GFRA3 [195], and the MCTS1 re-initiation and re-
lease factor (MCT-1). Mir-34a also indirectly modu-
lates IL-6, an interleukine associated with breast
epithelial acini morphogenesis, and with EMT stimu-
lation in TNBC [196]. Consistently, miR-34a inhibits
cancer stem cell properties and promotes doxorubicin
sensitivity in MCF7 cells, by targeting NOTCH1. In
MCF7 doxorubicin resistant (MCF7/ADR) cells, miR-
34a is expressed at low level, possibly due to TP53
mutations [197]. Other effects promoted by miR-34a

are the cell-cycle arrest and the apoptosis of TNBC
by targeting tRNAi

Met and AGO2 [198]. Furthermore,
miR-34a negatively regulates the EEF2K and FOXM1
proto-oncogenes, both associated with short-term pa-
tient survival [199].
The tumour suppressor miR146a, (and its relative miR-

146b) is up-regulated by FOXP3 and targets IRAK1 and
TRAF6 causing NF-kB inactivation in the Luminal A sub-
type. The FOXP3/miR-146/NF-kB axis limits tumour
growth and could be a valuable target for therapy [200].
The role of miR-146a includes the reduction of fibronectin
and opposing to the epithelial phenotype in TNBC subtype
with a pro-metastatic activity supported via the oncosup-
pressor WWOX, that antagonizes MYC functions [201].

Conclusions
The roles of non-coding RNAs in the establishment and
evolution of breast cancer are still under scrutiny by many
investigators currently active in the field. In this review we
performed an unsupervised and large study of the recent
literature in the last quinquennium (2014–2019). We used
a data-driven approach in order to produce the most un-
biased outcome. Orthogonally, we enforced a strict human
based curation of each article selection by the PubMed
queries. Only papers that clearly applied mechanistic ap-
proaches by using in vitro or in vivo methods were

Fig. 6 Synthesis of data-approach used to build the network ncRNAs-target. The PubMed queries used for the articles selection are shown
in Table 3
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included in this review. Thus, we excluded, and did not re-
port, papers with pure correlative analyses, which albeit
revealing would not distinguish a causative action of the
non-coding RNAs under scrutiny. All steps of our
approach are synthesized in Fig. 6.
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