
Zheng et al. Molecular Cancer          (2021) 20:160  
https://doi.org/10.1186/s12943-021-01452-1

LETTER TO THE EDITOR

Tumor-antigens and immune landscapes 
identification for prostate adenocarcinoma 
mRNA vaccine
Xiaonan Zheng1,2,3†, Hang Xu1,2†, Xianyanling Yi1,2†, Tianyi Zhang1,2, Qiang Wei1,2, Hong Li1,2 and 
Jianzhong Ai1,2*   

Abstract 

Prostate adenocarcinoma (PRAD) is a leading cause of death among men. Messenger ribonucleic acid (mRNA) 
vaccine presents an attractive approach to achieve satisfactory outcomes; however, tumor antigen screening and 
vaccination candidates show a bottleneck in this field. We aimed to investigate the tumor antigens for mRNA vac-
cine development and immune subtypes for choosing appropriate patients for vaccination. We identified eight 
overexpressed and mutated tumor antigens with poor prognostic value of PRAD, including KLHL17, CPT1B, IQGAP3, 
LIME1, YJEFN3, KIAA1529, MSH5 and CELSR3. The correlation of those genes with antigen-presenting immune cells 
were assessed. We further identified three immune subtypes of PRAD (PRAD immune subtype [PIS] 1–3) with distinct 
clinical, molecular, and cellular characteristics. PIS1 showed better survival and immune cell infiltration, nevertheless, 
PIS2 and PIS3 showed cold tumor features with poorer prognosis and higher tumor genomic instability. Moreover, 
these immune subtypes presented distinguished association with immune checkpoints, immunogenic cell death 
modulators, and prognostic factors of PRAD. Furthermore, immune landscape characterization unraveled the immune 
heterogeneity among patients with PRAD. To summarize, our study suggests KLHL17, CPT1B, IQGAP3, LIME1, YJEFN3, 
KIAA1529, MSH5 and CELSR3 are potential antigens for PRAD mRNA vaccine development, and patients in the PIS2 
and PIS3 groups are more suitable for vaccination.
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Background
Prostate adenocarcinoma (PRAD) is the second diag-
nosed and the fifth death-related malignancy among men 
worldwide [1]. Positive responses in patients with PRAD 
were rarely observed after immunotherapies including 
programmed cell death protein 1 (PD-1), PD-Ligand 1 
(PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4). 

Previously, Sipuleucel-T brought prostate cancer immu-
notherapy into a sharper focus whereas no significant 
effect was reported regarding progression-free survival 
[2, 3]. Therefore, novel therapeutics should be developed 
for effective PRAD treatment. In the past 2 years, under 
the background of coronavirus disease-2019 pandemic, 
the enthusiasm for mRNA vaccine development, showing 
advantages of flexibility, productivity, non-genomic inte-
gration, and low immunogenicity [4], was also brought 
into the field of cancer therapy [5].

Previous phase I/II clinical trial showed good tolerabil-
ity and favorable immune activation of mRNA vaccines 
CV9103 for PRAD; however, the subsequent clinical 
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trials of CV9104 containing two more antigens (pros-
tatic acid phosphatase [PAP] and Mucin-1) were termi-
nated due to failure of improving the overall survival 
(OS) [6]. These findings indicated that antigen selection 
is critical for activating antigen-presenting cells (APCs) 
and immune response. Moreover, the identification of 
immune subtypes of patients with PRAD for mRNA vac-
cination is another crucial factor for the curative effect 
[7]. Hence, this study, exploring novel candidate tumor 
antigens for PRAD mRNA vaccine and identifying suit-
able patients for vaccination, aims to pave an avenue for 
the application of mRNA vaccine in PRAD population.

