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Targeting CXCR2 inhibits the progression
of lung cancer and promotes therapeutic
effect of cisplatin
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Abstract

Background: Drug-resistance and severe side effects of chemotherapeutic agents result in unsatisfied survival of
patients with lung cancer. CXCLs/CXCR2 axis plays an important role in progression of cancer including lung
cancer. However, the specific anti-cancer mechanism of targeting CXCR2 remains unclear.

Methods: Immunohistochemical analysis of CXCR2 was performed on the microarray of tumor tissues of clinical
lung adenocarcinoma and lung squamous cell carcinoma patients. CCK8 test, TUNEL immunofluorescence staining,
PI-Annexin V staining, 3-galactosidase staining, and Western blot were used to verify the role of CXCR2 in vitro.
Animal models of tail vein and subcutaneous injection were applied to investigate the therapeutic role of targeting
CXCR2. Flow cytometry, gRT-PCR, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry analysis
were performed for further mechanistic investigation.

Results: The expression of CXCR2 was elevated in both human lung cancer stroma and tumor cells, which was
associated with patients’ prognosis. Inhibition of CXCR2 promoted apoptosis, senescence, epithelial-to-
mesenchymal transition (EMT), and anti-proliferation of lung cancer cells. In vivo study showed that tumor-
associated neutrophils (TANs) were significantly infiltrate into tumor tissues of mouse model, with up-regulated
CXCLs/CXCR2 signaling and suppressive molecules, including Arg-1 and TGF-B. SB225002, a selective inhibitor of
CXCR2 showed promising therapeutic effect, and significantly reduced infiltration of neutrophils and enhanced anti-
tumor T cell activity via promoting CD8" T cell activation. Meanwhile, blockade of CXCR2 could enhance
therapeutic effect of cisplatin via regulation of neutrophils infiltration.

Conclusions: Our finds verify the therapeutic effects of targeting CXCR2 in lung cancer and uncover the potential
mechanism for the increased sensitivity to chemotherapeutic agents by antagonists of CXCR2.
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Introduction

Lung cancer is the leading course of malignancy-related
mortality worldwide. More importantly, it has surpassed
breast cancer and become the leading course of cancer
death in more developed areas. Because of air pollution,
lung cancer incidence of Chinese women is higher than
that of some European countries women despite a lower
prevalence of smoking [1]. Data has shown a fast-growing
prevalence of lung cancer in non-smoking women be-
tween 30 and 50years old [2]. Among all lung cancer
cases, non-small cell lung cancer (NSCLC) accounts for
more than 85% [3]. Despite the efforts made on the treat-
ment strategies, survival of NSCLC patients remains
unsatisfied, with a 5-year-survival around 17% [4]. Drug-
resistance developed during treatment is one of the
reasons causing low survival rate in lung cancer patients
[5]. Platinum-based regimens are first-line treatments for
lung cancer chemotherapy. Currently, the platinum com-
pounds used in NSCLC patients are cisplatin and carbo-
platin. Their antitumor activity are mainly based on the
formation of platinum-DNA adducts, which induces DNA
damage and cancer cell apoptosis. Surgical resection either
following (neoadjuvant) or followed by (adjuvant) plat-
inum agents is standard therapy for a resectable NSCLC
patients [6]. However, drug-resistance and obvious side ef-
fect of platinum-based drugs make combined therapy and
targeted therapy promising strategies. During the latest
decades, small molecular targeted therapies, such as re-
ceptor tyrosine kinase inhibitors (TKIs) and immune
checkpoint inhibitors, have provided new approach to
prove the treatment of NSCLC patients [7, 8]. The devel-
opment of immune checkpoint blockade (ICB) therapy
has revolutionized the treatment of advanced NSCLC. For
now, several immune checkpoint inhibitors have been ap-
proved by the US Food and Drug Administration (FDA)
for the treatment of NSCLC, including the PD-1 inhibitor
Nivolumab, Pembrolizumab and, PD-L1 inhibitor Atezoli-
zumab and Durvalumab [9]. However, despite the applica-
tion of these new treatment strategies, multiple immune
resistance mechanisms within tumor microenvironment
result in less satisfactory therapeutic effect.

Tumor microenvironment is consist of various non-
malignant cells like leukocytes, fibroblasts and endothe-
lial cells, and non-cellular component, such as cytokines
and chemokines. Macrophages and neutrophils are two
kinds of myeloid cells abundant in tumor microenviron-
ment. Tumor-associated immunosuppressive myeloid
cells have close relationship with poor prognosis and in-
effective treatment [10, 11]. Tumor-associated neutro-
phils (TANSs) are polarized by various factors in tumor
microenvironment, such as hypoxia and cytokines. For
example, TANs are polarized to N2 type after exposed
to TGEF-f, which is a type of pro-tumor TANs, and IFN-
y is capable to transform TANs into N1 type, which
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shows snit-tumor effect [12, 13]. Studies have shown
pro-tumor TANs (N2 type) usually hold a leading pos-
ition in progressive cancer and have been associated
with aggressive types of cancer and worse clinical out-
comes [14]. Recent studies has proven targeting tumor-
associated immunosuppressive myeloid cells enhanced
antitumor activity against lung cancer [15].

Since the first CXC chemokine, IL-8, was identified in
1980s, there have been many studies on IL-8 and its re-
ceptors [16]. Two IL-8 receptors were found: IL-8 RA
and IL-8 RB, also known as CXCR1 and CXCR2 [17].
CXCR2 shares 77% sequence homology with CXCRI,
and they both bind to IL-8 with similar affinity (Kd of
approximately 4nM) [18, 19]. However, CXCR1 only
binds to CXCL6 and CXCL8 in human and an ortholog
of CXCLB8 is missing in mouse, instead, CXCR1 is acti-
vated by CXCL1 and CXCL6, which indicates CXCR2
interacts with more ELR" chemokines with higher affin-
ity and plays a more vital role in chemotaxis of cells [20,
21]. CXCR2 is a typical G-protein-coupled receptor,
which is responsible for human CXC chemokines in-
cluding CXCL1, CXCL2, CXCL3, CXCL5, CXCLSs,
CXCL7 and CXCL8. CXCR2 with its ligands shows
powerful chemotaxis of neutrophils or myeloid-derived
suppressor cell (MDSC) and is related to tumor angio-
genesis, progression and chemoresistance [22-26]. The
expression of CXCR2 on myeloid cells from tumor bear-
ing objectives is much higher than that of healthy objec-
tives, which causes the migration of myelocytes to the
tumor [27, 28]. In lung adenocarcinoma, CXCR2 is a
poor prognostic marker and its expression is associated
with tumor invasion and metastasis [29]. Previous stud-
ies have already proved that high level of CXCR2 on
lung cancer cells is associated with smoking and poor
prognosis in clinical patients [29]. Inhibition of CXCR2
and its ligand CXCL8 significantly inhibits proliferation
and migration of lung cancer cells and decreases angio-
genesis [29-31]. Meanwhile, CXCLs/CXCR2 axis is
thought to have close relationship with tumor drug-re-
sistance [32-34]. The expressions of CXCR2 and its li-
gands are elevated during oxaliplatin treatment in prostate
cancer [35]. However, the specific mechanism underlying
the combined therapy of targeting CXCR2 and chemo-
therapeutic drugs is unclear. Radiation therapy is another
important treatment for NSCLC as a main treatment or
an adjuvant therapy. The alteration of CXCLs/CXCR?2 axis
has also been observed after radiotherapy with recruit-
ment and activation of neutrophils [36]. The finds of these
studies indicated CXCLs/CXCR2 axis played a potential
role during chemotherapy or radiotherapy for NSCLC.