Results and discussion
Identification of potential tumor antigens of PRAD
A total of 733 overexpressed genes in TCGA-PRAD sam-
ples were identified (Fig. S1A, B) and their distribution in 
chromosomes was shown in Fig. 1A. We then identified 
10881 genes that potentially encode tumor-specific anti-
gens through calculating the fraction of altered genome 
and tumor mutational counts (Fig.  1B, C). Ten genes 
with the highest altered genome fractions and mutation 
counts were displayed in Fig. S1C and D. The 733 over-
expressed genes were then intersected with the 10881 
mutated tumor antigen-encoding genes, and 311 genes 
were identified afterwards (Fig.  S1E). Cox regression 
revealed that 13 genes were significantly associated with 
OS (Fig.  1D) and 70 genes were significantly associated 
with disease free interval (DFI) (Fig.  1E). Further inter-
section analysis indicated eight genes, including KLHL17, 
CPT1B, IQGAP3, LIME1, YJEFN3, MSH5, CELSR3 
and KIAA1529, were correlated with both OS and DFI 
(Fig.  1F). The Kaplan–Meier survival curves of OS for 
those eight genes were shown in Fig. 1G, and the higher 
expression of them was indicative of worse survival. The 
correlation between them and the infiltration of major 
APCs, including B cells, macrophages as well as den-
dritic cells (DCs), was also analyzed. Figure  1H showed 
a significantly positive correlation of IQGAP3, CELSR3, 
and KIAA1529 with APCs, whereas negative for CPT1B 
(Fig. S1F). Taken together, our evidence identified tumor-
specific antigens owning potentiality of mRNA vaccine 
development for PRAD.

To the best of our knowledge, our study is the first to 
systematically screen suitable tumor antigens for mRNA 
vaccine development in PRAD. Despite the non-appli-
cation of these antigens in mRNA vaccine development 
until the present, some of these antigens have been 
functionally explored in previous studies. For instance, 
CPT1B silencing could reduce cell proliferation and inva-
sion in PRAD cell lines and its expression level might 
be regulated by androgen receptors [8]. IQGAP3 was 
upregulated in most cancer types and predicted a poor 

prognosis. It might also participate in the Paris forrestii 
antitumor effect [9]. Besides, CELSR3 downregulation 
significantly suppresses PRAD cell proliferation and 
migration [10]. MSH5 has been reported as a pleiotropic 
susceptibility locus for several cancers and was identi-
fied as a novel candidate gene warranting additional fol-
low-up as a prospective PRAD risk locus [11]. However, 
KLHL17, KIAA1529, LIME1, and YJEFN3 were not fully 
elucidated in PRAD or other cancers. Their function in 
cancers especially PRAD warrants further exploration.

Identification and validation of the PRAD immune 
subtypes
A total of 13426 immunogenic genes were obtained from 
the MSigDB c7 datasets, 23 of which were associated 
with predictive survival outcomes through Lasso regres-
sion. The PAM algorithm accordingly identified the opti-
mal number of clusters as three based on the training 
cohort (Fig. 2A). The accumulative curve and delta area 
of clustering were displayed in Fig. S2A and B. Principal 
component analysis showed the distribution of TCGA-
PRAD individuals in each cluster (Fig. S2C), and heatmap 
revealed the differential expression of partial immuno-
genic genes across the three clusters (Fig.  S2D). Impor-
tantly, the PRAD immune subtype 1 (PIS1) consistently 
had better survival outcomes compared to the PIS2 and 
PIS3 in both training cohort (P < 0.0001) and validation 
cohort (P = 0.041) (Fig. 2B and S2C).

Clinical, mutational and immunological features 
of the PRAD immune subtypes
Clinical features of the PRAD immune subtypes were 
assessed. The predicted response to immunotherapy of 
the subtypes indicated that PIS2 and PIS3 were more 
likely to respond to anti-PD-L1 treatment (Fig.  2D). 
PIS3 had a higher frequency of biochemical recurrence 
(Fig.  2E) and pathological N1 stage and higher patho-
logical T stage (Fig.  S2E, F). Moreover, patients in PIS3 
also had a higher risk of receiving radiation therapy 
(Fig. S2G). This evidence implies that PIS2 and PIS3 are 
associated with more aggressive clinical features and 
more suitable for immunotherapy.

The correlation of existing PRAD biomarkers with 
PRAD immune subtypes was evaluated. The expres-
sion of HOXC6, whose higher expression indicated 
short survival and higher recurrence rate of PRAD [12], 
was significantly higher in PIS2 and PIS3 than in PIS1 
(Fig.  S3A). Nevertheless, PDK4 and STAT3, two clas-
sical genes whose low expression was associated with 
worse survival of PRAD [13, 14], were significantly less 
expressed in PIS2 and PIS3 (Fig. S3B and C). Notably, our 
PRAD immune subtypes were also compared with previ-
ously published pan-cancer immune subtypes. Figure 2F 
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demonstrated that the C3 subtype had a decreasing dis-
tribution, and C1 and C2 showed an increasing tendency 
across PIS1 to PIS3. Interestingly, C3 was claimed to be a 
positive marker of prognosis but C1 and C2 were nega-
tively associated with survival [15], which was consistent 
with our findings.