In this study, we used tumor tissue microarray of lung
cancer patients and established animal models to investi-
gate the role CXCLs/CXCR2 signaling played in lung
cancer.
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Materials and methods

Patient specimens and tissue microarrays

The immunohistochemistry of a total of 93 human lung
adenocarcinoma and 90 lung squamous cell carcinoma
tissues was done by Shanghai Outdo Biotech Company,
Shanghai, China. The anti-CXCR2 antibody was pur-
chased from Abcam (ab14935). Intensity of immunobhis-
tochemical staining of CXCR2 in tumor tissue was
scored by two independent pathologists according to
semi-quantitative immunoreactivity scoring (IRS) sys-
tem. The intensity was scored as 0 (no immunostaining),
1 (weak immunostaining), 2 (moderate immunostaining)
and 3 (strong immunostaining). The percentage of posi-
tive cells in tumor stroma was documented as 0 (none),
1 (<10%), 2 (10-50%), 3 (51-80%) and 4 (> 80%). The
intensity of immunostaining score and the percentage
of immunoreactive cells were multiplied to get IRS
ranging from 0 to 12. The optimum cut-off values
were 5.0 for adenocarcinoma and 5.5 for squamous
cell carcinoma which were Youden indexes from re-
ceiver operating characteristic (ROC) curves based on
the association with the patients’ overall survival.
Kaplan-Meier survival analysis was used to determine
the relationship between CXCR2 expression and pa-
tients’ survival.

Cell proliferation and apoptosis assay

Cell proliferation was evaluated by Cell Counting Kit-
8(CCK-8; Dojindo, Kumamoto, Japan). Briefly, 5 x 10>
cells of LL2 cells were plated in 96 well plates and were
incubated with either 0.1% (v/v) DMSO (control) or
various concentrations of SB225002 (S7651, Selleck, a
potent, and selective CXCR2 antagonist with > 150-fold
selectivity over CXCR1) for 24'h, 48 h and 72 h at 37 °C.
After treatment, cells were incubated in 10% CCK-8 re-
agent for another 2h. The OD value was measured at
450 nm with a microplate reader from Bio-Rad (Micro-
plate reader 3550-UV). For apoptosis assay, 5 x 10° cells
were plated in 6-well plates and incubated with culture
medium in the presence of DMSO or various concentra-
tions of SB225002. After 24 h, cells were harvested and
washed twice with cold PBS. Those cells were stained
with Annexin V/propidium iodide (PI) (BD Biosciences)
and examined by NovoCyte Flow Cytometer (ACEA
Biosciences) and data was analyzed by NovoExpress®
software (1.3.0, ACEA Biosciences). According to
TdT-mediated dUTP Nick-End Labeling (TUNEL)
assay kit (Promega), treated cells were plated in 24-
well plates on coverslips and stained with TUNEL re-
agent and DAPI. The coverslips were then moved on
slides after washed with PBS. TUNEL staining was
analyzed with a fluorescence microscopy (Eclipse 80i;
Nikon Co., Tokyo, Japan).
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Western blot analysis

CXCL2 was chosen for activation of CXCR?2 in this ex-
periment because of its expression in LL2 and H460
cells and avoidance of trans-activation of CXCR1. The
inhibitors of SB225002 or CXCL2 (C096 & C096,
Novoprotein) was added to the LL2 or H460 cells cul-
ture medium for 24 h. After the incubation, the tumor
cells were harvested and immediately lysed with RIPA
lysis buffer (Beyotime Institute of Biotechnology) con-
taining proteinase inhibitor cocktail (Sigma-Aldrich).
The total proteins were collected and the concentrations
were determined by BCA protein assay (Pierce, Thermo
Fisher Scientific). Equal amounts of proteins were
electrophoresed and separated by SDS-PAGE gels, trans-
ferred onto Millipore PVDF membranes and blocked
with 5% BSA solution. Then, the membranes were incu-
bated at 4°C overnight with primary antibodies to
MAPK pathway-associated proteins (p38/p-p38, ERK/p-
ERK, and JNK/p-JNK), senescence-associated proteins
(p16 and p21), EMT-associated proteins (E-cadherin,
Vimentin, and Snail), GAPDH, and B-actin. The anti-
p38 (8690), anti-p-p38 (9211), anti-ERK (4695), anti-p-
ERK (4370), anti-INK (9252), anti-p-JNK (4668) were
purchased from Cell Signaling Technology. The anti-p16
(51243), anti-p21 (109199), anti-E-cadherin (76055),
anti-Vimentin (92547), anti-Snail (53519) were obtained
from Abcam. The anti-GAPDH (R1108-1) and anti-p-
actin (R1207-1) were purchased from HuaBio. Anti-
bodies were detected using HRP-conjugated secondary
antibody (Abcam) by an enhanced chemiluminescence
detection kit (Immobilon™ Western Chemiluminescent
HRP Substrate). The blots were tested for B-actin or
GAPDH to confirm equal protein loading.

Animals

Female C57BL/6 wild type mice were purchased from
Vital River (6-8weeks old, weighting 18-22 g, Beijing,
China). The mice were housed and maintained under
specific-pathogen-free (SPF) conditions in an animal fa-
cility. All of the animal experiments were performed ac-
cording to the guidelines of the Institutional Animal
Care and Use Committee of Sichuan University
(Chengdu, Sichuan, China) and protocols were approved
by the Institutional Animal Care and Use Committee of
Sichuan University (Chengdu, Sichuan, China). No
blinding experimental method was used in this study.

Tumor challenge and treatment experiments

In vivo experiment, 6—7 female C57BL/6 mice were used
in each group. The murine cancer cell lines for lung can-
cer, Lewis lung cancer (LLC, LL2) cell line was pur-
chased from ATCC and maintained at DMEM medium
supplemented with 10% fetal bovine serum (FBS) and
penicillin. CXCR2 inhibitor SB225002 was dissolved at
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1% DMSO, 20% polyethylene glycol 400, 5% tween 80,
and 74% ddH,O. Cisplatin (15663-27-1) was purchased
from MedChemExpress. Based on our preliminary ex-
perimental results and other similar researches [37, 38],
SB225002 was administered at 10 mg/kg by intraperito-
neal (i.p.) injection every day and cisplatin was adminis-
tered at 2.5mg/kg, i.p., once a week. In combination
therapy, treatment of cisplatin was initiated 3 days after
first injection of SB225002. Control groups received
solvent (1% DMSO, 20% PEG 400, and 5% Tween 80).
On day 0, LL2 cells were collected and re-suspended in
serum- and penicillin-free medium. For subcutaneous
tumor model, 100 pl cell suspension containing 1 x 10"6
was injected subcutaneously in the right flank and treat-
ment was started when the tumors were palpable. Mice
were sacrificed on day 25-28. For orthotopic lung can-
cer model, 100 pl cell suspension containing 5 x 10”5
cells was injected intravenously through tail vein and
treatment was started on day 3 ending on day 21. All
mice were randomly assigned to cohorts. Mice were
sacrificed on day 23-25.