In terms of mutation status, PIS3 and PIS2 presented 
more frequent CNV (either gain or loss) across the 
chromosomes (Figs. 2G and S3D). Similarly, it could be 
seen from the mutation landscape of the immune sub-
types that PIS3 had a more frequent mutation of the 
top 20 most mutated genes (Fig.  S3E), and PIS2 and 
PIS3 had significantly higher tumor mutation counts 

Fig. 1  Identification of potential PRAD-specific antigens for mRNA vaccine development. A Distribution of the upregulated and downregulated 
genes across the chromosomes. B Mutation status of the top 20 mostly mutated genes of each PRAD sample. C Samples overlapping in altered 
genome fraction and mutation count groups. D Potential tumor antigens associated with the overall survival (OS) of PRAD (13 genes). E Potential 
tumor antigens associated with disease-free PRAD interval (70 genes). F Identification of tumor antigens associated with both the OS of disease-free 
PRAD interval (8 genes). G Kaplan–Meier survival curves of patients with PRAD according to the expression of eight potential tumor PRAD antigens. 
H Correlation of IQGAP3, CELSR3, and KIAA1529 expression with the infiltration of B cells, macrophages, and dendritic cells
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(Fig.  2H). In addition, tumor mutation burden (TMB) 
was also found to be significantly heavier in PIS2 (P 
= 0.0053) and PIS3 (P < 0.0001) than in PIS1 (Fig. 2I). 
Our results also demonstrated that PIS2 and PIS3 had 
higher telomeric allelic imbalance (HRD-NtAI), large 
scale transition (HRD-LST) and loss of heterozygosity 
(HRD-LOH) and combined homologous recombina-
tion deficiency (HRD scores) (Fig.  2J, S3F-H). Moreo-
ver, mRNA stemness index (mRNAsi) was also higher 
in PIS2 and PIS3 compared to that of PIS1 (Fig. 2K).

As shown in Fig.  S4A and D, the tendency of stro-
mal score, immune score, and tumor purity was vari-
able across the subtypes in both training and validation 
cohorts. In the training cohort, PIS3 had richer infil-
tration of M2 macrophages and memory B cells, but 
PIS1 had more infiltration of naïve B cells and memory-
resting CD4+ T cells (Fig.  S4B, C). Consistently, PIS3 
still had a higher degree of memory B cell infiltration 
compared to PIS1 and PIS2 in the validation cohort 
(Fig. S4E, F). Hence, PIS3 implies having a better per-
formance of presenting tumor antigen during the 
immune response.

The anticancer immune activity of the three immune 
subtypes was calculated with the TIP analysis. PIS1 per-
formed better at recruiting CD4+ T cells, Th22 cells, and 
monocytes, whereas PIS2 and PIS3 were still proved to 
be better at recruiting B cells (Fig. S5A). These outcomes 
may explain the better survival of PIS1 and also indicate 
the suitability of PIS2 and PIS3 for receiving tumor vac-
cines. As for the immune modulators, a total of 37 ICP 
genes and 25 ICD genes were analyzed, which revealed 
that 31 ICP genes and 18 ICD genes were differentially 
expressed across the immune subtypes in the training 
cohort from TCGA datasets (Fig. S5B, C). Interestingly, 
fewer ICPs and ICDs were significantly differentially 
expressed among three clusters in the GEO cohorts, and 
the PIS3 cluster showed markedly lower ICP and ICD 
expression (Fig.  S5D, E). These findings indicated that 
the immunotyping showed a distinct expression pat-
tern of ICPs and ICDs, and these modulators could be 
utilized as potential markers for treatment with mRNA 
vaccines.

Immune subtype‑based landscape of PRAD
The gene expression value of each patient across the 
three PRAD immune subtypes was used to build the 
immune landscape of PRAD (Fig.  2L), with PIS1, PIS2 
and PIS3 were generally distributed in different branches 
of the tree. Principal component 1 (horizontal axis) was 
positively correlated with plasma cells and M2 mac-
rophages, but negatively correlated with naïve B cells, 
resting DCs and M1macrophages. Interestingly, princi-
pal component 2 (vertical axis) had a positive correlation 
with DCs and naïve B cells, but a negative correlation 
with M0 and M1 macrophages (Fig.  2M). The general 
distribution of PIS1 can be observed to contrast PIS3. 
Also, individuals within the same immune subtype of 
PIS1 and PIS3 showed opposing distribution. Therefore, 
PIS1 and PIS3 were further divided (Fig.  2N), which 
turned out that PIS1A had a generally higher enrich-
ment score regarding activated DCs and memory B cells 
compared to PIS1B (Fig.  S6A). Similarly, PIS3A had a 
higher enrichment score of activated DCs, activated B 
cells and memory B cells than PIS3B (Fig. S6B). There-
fore, tumor antigen may be more effective in PIS1A 
and PIS3A compared to PIS1B and PIS3B, respectively. 
Besides, individuals with extreme distribution in the 
immune landscape (Fig. 2O) were taken into further sur-
vival analysis. Group N1 was associated with the worst 
survival and group N3 had the best survival outcomes 
(P = 0.0011) (Fig. 2P). The immune subtype-based land-
scape can potentially designate the precise mRNA vac-
cine therapeutics for patients with PRAD by identifying 
immune components of patients with PRAD and predict 
survival.

Weighted immunogenic gene co‑expression network 
of PRAD
WGCNA with a fixed soft threshold of nine was used 
to construct the immunogenic gene co-expression net-
work of PRAD (Fig.  S7A-C). Eventually, 9 co-expres-
sion modules were obtained (Fig.  S7D, E). Distribution 
analysis showed that PRAD immune subtypes were dif-
ferentially distributed in most of the modules (Fig. S7F). 
The negative prognostic value of the pink (Hazard 
ratio (HR) 2.30, 95% CI 1.59–3.32), magenta (HR 2.19, 
95% CI 1.56–3.08), and purple modules (HR 1.61, 95% 

(See figure on next page.)
Fig. 2  Identification of immune subtypes and immune landscape of PRAD. A Identification of the clusters of TCGA-PRAD cohort using partition 
around medoids algorithm. B-C Survival comparison among the PRAD immune subtypes in the training cohort and validation cohort. D The 
prediction of the response to anti-PD-L1 immunotherapy for PRAD immune subtypes. E The distribution of PIS1, PIS2, and PIS3 in the groups with 
or without biochemical recurrence. F Association between PRAD immune subtypes and existing pan-cancer immune subtypes. G Copy number 
variation (CNV) across chromosomes across the PRAD immune subtypes. H-I Mutation counts and tumor mutation burden across PIS1, PIS2, and 
PIS3. J Homologous recombination deficiency score for each PRAD immune subtype. K The comparison of mRNA stemness index across PIS1 
to PIS3. L Immune landscape of PRAD. Each point represents a patient and the immune subtypes are color-coded. M Association between two 
principal components and immune cells. N Immune landscape of the PIS1 and PIS3 subsets. O Immune landscape of four subsets of samples from 
extreme locations. P Survival curves of four subsets of samples from extreme locations. * P < 0.01, ** P < 0.001, and *** P < 0.0001
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Fig. 2  (See legend on previous page.)
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CI 1.16–2.24) were presented in Fig.  S8A. The biologi-
cal function of the prognostic modules, including B cell 
activation, and regulation of adaptive immune response 
were also displayed in Fig. S8B–D. 62 hub genes in the 
prognostic modules were identified, and three of them 
(CDC20, ESPL1, MAPK8IP3) were eventually selected 
after multivariate Cox regression (Fig.  S8E, F). Patients 
were divided into the high-risk and low-risk groups. 
KM curve demonstrated that the high-risk group had 
worse survival (P = 0.0011) and the area under the 
receiver operating curve (AUC) was 0.852, indicating a 
good accuracy of the model (Fig. S8G, H). Thus, this risk 
model based on immunogenic genes co-expression net-
work may work as a novel biomarker for predicting the 
prognosis.

DEG‑based risk model construction
391 DEGs across PRAD immune subtypes were found 
and displayed (Fig.  S9A, B). The prognostic value of 
these DEGs was calculated and 93 DEGs were prog-
nostic. Lasso regression reduced the dimension of 
these DEGs and 21 genes were finally used to con-
struct the risk model (Fig.  S9C–F). The risk of each 
patient was calculated based on the expression value of 
the 21 genes and their coefficients in Lasso regression 
(Fig. S9G, H). Patients were categorized into high-risk 
or low-risk groups, and the high-risk group had worse 
survival with an AUC of 0.892 (Fig. S10A, B). Consist-
ently, Fig. S10C and D summarized that PIS2 and PIS3 
had higher risk scores with more PIS1 were distrib-
uted in the low-risk group, which in reverse proved 
the accuracy of PRAD immune subtype in predicting 
PRAD prognosis.