Flow cytometry analysis

The lungs containing tumor nodules were collected after
mice were sacrificed. Mouse lung tissues were dissected
and cut into small pieces and were digested into single-
cell suspension by 1 mg/mL collagenase Type I in RPMI
1640 basic medium for 2h in 37 °C. The red blood cell
lysis buffer (154 mM NH4Cl, 10 mM KHCOj;, 0.1 mM
EDTA, pH7.4) was then added to the single-cell
suspension to lyse red blood cells (RBC). Digested cells
were washed for three times and resuspended by
phosphate-buffered solution (PBS). Cells were counted,
dispersed in PBS at 1x 10° cells/mL and stained with
1 pl fluorescence-conjugated antibodies (BD Biosciences,
1:100) for 30 min in 100 ul PBS at 4 °C. Cells were then
washed two times before flow cytometry analysis.
PerCP-Cy5.5-labelled rat anti-mouse CD45, FITC-
labelled rat anti-mouse CD11b, AP -labelled rat anti-
mouse Ly6C, PE-labelled rat anti-mouse Ly6G, PerCP-
Cy5.5-labelled rat anti-mouse CD3, FITC-labelled rat
anti-mouse CD4, APC-labelled rat anti-mouse CD8, PE-
labelled rat anti-mouse CD69 were used. Data acquisition
was performed on NovoCyte Flow Cytometer (ACEA
Biosciences, Inc., San Diego, CA, USA) and data was ana-
lyzed by NovoExpress® software (1.3.0, ACEA Biosciences,
Inc., San Diego, CA, USA, 2018).

Quantitative real-time PCR

Reverse transcription polymerase chain reaction (RT-
PCR) was used to measure mRNA transcription levels of
chemokines CXCL1, CXCL2, CXCL3, CXCL5, CXCL6,
CXCL7 and MIF, and chemokine receptors CXCR1 and
CXCR2 of human and mouse, CXCL8 of human, EMT
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associated markers E-cadherin, N-cadherin, Vimentin,
and Snail of human and mouse, senescence associated
markers pl6 and p21 of human and mouse, and cyto-
kines Arg-1, TNF-a, TGF-B, and IFN-y of mouse.
Tumor samples or cell samples were disintegrated and
homogenised mechanically using the Tissue Lyser (Qia-
gen) in RNase-free tubes. Total RNA was extracted
using RNA simple Total RNA Kit (TIANGEN, Beijing,
China) and then isolated RNA was reverse-transcribed
into ¢cDNA using Takara kit (Dalian, China). Primers
used were listed in supplementary Table 1. Real-time
PCR was performed with SYBR Green supermix (Bio-
Rad Laboratories, Hercules, CA, U.S.) using a two-step
PCR reaction procedure. Expression of those genes was
normalized to the expression of GAPDH. Dates were an-
alyzed and showed in AACt or 274" method.

Isolation and chemotaxis assay of neutrophils

All bone marrow cells were harvested from femur and
tibia by flushing bone cavities using culture medium
without FBS and filtered through 70 um nylon mesh fol-
lowing RBC lysis. The cell suspension was carefully lay-
ered onto Histopaque-1077/1119 gradient solutions
(Sigma) and was centrifuged at 700 g for 30 min. After
centrifugation, the neutrophils were aspirated from the
responding layer in accordance with the manufacturer’s
instruction. The cells were then cultured in RPMI 1640
medium supplemented with 10% FBS, penicillin, and
streptomycin. Supernatants of LL2 tumor cells were col-
lected 24h after the cells reached 70-80% density.
Isolated neutrophils were seeded in upper chamber of
Transwell system, and 1640 RPMI medium, tumor
supernatant (TS), CXCL2 or SB225002 were added to
the lower chamber. After 6 h of incubation, the number
of migrated neutrophils was calculated by flow
cytometry.

T cell suppression study

Spleens were removed from 8-week female C57BL/6
wild-type mice of and placed in a 70 um cell sieve and
gently grind the spleen until no obvious tissue mass was
seen. The n 4-5ml of lymphocyte separation fluid
(Dakewe, China) was added to re-suspend the tissues.
The cell suspension was placed in a 15ml centrifuge
tube for gradient centrifugation at 800g for 30 min.
Lymphocytes were purified from the liquid and stained
with CFSE (Invitrogen). The CFSE-labelled lymphocytes
were placed in 24-well plates supplemented complete
RPMI medium with 1pg/ml anti-CD3 (R&D Systems)
and 5 pg/ml anti-CD28 (R&D Systems) antibodies. Iso-
lated neutrophils (1:1) or tumor supernatant (50%, v/v)
were added to the 24-well plate. After incubation for 72
h, T cells were collected and stained with anti-CD3,
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anti-CD4, and anti-CD8 antibodies for flow cytometric
analysis.

Immunohistochemistry and H&E Staining
Immunohistochemistry analyses of CXCR2 expression,
tumor microenvironment were done with staining with
anti-mouse CXCR2 Ab (Abcam), anti-mouse Ly6G Ab
(Servicebio), anti-mouse TGF-f Ab(Abcam), and anti-
mouse TNF-a Ab (Abcam) using the labeled
streptavidin-biotin method. Briefly, paraffin-embedded
tissue sections were dewaxed with xylene and rehydrated
through graded concentrations of ethanol. Endogenous
peroxide was blocked with 3% H,O, for 10 min at room
temperature in the dark. Antigen retrieval was done by
heating in an autoclave in 10 mM sodium citrate buffer
(pH 6.0) for 3 min. Nonspecific binding sites were
blocked with normal goat serum for 40 min at 37°C
followed by incubation with primary antibody overnight
at 4°C. Then the slides were incubated with the appro-
priate secondary antibody conjugated to HRP at 37 °C
for 40 min and streptavidin-biotin complex at 37 °C for
another 40 min. HRP was detected with diaminobenzi-
dine peroxide solution and cell nuclei were gently coun-
terstained with hematoxylin (Beyotimelnstitute of
Biotechnology, Shanghai, China). After the sections were
hydrated as above, the tissue sections were stained with
hematoxylin and eosin (HE) for histomorphometric
analysis.

Statistical analysis

Two groups were compared with Prism software
(GraphPad) using a two-tailed unpaired Student’s t-test
or Dunnet’s t-test. Multiple groups were compared by
using One-Way ANOVA. All data were represented as
mean * SD or mean + SEM. Differences were considered
statistically significant if p values < 0.05.

Results

CXCR2 is elevated in human lung cancer tissues and
correlates with poor prognosis

To investigate the importance of CXCR2 in human lung
cancer, 90 lung squamous carcinoma and 94 lung adeno-
carcinoma patients’ tumor tissues were collected, and the
relationship between expression of CXCR2 and lung can-
cer patients’ prognosis was analyzed. The baseline charac-
teristics of the patients enrolled in this study were listed in
Table 1. The IHS scoring system utilized and percentages
of the weak, moderate and strong groups was presented in
supplementary Fig. 1 with representative images. The re-
sult showed that CXCR2 was positive in both tumor cells
and tumor stroma of most lung adenocarcinoma and
squamous cell carcinoma (Fig. la). Based on the IHC
scores of each tumor tissue, CXCR2 expression in tumor
stoma was higher than that on tumor cells (Figs. 1b and c).
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Table 1 Baseline characteristics of enrolled lung cancer patients

Characteristic Adenocarcinoma Squamous carcinoma

N % N %

Enrolled patients 94 - 90 -
Sex

Male 51 543 84 933

Female 43 457 6 6.7
Age (years) 62.2 (30-84) 62.5 (8-78)

<60 37 394 29 33

> =60 57 60.6 59 67
Pathological grade

[ 9 96 13 144

Il 74 78.7 72 80

Il 11 11.7 5 56

Stage of disease (TNM)

[ 29 312 27 318
Il 33 355 43 50.6
MMl 30 323 14 16.5
\% 1 1.1 1 1.2
Tumor (of TNM)
1 19 20.2 13 15.5
2 52 553 51 60.7
3 17 18.1 17 20.2
4 6 64 3 36

Regional Lymph Nodes (of TNM)

X 17 18.3 15 174
0 39 419 49 57
1 16 17.2 14 16.3
2 16 17.2 8 9.3
3 5 54 15 174

Expression of CXCR2 (stroma)

Low 67 744 57 66.3

High 23 256 29 337
Expression of CXCR2 (parenchyma)

Low 42 488 43 489

High 44 512 45 51.1

*Patients enrolled had no distant metastasis

Furthermore, patients with lung cancer were divided into
CXCR2-high and CXCR2-low groups according to the
Youden’s index of receiver operating characteristic (ROC)
curves for prognosis of lung cancer. The data indicated that
high expression of CXCR2 in human lung cancer tissues,
both in stroma and parenchyma, was significantly associ-
ated with shorter survival (Figs. 1d and e). These results
made CXCR2 an important negative prognostic factor in
human lung cancer.
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Fig. 1 Elevated expression of CXCR2 is associated with poor prognosis of lung cancer patients. Immunohistochemical staining of CXCR2 was
performed on the tumor pathological tissue microarrays of 93 patients with lung adenocarcinoma and 90 patients with lung squamous
carcinoma. a, IHC analysis of CXCR2 expression in parenchyma and stroma of lung adenocarcinoma tissues and lung squamous cell carcinoma
tissues. Scale bar, 50 um. b-c, IHC scores of tumor cells and stroma cells of lung adenocarcinoma tissues (b) and lung squamous cell carcinoma
tissues (c) (independently interpreted by two researchers, p=0.046 and p < 0.001, respectively). The percentage of positive cells in tumor stroma
was documented as 0 (none), 1 (< 10%), 2 (10-50%), 3 (51-80%) and 4 (> 80%). The intensity of positive cells was scored as 0 (no
immunostaining), 1 (weak immunostaining), 2 (moderate immunostaining) and 3 (strong immunostaining). The immunostaining score and the
percentage of immunoreactive cells were multiplied to get IRS ranging from 0 to 12. Data was shown as mean + SEM. d-e, Tumor cells and
stromal cells were divided into CXCR2 high-expression group and CXCR2 low-expression group according to the IHC score. The optimum cut-off
values of IHC were 5.0 for adenocarcinoma and 5.5 for squamous cell carcinoma which were based on the Youden indexes from receiver
operating characteristic (ROC) curves. The overall survival of lung adenocarcinoma (d) and lung squamous cell carcinoma patients (e) were

compared by Kaplan-Meier survival curves and the log-rank test. IHC, immunohistochemical. *p < 0.05, **p < 0.01, ***p < 0.001, ns
represents p>0.05
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CXCLs/CXCR2 axis promotes lung cancer cells
proliferation and anti-apoptosis

The result of flow cytometric analysis demonstrated that
CXCR2 was obviously expressed in murine cell line, LL2
(Lewis lung carcinoma, LLC) cell and human lung can-
cer cell line, A549, PC-9, and H460 (Fig. 2a). Meanwhile,
CXCR2-associated chemokines, such as CXCL1, CXCL2,
CXCL3, CXCL5, CXCL6, CXCL7, CXCL8 and MIF,
were also expressed by those cells (Fig. 2b). Based on the
expression levels of them, murine cell line LL2 and hu-
man cell line H460 were chosen for further analyses. Se-
lective inhibitor of CXCR2, SB225002, was confirmed to
inhibit the proliferation of lung cancer cells in a both
time-dependent and dose-dependent manner. The 50%
inhibitive concentrations (IC50) of SB225002 on LL2
cells and H460 cells for 24 h were 785.6 nM and 1263
nM, respectively (Fig. 2c). SB225002 was also capable to
induce lung cancer cells apoptosis in a dose-dependent
manner via flow cytometric analysis (Fig. 2d). TUNEL
staining further confirmed that SB225002 promoted lung
cancer cells apoptosis (Fig. 2e). All these data suggested
that CXCR2 could promote lung cancer cells prolifera-
tion and anti-apoptosis.

Blockade of CXCLs/CXCR2 promotes lung cancer cell
senescence and inhibits CXCR2-associated EMT through
p38/ERK MAPK pathway

Tumor cells usually show the ability of unlimited prolif-
eration and avoiding aging. When cells go through sen-
escence, expression of senescence-associated -
galactosidase (SA-B-gal) is up-regulated. To investigate
the role of CXCR?2 in tumor cell senescence, the expres-
sion of SA-P-gal was detected while using SB225002 on
LL2 and H460 cells. After 24 h, the result showed that
the percentage of -gal-positive cells in SB225002 group
was higher than that of control group (Fig. 3a). The
senescence-associated markers pl6 and p21 were up-
regulated after using SB225002 and down-regulated after
using CXCL2 (Fig. 3b). Epithelial to mesenchymal transi-
tion (EMT) is thought to be closely associated with
tumor metastasis, and CXCR2 is reported to regulate
cellular EMT. QRT-PCR was carried out to detect the
expression of EMT-associated markers, such as E-
cadherin, N-cadherin, Snail, and Vimentin, which were
differentially altered after administration of SB225002 or
CXCL2 (Fig. 3c). Western blotting was performed to
confirm the results of qRT-PCR (Fig. 3d). MAPK path-
way usually is important for cellular activities. After
using SB225002 and CXCL2 on LL2 cells, p38/ERK
MAPK signaling pathway was found involved in
CXCR2-associated signaling pathway. The levels of p38
and ERK proteins phosphorylation were obviously al-
tered, whereas p-JNK almost remained unchanged
during activation or inhibition of CXCR2 (Fig. 3e).
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In our experiments, by using CXCR2 inhibitor
SBB225002, CXCLs/CXCR?2 axis was found to promoted
lung cancer cells proliferation and EMT, and inhibited
lung cancer cells apoptosis and senescence via p38/ERK,
not JNK, MAPK pathway.