Conclusions
In this study, KLHL17, CPT1B, IQGAP3, LIME1, 
YJEFN3, KIAA1529, MSH5 and CELSR3 were identified 
as potential tumor-specific antigens for PRAD mRNA 
vaccine development. PRAD patients of PIS2 and PIS3 
might be suitable candidates of vaccination. These find-
ings provided new sights in selecting antigens and popu-
lations for future PRAD mRNA vaccine development and 
application.

Methods and availability of supporting data
Methods and materials used in our study are attached as 
Supplementary information. All data are freely available 
from the public databases and the other necessary and 
reasonable information could be obtained from the cor-
responding author.
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samples. D. Top 10 genes with the highest mutation count in the PRAD 
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YJEFN3, and MSH5 expression with the infiltration of B cells, macrophages, 
and dendritic cells.
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(B) of clustering. C. Principal component analysis of the distribution of 
each individual in three clusters in the training cohort. D. The differential 
expression of 23 prognostic immunogenic genes across the three clusters. 
The distribution of PIS1, PIS2, and PIS3 in the groups diagnosed with 
different pathologic T stages (E) or N stages (F) or treated with radiation 
therapy (G).
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Differential expression of HOXC6 (A), PDK4 (B), and STAT3 (C) across the 
PRAD immune subtypes. D. Copy number variation (CNV) counts across 
the PRAD immune subtypes. E. Mutation frequency of the top 20 mostly 
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score for each PRAD immune subtype. * P < 0.01, ** P < 0.001, and *** P < 
0.0001.
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types and the infiltration of immune cells. The comparison of the stromal 
score, immune score, tumor purity, and immune cells infiltration across 
PIS1 to PIS3 in the CGA-PRAD cohort (A-C) and validation cohort (D–F). * P 
< 0.01 and *** P < 0.0001.

Additional file 5: Figure S5. Immune status of the PRAD immune 
subtypes. A. Association of anticancer immune activity and PRAD immune 
subtypes. Immune-checkpoint genes and immunogenic cell death genes 
are differentially expressed across the PRAD immune subtypes in the 
training (B–C) and validation (D–E) cohorts. * P < 0.01, ** P < 0.001, and 
*** P < 0.0001.
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Additional file 7: Figure S7. Immune status of the PRAD immune sub-
types. Tumor mutation burden (A) and mutation counts (B) across PIS1, 
PIS2, and PIS3. C. Mutation frequency of the top 20 mostly mutated genes 
in each PRAD immune subtype. Copy number variation (CNV) across 
chromosomes (D) and CNV count (E) in the PRAD immune subtypes.

Additional file 8: Figure S8. Identification of hub gene-based risk model 
of PRAD. A. The prognostic value of the co-expression modules. B–D. 
Biological function and signaling pathways that the three prognostic 
co-expression modules (pink, magenta, and purple) were involved. E. Risk 
score of each PRAD individual. F. Differential expression of ESPL1, CDC20, 
and MAPK8IP3 between the high-risk and low-risk groups. G. Survival 
probability of the high-risk and low-risk groups. H. Accuracy of the risk 
model presented with receiver operating curve.
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genes (DEGs)-based risk model. A. Intersection of DEGs between PIS1, 
PIS2, and PIS3. B. Differential expression of DEGs in PIS1, PIS2, and PIS3, 
and their association with clinical features. C. Prognostic value of 21 DEGs 
that were selected to construct the risk model. D. Part of the survival 
curves of the 21 DEGs. E–F. Partial likelihood deviance and coefficients 
response status of constructing the risk model. G. Coefficients of each 
DEG in the Lasso regression. H. Risk classification of each PRAD individual.

Additional file 10: Figure S10. Association between PRAD immune 
subtypes and risk model. A. Risk model survival curve. B. Risk model 
receiver operating curve. C. Risk score of each PRAD immune subtype. D. 
Distribution of risk groups across the PRAD immune subtypes.
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