CXCR2" TANSs significantly infiltrated into tumor tissue of
LL2-bearing mice

In previous experiment, the expression of CXCR2 both
on tumor cells and in tumor stroma was noticed by IHC
analysis. CXCR2 is a chemokine receptor mainly
expressed on neutrophils surface. To investigate the in-
filtration of CXCR2" neutrophils in mouse model of
lung cancer, orthotopic lung cancer model and subcuta-
neous tumor model were established via tail vein
injection or subcutaneous injection of LL2 cells (Fig. 4a).
Neutrophils ~ (CD45"CD11b"Ly6C™Ly6G""  and
monocytes (CD45°'CD11b* Ly6CM&" Ly6G™) were two
groups of abundant myeloid cells in tumor microenvir-
onment. Meanwhile, those neutrophils expressed che-
mokine receptor CXCR2 (Fig. 4b). The result of flow
cytometric analyses of the tumor microenvironment of
mouse lung cancer mode showed that the percentage of
CXCR2-positive neutrophils were significantly increased,
whereas the percentage of monocytes remained
unchanged (Fig. 4c). Meanwhile, the expressions of
CXCR2-associated  chemokines (CXCL1, CXCL2,
CXCL5 and MIF) were up-regulated in lung tumor tis-
sues, which indicated the involvement of CXCR2
chemotaxis in neutrophil infiltration (Fig. 4d). Tumor
microenvironment is usually an immune-suppressive en-
vironment and promotes tumor growth. By IHC analysis,
the increased expression of CXCR2 and neutrophil
infiltration were both confirmed in lung cancer.
Immune-suppressive factors, TGF-f and Arg-1, were
also up-regulated in lung cancer at the same time (Fig.
4e). TGF-P is known to induce polarization of neutro-
phils to N2 type. N2 TANs usually secreted more TGF-p
and Arg-1, which lead to an immunosuppressive envir-
onment and contribute tumor cell immune escape [12].

Selective targeting of CXCR2 reduces tumor growth in
orthotopic lung cancer model and subcutaneous tumor
model

Based on the features of the tumor microenvironment in
lung cancer models, we reasoned that pharmacological
CXCR?2 inhibition might lead to anti-tumor response via
regulation of neutrophils infiltration and repression of
tumor cells. To confirm the therapeutic effect of CXCR2
inhibition, SB225002, a selective CXCR2 inhibitor, was
used in bothorthotopic lung cancer model and subcuta-
neous tumor model (Fig. 5a). SB225002 treatment alone
led to an obvious reduction in tumor growth of both
orthotopic lung cancer model and subcutaneous tumor
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Fig. 4 CD11b*Ly6C™Ly6G"CXCR2" neutrophils significantly infiltrate into tumor tissue of LL2-bearing mice. a, Construction of lung orthotopic
model and subcutaneous tumor model in mice, n=6-7. For lung orthotopic model, 5 x 10A5 LL2 cells were injected into tail vein of C57BL/6
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(CD457CD11b Ly6C™Ly6GMI"CXCR2™) and monocytes (CD457CD11b Ly6CM9MLy6G ™) from tumor tissues. CXCR2-unstained cells were used for
negative control. ¢, Flow cytometric analyses of neutrophils and monocytes infiltrated in the tumor microenvironment of normal and tumor-
bearing mice (left) and quantification of infiltrated immune cells (right). Data was shown as mean + SEM, n=6-7. d, The relative mRNA expression
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Immunohistochemistry staining of neutrophils” markers CXCR2 and Ly6G, and immune suppressive markers TGF-3 and Arg-1 in the lung of
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model (Fig. 5b). At the end point of orthortopic model,  of vehicle group (Fig. 5d). In subcutaneous tumor model,
tumor nodules in the lung of SB225002 group were obvious tumor growth inhibition was observed in
fewer than those of vehicle group (Fig. 5¢). Total lung  SB225002 group (Fig. 5e). After sacrifice of mice, the
weights of SB225002 group were also lighter than those  subcutaneous tumor weights from each group were
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J

shown in Fig. 5f. Furthermore, to test the potential side staining were performed for each experimental group.
effects of SB225002, the body weights were measured The result showed no obvious difference in mouse
and serum biochemical analysis and vital organ HE  weight between SB225002 (10 mg/kg, every day) group
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and control groups (Fig. 5g and h). The serum biochem-
ical analysis demonstrated that, except for a slight in-
crease (no statistical difference) in ASL and ALT,
biochemical parameters of SB225002 group did not al-
tered compared to the control groups (Supplementary
Fig. 2A). Meanwhile, HE staining of vital organ showed
no obvious organ damage in SB225002 group (Supple-
mentary Fig. 2B). Therapeutic evaluation and tolerability
study of SB225002 indicated that SB225002 (10 mg/kg,
every day) showed promising anti-tumor effects with
high safety.

Inhibition of CXCR2 decreases neutrophils with
suppressive phenotype infiltration in tumor
microenvironment

To further investigate the mechanisms involved in
CXCR?2 inhibitor-induced anti-tumor effects, we ana-
lyzed the neutrophils infiltration into tumor microenvir-
onment. Flow cytometry analysis discovered that
neutrophils (CD11b"Ly6C™Ly6G"") were significantly
decreased after treated with SB225002 while monocytes
(CDIlb*Ly6Chigh Ly6G") remained unchanged (Fig. 6a).
Blockade of CXCLs/CXCR2 using selective CXCR2 in-
hibitor SB225002 could effectively decrease the infiltra-
tion of neutrophils in tumor microenvironment. Tumor
associated neutrophils (TANs) are usually divided into
two different types, N1 and N2 type. Neutrophils of N1
type are anti-tumor type and secrete many pro-
inflammatory factors such as TNF-a and produce ROS
and H,O, to kill tumor cells [13, 39, 40]. Type N2 TANs
are known to have significantly decreased abilities in kill-
ing tumors and they secrete anti-inflammatory factors
such as TGF-$ and Arg-1 [14]. The expression level of
TGEF-B in TANs was much higher than that in neutro-
phils from peripheral blood of normal mice (nPBN) or
from peripheral blood of tumor-bearing mice (tPBN)
(Fig. 6b). Meanwhile TANs secreted less TNF-a com-
pared with nPBN and tPBN (Fig. 6¢). The chemotaxis of
neutrophils from peripheral blood to tumor microenvir-
onment is based on CXCLs/CXCR2. We further found
expression level of CXCR2 on tPBN surface was much
higher than that on nPBN surface (Fig. 6d), which might
lead to enhanced chemotaxis of neutrophils in tumor.
The result of IHC suggested inhibition of CXCR2 could
decrease neutrophil infiltration and attenuate immuno-
suppression in tumor microenvironment with decreased
levels of TGF-p and Arg-1 (Supplementary Fig. 3). In
vitro, LL2 cells were cultured for 24 h, and the primary
tumor supernatant was harvest and centrifuged to re-
move dead cells. Then we isolated neutrophils from
mice bone marrow and treated with centrifuged tumor
supernatant (TS) with a ratio of 1:1. The result of flow
cytometry analysis demonstrated that TS could effect-
ively up-regulate the expression level of CXCR2 on
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neutrophil surface (Fig. 6e). The chemotaxis of CXCLs/
CXCR?2 axis was enhanced by tumor stimulation, and we
established a co-culture system with Transwell mem-
branes (3 um). Isolated neutrophils were seeded in upper
chamber, and 1640 RPMI medium, TS, CXCL2 or
SB225002 were added to the lower chamber (Fig. 6f left).
After 6 h of incubation, the number of migrated neutro-
phils was significantly elevated by adding TS and
CXCL2, and SB225002 effectively inhibited TS and
CXCL2- induced neutrophils migration (Fig. 6f right).
Collectively, these results revealed that recruitment of
neutrophils with immune-suppressive phenotype to
tumor microenvironment was mediated by CXCLs/
CXCR?2 axis and SB225002.

Blockade of CXCR2 enhances anti-tumor T cell activity via
promoting CD8" T cell activation

Neutrophils are known to interact with T cells via anti-
gen presentation and cytokine secretion. For example,
Arg-1 is mainly secreted by tumor-infiltrating myeloid
cells, including TANs, and can directly suppress T lym-
phocytes and participate in tumor immune escape [41,
42]. In our current study, we found that after adminis-
tration of SB225002, activated CD8" T lymphocytes were
obviously elevated (Fig. 7a). Whereas activated CD4" T
lymphocytes remained unchanged (Fig. 7b). Further-
more, we detected the level of IFN-y secreted in tumor
tissues. The expression level of IFN-y was obviously up-
regulated in SB225002 treatment group (Fig. 7c). To in-
vestigate the relationship between neutrophils and T
lymphocytes, T cells were extracted from mouse spleen
and labeled with CFSE. These T cells were stimulated by
anti-CD3 and anti-CD28 antibody and then co-cultured
with TS, naive neutrophils and TS-treated neutrophils
(TANSs). Neutrophils isolated from mouse bone marrow
were able to stimulate T cell proliferation. However,
those neutrophils, after co-cultured with TS, lost the
ability to stimulate T cells proliferation (Fig. 7d). These
data indicated that, neutrophils infiltrated into tumor
microenvironment were polarized to a suppressive
phenotype. TANs then suppressed anti-tumor immune
responses via affecting the function of T lymphocytes,
mainly CD8" T lymphocytes.

SB225002 and cisplatin (DDP) show combined treatment
efficacy on lung cancer

It is reported that the expression of CXCR2 is increase
after the administration of platinum-based drugs [35,
43]. We further used combined therapy of SB225002
and cisplatin to treat LL2 cells orthotopic lung cancer
model and subcutaneous tumor model. In orthotopic
lung cancer model, compared with 23.0 lung nodules in
mice of vehicle-treated group, administration of
SB225002 or cisplatin either reduced tumor nodules in
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Fig. 6 Inhibition of CXCR2 decreases infiltration of suppressive neutrophils in the tumor microenvironment. a, Lung tissues of mice from
orthotopic lung cancer model treated with vehicle or SB225002 (10 mg/kg) were collected and digested for flow cytometric analyses of infiltrated
neutrophils (CD457CD11b Ly6C™Ly6G™") and monocytes (CD45"CD11b*Ly6C Ly6G™) in tumor microenvironment. Data was shown as mean +
SD, n=6-7. b-¢, Neutrophils (CD457CD1 1b+Ly6Cm"dLy6Gh"gh) from tumor microenvironment (TAN), peripheral blood of tumor-bearing mice
(tPBN), and peripheral blood of normal mice (nPBN) were further analyzed. TGF-3 (b) and TNF-a (c) produced by neutrophils of three groups
were determined by flow cytometry. Data was shown as mean = SD, n=6-7. d, Expression of CXCR2 on the surface of nPBN and tPBN. Data was
shown as mean + SEM from three parallel experiments, n = 3. e, Primary neutrophils were extracted from the bone marrow of healthy mice, and
then seeded in plates and treated by tumor supernatant (TS) or RPIM 1640 medium. Expression of CXCR2 on the surface of neutrophils was
detected by flow cytometry. Data was shown as mean + SEM from three parallel experiments, n= 3. f, 1 X 10A6 primary neutrophils were seeded
into the upper chamber (3 uM), and RPIM 1640 medium, LL2 cell tumor supernatant, chemokine CXCL2 (50 ng/ml), or SB225002 (500 nM) were
added into the bottom chamber (left)). After 6 h of incubation, the number of migrated neutrophils was counted by flow cytometry (right). Data
was shown as mean + SEM from three parallel experiments, n= 3. *p < 0.05, **p < 0.01, ***p < 0.001, ns represents p>0.05

the lung (14 and 10.75, respectively), and mice of
combined-therapy group showed fewer nodules (4.75,
Fig. 8a and b). Combined therapy also showed inhibition
effects on tumor growth by in orthotopic lung cancer
model (Fig. 8c). In subcutaneous tumor model, com-
bined therapy of SB225002 and cisplatin inhibited the
tumor growth compared with other 4 groups (Fig. 8d).
Tumor growth curves indicated that combined-therapy
group mice showed an obvious reduction in tumor
growth compared with other groups (Fig. 8e). SB225002
combined with cisplatin showed synergistic anti-tumor
effect in lung cancer.

After observing the combined therapeutic effect of
SB225002 and cisplatin, we hypothesized that CXCLs/
CXCR?2 signaling was changed following cisplatin treat-
ment. In vitro, LL2 cells were co-cultured with cisplatin
for 24 h. The expression levels of CXCR2-associated che-
mokines, such as CXCL1, CXCL2, and CXCL5, not MIF,
in LL2 cells were significantly increased following cis-
platin treatment (Fig. 8f). The expression of CXCR2 on
LL2 cells surface was significantly up-regulated following
cisplatin stimulation (Fig. 8g). Combination of SB225002
and DDP obviously synergistically inhibited proliferation
and anti-apoptosis of LL2 cell line (Supplementary
Fig. 4). Meanwhile, tumor cells are known to secrete im-
munosuppressive cytokines or express immunosuppres-
sive markers to modulate tumor microenvironment and
escape from anti-tumor immune response. The expres-
sion levels of PD-L1, IL-10 and TGF-f in LL2 cells were
significantly elevated after treated with cisplatin (Fig.
8h). Though CXCR2 on tumor cells was up-regulated
followed DDP treated, blockade of CXCR2 couldn’t alter
the expression of those immunosuppressive markers
(Supplementary Fig. 5). The result of flow cytometry
analysis indicated that cisplatin could also decrease the
infiltration of neutrophils compared with control group
(Fig. 8i). However, in the tumor microenvironment of
cisplatin-treated group, the remaining neutrophils
expressed the same level of TNF-a as vehicle-treated
group. After added SB225002, TNF-a secreted by neu-
trophils was significantly up-regulated compared with

cisplatin-alone group (Fig. 8j). In vitro, we collected
tumor supernatant of cisplatin-treated LL2 cells (DDP-
treated TS) and then co-cultured with neutrophils. The
expression levels of Arg-1 and TGF-p in neutrophils
were up-regulated after TS and DDP-treated TS stimula-
tion. Furthermore, neutrophils following DDP-treated
TS stimulation secreted more Arg-1 and TGF-f} and less
TNF-a and TRAIL compared with TS-treated group
(Fig. 8k). We further administrated SB225002 to confirm
the impact of CXCR2 on TANSs. Flow cytometry analysis
showed inhibition of CXCR2 could suppress the
expression of Arg-1 and TGF-Bp of DDP-treated TS-
treated TANs, which indicated that CXCR2 receptor
might affect the activation of neutrophils (Fig. 8I).
These results suggested that CXCLs/CXCR2 signaling
was up-regulated after cisplatin stimulation and cis-
platin enhanced the immune-suppression of tumor
microenvironment.

Discussion
The 5-year survival of non-small cell lung cancer pa-
tients is less than 20%, and it is obviously required to
improve anti-tumor therapy for lung cancer [44].
Platinum-based chemotherapy is the primary treatment
for lung cancer. However, drug-tolerance and poor re-
sponse of patients limit the effective use of platinum-
based drugs [5]. The results of this study indicate that
CXCR?2 is overexpressed in the tumor tissues of patients
with lung adenocarcinoma and squamous cell lung can-
cer and high expression of CXCR2 is associated with
poor prognosis. CXCLs/CXCR2 autocrine loop exist in
lung cancer cells and participate in the regulation of
apoptosis, proliferation, senescence, and EMT of tumor
cells through p38/ERK MAPK pathway. In mice of lung
cancer model, blockade of CXCR2 inhibits lung tumor
growth via decreasing immune suppressive neutrophils
infiltration, augmenting the activation of CD8" T cells
and improved therapeutic effect of cisplatin by modulat-
ing tumor microenvironment.

Mounting evidence supports the important role of
CXCR?2 in tumorigenesis and cancer patients’ prognosis.
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Fig. 8 (See legend on next page.)

p
B
Blank
Vehicle ﬂ
3
H
$B225002 z
ra
o
DDP 5
=l
DDP+SB225002
=1 2 3 455NN
C D
05 15009 - Blank
—~ 04 ) —=— Vehicle =
2 E —— SB g
E 3 1000 « B
o3 £ —— DDP i}
H - 2 —— SB+DDP s
» o
2 S 500 1« ¢
S
£ o4 E =
2
0.0
LN R A
5
< Days after inoculation(d)
F cxcL2 MIF
g 8 20 g 315
3 3 x s 3 5] ns _ns
3 3 15 3 =
K H 3 g 10
E 10 E F
x & & 2
E E o5 £ 05
3 3 00 3 £ 00
< 3 o 3 K]
& b““ s&‘ &€ &S S
& a7 & Pl
G H
: PD-L1 1L-10
80 30 10
o axn & e wen
N 3 2 2 g
. 8 60 E 3
£ 3 g0 <6
H o 40 2 3
o N % +
8- g S0 o 4
- : NP
= | | 2 -
: 0 T 0 0
CXCR2 > & > > R
RS & N €
& < &
S o°° S ooo <
I Vehicle SB DDP SB+DDP 50+
RS ke R e E 040
Ly6C = 3 EXE!
® ® 253 2
% % Q T2
: : £
oo apaponen T m S I I o IR S X o R Q1
Ly6G
J
Count - . B B E
Sw
- a H
2
P opirs O R T w0 R 520
uw
Zo
&
K L "
== Control = sB225002
— DDP-treated TS o
— -treate:
= &8 m— DDP+TS TGF-B IR I — Lt
8 20 _ 60 , =3 DDPreated TS+s8
S20 g g
3 215 2
315 < £ 40
F g 3
g 1o 3 3
H E < 20 °
2 05 @ 5 =
3 o 2
I3
0.0 oo < 5
2 R e N4
«® ,\é‘ 4“‘ &




Cheng et al. Molecular Cancer (2021) 20:62

Page 17 of 21
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Fig. 8 SB225002 and cisplatin shows combined treatment efficacy on lung cancer. LL2-bearing mice were randomly divided into 5 groups: blank
control, solvent control group (vehicle, 25% PEG 400 + 5% Tween 80 + 69%ddH20 + 1%DMS0), SB225002 group (10 mg/kg once a day), cisplatin
group (DDP, 2.5 mg/kg once a week), and SB225022 combined with DDP group. Each group contained 6-7 mice. a-¢, For lung orthotopic tumor
model, the representative picture of lung was shown (a), and the number of pulmonary nodules (b) and total lung weight (c) were counted.
Data was shown as mean + SD, n=5. d-e, For subcutaneous tumor model, the tumor growth curves (d) and mean tumor weights at the end
point of this experiment (e) were recorded. Data was shown as mean £ SD, n=4-5. f, LL2 cells were treated by cisplatin (2.5 uM and 5 uM) for 24
h and collected. The relative mRNA expression of CXCL1, CXCL2, CXCL3 and MIF of LL2 cells following cisplatin treatment. Data was shown as
mean + SEM from three parallel experiments, n= 3. g, The expression of CXCR2 on LL2 cells surface following cisplatin treatment was detected by
flow cytometry. Data was shown as mean + SEM from three parallel experiments, n = 3. h, The levels of immunosuppressive molecules of LL2 cells
following cisplatin treatment, including PD-L1, IL-10, and TGF-, were measured by flow cytometry. Data was shown as mean + SEM from three
parallel experiments, n = 3. i, Flow cytometric analyses of neutrophils infiltrated into tumor microenvironment of mice from 5 experimental
groups (left) and quantification of infiltrated neutrophils (right). Data was shown as mean + SD, n =4-5. j, The expression level of TNF-a secreted
by neutrophils by flow cytometric analyses (left) and quantification of TNF-a level (right). Data was shown as mean + SD, n =4-5. k, The relative
mMRNA expressions of Arg-1, TGF-@3, TNF-a and TRAIL of neutrophils after TS or DDP-treated TS treatment. Data was shown as mean + SEM from
three parallel experiments, n=3. 1, Based on the treatment of Fig. 8k, SB225002 of 500 nM was further administrated. The expressions of Arg-1,
TGF-B of neutrophils were detected by flow cytometry. Data was shown as mean + SEM from three parallel experiments, n = 3. SB, SB225002; TS,
tumor supernatant. *p < 0.05, **p < 0.01, ***p < 0.001, ns represents p > 0.05

Up-regulation of CXCR2 has been found in various can-
cers, such as ovarian carcinoma, pancreatic carcinoma
and breast cancer [45-47]. In the present study, CXCR2
was overexpressed in lung cancer tissues and associated
with poor overall survival of patients with NSCLC. Lung
cancer cells continuously secrete CXCR2-associated che-
mokines, and high level expressions of those chemokines
promote tumor progression and metastasis [29, 30, 48].
We employed mouse Lewis lung carcinoma cell line and
human lung cancer cell line H460, which expressed
CXCR?2 on the surface and secreted CXCR2-associated
chemokines, such as CXCL1, CXCL2, CXCL5 and MIF.
Our results support that CXCLs/CXCR2 chemokine
autocrine loop contributes to tumor cellular activities,
such as proliferation, apoptosis, senescence and EMT
[46, 49, 50]. It's worth noting that the role of CXCR2
played in cellular senescence is complicated. Some stud-
ies have suggested expression of CXCR2 maintained the
oncogenic senescence signal and promoted cellular sen-
escence [51, 52]. Our results indicated cellular senes-
cence could be inhibited by CXCLs/CXCR?2 signal [46].
However, due to oncogenic role of CXCR2 in a lot of
cancers, we infer that CXCLs/CXCR2 signal is essential
for normal/preneoplastic cells to maintain response to
oncogenic senescence signal. During the progression of
cancer, oncogene-induced senescence lose the inhibition
of carcinogenesis. Blockade of CXCLs/CXCR2 signal
might indirectly induce senescence of tumor cell. Activa-
tion of CXCR2 leads to the phosphorylation of ERK and
p38 but not of JNK, and MAPK signaling is usually asso-
ciated with cell proliferation and survival [28]. The data
makes blockade of CXCR2 a promising anti-tumor
strategy [31, 53].

Another important role of CXCR2 is to regulate neu-
trophils migration to tumor microenvironment, and
neutrophils lacking CXCR?2 are preferentially retained in
bone marrow [54]. Neutrophils of N1 type produce more

NET (neutrophils extracellular traps), ROS (reactive oxy-
gen species) and secrete TNF-a to kill tumor cells and
produce H,O, to destroy the environment for tumor
growth, inhibiting tumor metastasis [13, 39, 40].
Whereas, the expression levels of these secreted factors
are relatively low in N2 neutrophils. N2 neutrophils
show decreased ability to kill tumor cells and produce
TGF-p and Arg-1 to inhibit anti-tumor immune re-
sponse and promote tumor growth [14]. Study has found
neutrophils infiltrated into tumor microenvironment
gradually lost the features of N1 neutrophil and pro-
moted tumor progression [55]. In lung cancer model of
this study, CXCR2-associated chemokines were signifi-
cantly up-regulated and the expression of CXCR2 on
surface of neutrophils was increased following tumor
stimulation. Pharmacological inhibition of CXCR2
significantly decreased lung cancer progression with
ameliorated recruitment of neutrophils into tumor
microenvironment.

Neutrophils are known to interact with T cells via anti-
gen presentation and cytokine secretion [41, 42]. Our re-
sults demonstrated the activated CD8" T cells were
increased after SB225002 treatment in lung cancer model.
Primary neutrophils are capable to promote T cells
proliferation, which is consist with our results [41, 56].
However, neutrophils lost the capacity to stimulate T lym-
phocytes proliferation after co-cultured with tumor super-
natant. These data suggested CXCR2 targeted therapy
could inhibit lung cancer progression via decreasing the
infiltration of suppressive neutrophils and augmenting the
activation of T cells.

Platinum-based anti-tumor drugs are primary chemo-
therapeutic agents for lung cancer. CXCLs/CXCR2 axis
has been reported to affect therapeutic effects of
platinum-based drugs. In the treatment of prostate can-
cer with oxaliplatin, the expression of CXCL1, CXCL8
and CXCR2 were significantly increased, while CXCR2
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inhibitors could enhance the cytotoxicity of oxaliplatin
and achieve the combined anti-tumor effect [35]. The in-
hibitors of CXCLs/CXCR2 axis could make recurrent,
refractory tumors sensitive to chemotherapy again [32—
34]. In our experiment, SB225002 combined with cis-
platin showed combined therapeutic effect in lung can-
cer. The expression of CXCR2 and CXCR2-associated
chemokines of tumor cells were significantly increased
following cisplatin stimulation. Meanwhile, cisplatin
could reduce neutrophils infiltration into tumor micro-
environment, which was in accordance with former
study [57, 58]. However, those remaining neutrophils se-
creted less TNF-a compared with SB225002-treated
group, acting as N2 type. Therefore, we hypothesized
that cisplatin could promote immune suppression of
tumor through increasing the expression of suppres-
sive markers in tumor cells. Clinical trials have also
studied the immunogenic effect of platinum-based
therapy via combination of platinum with ICB therapy
and showed promising therapeutic effects [59]. In vitro
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experiments, the expressions of PD-L1, IL-10 and
TGE-p in tumor cells were increased after stimulation
of cisplatin. TGF-f is known to polarize neutrophils to
N2 type and has a strong immunosuppressive effect
[12, 60-62].

The results of this study highlighted the changes of
tumor microenvironment following chemotherapy or ad-
ministration of CXCR2 inhibitor. The development of
ICB therapy for cancer treatment is a landmark, includ-
ing for NSCLC. Up-regulation of PD-L1 on tumor cells
or MDSCs contributes a lot to tumor immune escape
and meanwhile affects the therapeutic effect of ICB
therapy [63]. Progression of cancer is usually accompan-
ied with infiltration of MDSCs which makes a delayed
treatment of anti-PD1 less benefit [64]. Preclinical
studies have showed promising results of combined
therapy of CXCR2 antagonists and PD-1 inhibitor [28,
65, 66]. Therefore, selective inhibition of CXCR2 shows
promising prospect in improvement of current anti-
tumor therapy.
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Currently, several CXCR2 antagonists have been inves-
tigated in clinical trials [67]. Due to the potent inhibition
for neutrophils recruitment, CXCR2 inhibitors were ini-
tially used in respiratory diseases and gradually in can-
cer. Six CXCR2 antagonists have been investigated in
clinical trials, including AZD5069, Reparixin, Danirixin,
SB-656933, Navarixin, and SX-682. Despite abundant
preclinical experiments results, there is no CXCR2
antagonists approved for use in clinic.

Conclusions

Several studies have explored the role of CXCLs/CXCR2
axis in lung cancer. Nevertheless, it is unclear what role
CXCR?2 and its chemokines are playing in the therapy of
lung cancer. In this research, we found CXCR2 expres-
sion level was significantly associated with prognosis and
survival of patients with lung cancer. Targeting CXCR2
obviously inhibited tumor growth, with decreased infil-
tration of TANs and increased response of T cells. Our
findings confirm the anti-cancer effects and safety of
CXCR2 targeted therapy. Meanwhile, based on our
study, blockade of CXCR2 could improve the traditional
therapy against lung cancer, such as cisplatin (Fig. 9).
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Additional file 3: Supplementary Fig. 3. Infiltration of neutrophils and
the levels of immune-related molecules in vehicle- versus SB225002-
treated group. A, After treatment of SB225002, neutrophils infiltration and
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Additional file 4: Supplementary Fig. 4. Combination of SB225002
and DDP inhibits LL2 cell line proliferation and promotes it apoptosis. LL2
cells were treated by cisplatin (2.5 pM) or SB225002 (500 nM) for 24 h. A,
Flow cytometric analyses of apoptotic LL2 cells stained with PI-Annexin V.
B, Quantification analyses of apoptotic cells (Annexin V-positive cells). C,
Proliferation curves of LL2 cells tested by CCK8 assay. Data was shown as
mean + SEM from three parallel experiments, n= 3. D. Combination index
(Cl) values at combined doses determined by CompuSyn. ClI values less
than 1.0 indicated synergism. *p < 0.05, **p < 0.01, ***p < 0.001, ns repre-
sents p>0.05.

Additional file 5: Supplementary Fig. 5. The impact of SB225002 on
LL2 cells treated by cisplatin. A-C, The expression of PD-L1 (A), IL-10 (B),
and TGF- () detected by flow cytometry. *p < 0.05, **p < 0.01, ***p <
0.001, ns represents p>0.05.
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